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Abstract

In this paper we examine the relationship between the stationary density ζD0 of a
graph G and its stationary density ζst, and give an exposition of the Threshold Density
Theorem due to Levine [2015], which states that the threshold density converges to
the stationary density as the degree of the initial divisor D0 approaches −∞. We will
then prove the Threshold Density Theorem directly on the banana graph Bn.





Introduction

Imagine a group of friends, Alice, Bob, Charlie, and Diane, all of whom live in house-
boats, connected by bridges. Bob and Charlie can walk directly to any of their friends’
houses, while Alice and Diane can walk directly to Bob and Charlie’s. We can imagine
the following map:

A

B C

D

The orientation of where the houseboats lie and the length of the bridges does not
concern us. A map like this is an example of a graph. The notion of a mathematical
graph generalizes a set of relationships between objects. We say a graph consists of
a set of vertices and edges which connect them. As another example, we have the
following graph with four vertices and five edges.

A′

B′ C ′

D′

For the scope of this paper we will restrict ourselves to graphs that are connected,
that is, each of our friends can reach each others’ houses via some bridges and undi-
rected, that is, if Bob can walk to Alice’s, Alice can also walk to Bob’s. Further, we
allow multiple bridges between the same pair of destinations.

Let us return to our four friends and imagine that they are playing a game of poker.
Alice has one dollar, Bob is two dollars in debt, Charlie has two dollars, and Diane
has four dollars. We can assign these values to our previous graph:
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1

-2 2

4

We now introduce the notion of chip-firing. In order to move around the money
they have, we allow a person to either “lend” or “borrow,” that is, for each neighbor,
either send them one dollar or borrow a dollar from each. For example, on our graph,
if Diane were to perform a lending move, we would see,

1

-2 2

4

D

1

-1 3

2

Likewise, if after this, Bob performed a borrowing move, we would see,

1

-1 3

2

−B

0

2 2

1

Note that if a vertex lends a dollar to one of its neighbors, it must simultaneously
lend a dollar to all its neighbors, and vice versa with borrowing.

So that our running example will conform with later notation, we will relabel the
vertices.

v1

v2 v3

v4

Figure 1: The Diamond Graph.

Next, we will want to introduce the notion of stability and instability. We will say
a vertex is unstable if it has as least as much money as it has neighbors. Otherwise,
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it is stable. We say that a graph is stable if all its vertices are stable. An unstable
vertex will “fire,” that is, send a dollar to each of its neighbors. After some sequence
of firings a graph will either reach a stable state, or return to a past unstable state
and fire indefinitely. We will call this graph alive. For example, observe the behavior
of the following:

2

2 2

0

v1

0

3 3

0

v2, v3

2

1 1

2

v1, v4

0

3 3

0

We can see that this system will not reach a stable state.
Let us suppose now that we start with zero dollars on each vertex and, one at a

time, randomly drop a dollar on some vertex and allow the system to stabilize until
it becomes alive. For example,

0

0 0

0

+v2

0

1 0

0

+v3

0

1 1

0

+v4

0

1 1

1

+v4

0

1 1

2

v4

0

2 2

0

+v1

1

2 2

0

+v1

2

2 2

0

Since this final arrangement is unstabilizable, as we have seen before, the system
becomes alive. We will call the first unstabilizable state that is reached a threshold
state. The average amount of dollars on any given vertex is called the threshold
density, and in this case it is 6

4
.

Depending on which vertices we drop the dollars on, we may reach any one of
many possible threshold states, each with a different probability. We use the notation
(a1, a2, a3, a4) to represent the amounts of money on v1, v2, v3, and v4, respectively.
In our example there are 16 threshold states where the total number of dollars is 5:

(0, 1, 3, 1), (0, 1, 2, 2), (0, 3, 1, 1), (0, 2, 1, 2), (0, 3, 2, 0), (0, 2, 3, 0), (2, 0, 2, 1), (1, 0, 3, 1)

(1, 0, 2, 2), (2, 1, 2, 0), (1, 1, 3, 0), (2, 2, 0, 1), (1, 3, 0, 1), (1, 2, 0, 2), (2, 2, 1, 0), (1, 3, 1, 0).

There are 12 threshold states where the total amount is six,

(0, 3, 2, 1), (0, 2, 3, 1), (0, 2, 2, 2), (2, 1, 2, 1), (1, 1, 3, 1), (1, 1, 2, 2)
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(2, 2, 1, 1), (1, 3, 1, 1), (1, 2, 1, 2), (2, 2, 2, 0), (1, 3, 2, 0), (1, 2, 3, 0),

and 4 where the total is 7:

(2, 2, 2, 1), (1, 3, 2, 1), (1, 2, 3, 1), (1, 2, 2, 2).

So, the threshold density will be somewhere between 5
4

and 7
4
, depending on the

probabilities of reaching these states. Calculating the probabilities of reaching these
states tends to be difficult by hand, but with a computer we are able to find that the
threshold density is 5775

4096
≈ 1.41.

In this essay we will be examining facts about the threshold density. In Chapter 1,
we will first formalize our chip-firing model and then introduce the notion of a sink,
a vertex down which sand can disappear. We will use a process called a Markov
chain to examine the long-term behavior of a graph with a sink, which will be called
our Abelian Sandpile model, and then apply those results to the sinkless model.
In Chapter 2, we will compare these two models to prove the Stationary Density
Theorem due to Levine [2015], which states that the threshold density approaches a
related constant called the stationary density, as the initial state of the sinkless model
becomes increasingly negative. Finally, in Chapter 3, we will examine in depth an
example on a simple type of graph called the banana graph, on which we will prove
directly that the threshold density approaches the stationary density.



Chapter 1

The Abelian Sandpile Model

In this chapter, we will properly define the chip-firing model we presented in the in-
troduction. Then, we will introduce the Markov chain, which will allow us to examine
long-term distributions of evolving systems. Finally, we will apply the Markov chain
to our model. For detailed proofs of the theorems presented, refer to Perkinson and
Corry [2017].

1.1 Formalizing the Chip-firing Model

1.1.1 Without Sink

In the introduction, we examined amounts of “money” on a graph. We will now
formally define a graph. By a multiset we mean a set in which elements may occur
multiple times.

Definition 1.1.1. A graph, G = (V,E), consists of a set of vertices V and a multiset
of edges which connect them, E. The elements of E will be unordered pairs of
elements of V .

In this essay we will restrict ourselves to connected graphs, where any vertex is
reachable from another by a series of consecutive edges. Since E is a multiset, multiple
edges connecting two vertices will also be allowed.

Definition 1.1.2. A divisor D on a graph G = (V,E) is an element of the free
Abelian group on the vertices,

Div(G) = ZV =
∑
v∈V

D(v)v.

A divisor represents the distribution of wealth on a graph by letting D(v) refer
to the amount of dollars that vertex v has. We refer to the degree of a divisor as the
sum of these coefficients, i.e., the net wealth. That is,

Definition 1.1.3. The degree of a divisor D is given by deg(D) =
∑

v∈V D(v).

Note that for D,E ∈ Div(G), we have deg(D) + deg(E) = deg(D + E). We will
let Divk(G) denote the set of divisors with degree k.



6 Chapter 1. The Abelian Sandpile Model

For a vertex v, however, deg(v) may either refer to its degree as a divisor, in which
case deg(v) = 1 or to the number of edges to which v is adjacent. We will use degG(v)
to refer to the latter to avoid confusion.

To represent firing formally, we define the following:

Definition 1.1.4. For two divisors D,D′ ∈ Div(G) and a vertex v ∈ V we say that
D′ is obtainable from D by a lending move at v, denoted D

v−→ D′, if

D′ = D − degG(v)v +
∑
vw∈E

w.

A borrowing move, correspondingly, will have the signs reversed on degG(v)v and
the sum. As it turns out, borrowing and lending moves are Abelian: for any ordering
of some firings or lendings, we will come to the same final state.

We will call two divisors D,D′ linearly equivalent if D is obtainable from D′ by
some sequence of lending and borrowing moves, and vice versa, and say D ∼ D′.
The set of divisors linearly equivalent to some D will be denoted [D]. Note that if
D ∼ D′, then we have deg(D) = deg(D′), since lending and borrowing moves do not
affect the degree.

Definition 1.1.5. The (discrete) Laplacian operator on G is the linear mapping
L : ZV → ZV determined by

L(v) :=
∑
vw∈E

(v − w).

The Laplacian matrix L is the matrix representation of the Laplacian operator,
and encodes set firings. That is, for some divisor D = (D(v1), D(v2), · · · , D(vn))
and a firing script σ = (a1, a2, · · · , an), where ai denotes firing vi a total of ai times,
the divisor D′ = D − Lσ gives the resulting divisor after each vi ∈ V has been
fired ai times. For example, for the diamond graph in figure 1 in the introduction,
σ = (1, 0, 1, 0) would denote firing v1 and v3 once each, so Lσ would have the net
effect (−1, 2,−2, 1). Note that if D ∼ D′ then there exists a firing script σ such that
D′ = D − Lσ.

Let us return to the notion of stability.

Definition 1.1.6. A vertex v is stable forD ∈ Div(G) if D(v) < degG(v). A divisor D
is stable if all of its vertices are stable. A divisor D is stabilizable if it is linearly
equivalent to some divisor D which is stable. A divisor which is not stabilizable is
alive.

Naturally, if a divisor D is stable, then each divisor in [D] is stabilizable.
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Next we consider some properties of linear equivalence which will lead us to in-
troduce the notion of the sink. We define the addition of divisors vertex-wise, that
is,

D + F =
∑
v∈V

(D(v) + F (v))v.

Definition 1.1.7. The Picard group, Pic(G), is defined as the set of linear equivalence
classes of divisors,

Pic(G) = Div(G)/ ∼,

with addition

[D] + [F ] = [D + F ].

Definition 1.1.8. The subgroup of Pic(G) consisting of divisors with degree zero is
called the Jacobian group, denoted Jac(G):

Jac(G) = Div0(D)/ ∼ .

Since the two divisors with degree zero will also have degree zero, the group is
well-defined. As such, we can establish an isomorphism between the Pic(G) and
Z× Jac(G). Picking some q ∈ V , an isomorphism is given by,

Pic(G)→ Z× Jac(G)

[D]→ (deg(D), [D − deg(D)q]).

This means any divisor class is equivalent to some element in the Jacobian, with
one vertex adjusted to make the total degree of the divisor zero.

1.1.2 With Sink

Rather than thinking of a divisor on a graph as representing an amount of wealth
which can be borrowed and lent, we may think of a graph as having an amount of
“grains of sand” on it instead. Suppose we pick some arbitrary vertex and denote it
the sink, with the property that any sand that enters it will disappear. With regard
to this, we will redefine several terms: rather than talking about divisors, we will
instead speak of configurations and sandpiles.

Definition 1.1.9. On a graph G = (V,E, s) with sink s ∈ V , a configuration c ∈
Config(G) is defined as an element of the free Abelian group on Ṽ = V \ s:

Config(G) = ZṼ =
∑
v∈Ṽ

D(v)v.

A configuration is essentially just a divisor D with D(s) = 0, so Config(G) is
naturally a subset of Div(G). The degree is defined accordingly:

Definition 1.1.10. The degree of a configuration c is given by deg(c) =
∑

v∈Ṽ c(v).
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Firing vertices functions exactly as it does in the sinkless model with lending
moves, except that the sink cannot fire.

Definition 1.1.11. For two configurations, c, c′ ∈ Config(G) and a vertex v ∈ Ṽ we
can say that c′ is obtainable from c by a firing at v, denoted c

v−→ c′ if

c′ = c− degG(v)v +
∑

vw∈E:w 6=s

w.

A reverse firing at v, denoted c
−v−→ c′ is then given by

c′ = c+ degG(v)v −
∑

vw∈E:w 6=s

w.

So a reverse firing corresponds to a borrowing move in the sinkless model.

Stability and instability are defined the same way: a configuration c is stable if all
of its vertices (except the sink) are stable, that is, if c(v) < degG(v) for all v ∈ Ṽ .

The main difference between configurations and divisors is the notion of stabiliza-
tion and stabilizability.

Definition 1.1.12. Let c ∈ Config(G). It is legal to fire v if c(v) ≥ degG(v), that is,
if v is unstable.

Since sand can disappear down the sink, the degree of a configuration can decrease
after successive firings. In fact, however large the degree of an unstable configuration,
after a finite number of firings enough sand will have gone down the sink for the
configuration to reach stability.

Definition 1.1.13. For any configuration c ∈ Config(G), the stabilization of c is
denoted c◦.

Proposition 1.1.1. For any configuration c ∈ Config(G), its stabilization c◦ is
unique, and its firing script σ is also unique.

Next, we define an important subset of Config(G).

Definition 1.1.14. If c ∈ Config(G) and c(v) ≥ 0 for all v ∈ Ṽ we write c ≥ 0 and c
is called a sandpile. The set of all stable sandpiles is denoted Stab(G). We define the
operation stable addition, on two stable sandpiles a, b ∈ Stab(G) denoted by a~ b, as
vertex-wise addition followed by stabilization, that is,

a~ b = (a+ b)◦.

This means Stab(G) is very nearly a group under ~—it only lacks inverses. As we
will soon see, there is a subset of Stab(G) which does form a group, and we will call
this group S(G) and its elements recurrents. It is worth noting that dropping many
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grains of sand on G and allowing it to stabilize, noting the number of times each
configuration in Stab(G) appears, we find that certain sandpiles only appear once or
never, and others appear many times. The latter will turn out to be those recurrents,
which we will define later.

In the previous section we examined the groups formed by modding out divisors
via equivalence. We will do something similar for Config(G), modding out via firings
and reverse-firings.

Definition 1.1.15. The critical group K(G) of a graph G = (V,E, s) with sink s is
given by

K(G) := Config(G)/ ∼ .

Here, a ∼ b means a is obtainable from b via a sequence of (not necessarily legal)
firings and reverse firings.

1.2 Introducing Markov Chains

We will now define Markov chains, which will allow us to examine the long-term
behavior of a group of states with a set of probabilities for going from one state to
another. As a general reference for Markov chains, the reader may consult Levin et al.
[2009].

Definition 1.2.1. A finite Markov chain consists of:

1. A finite set of states, Ω.

2. A function, P : Ω× Ω→ [0, 1] with the property that for all x ∈ Ω, P (x, · ) is
a probability distribution on Ω, i.e.:

∑
y∈Ω P (x, y) = 1.

3. A sequence of random variables (X0, X1, X2, . . . ) which satisfy the law of the
chain,

P(Xt+1 = y : Xt = x) = P (x, y).

We now define several terms which will give us a definition for the recurrent states
we referred to earlier in the model with sink.

Definition 1.2.2. In a Markov chain (Ω, P, (Xt)), for two states x, y ∈ Ω, the state
y is said to be accessible from x if there exists an n > 0 such that P n(x, y) > 0.
If x is also accessible from y, then x and y are said to communicate. If all states
communicate then the Markov chain is said to be irreducible.

Definition 1.2.3. A state x ∈ Ω of a Markov chain is said to be essential if its
communicating class (i.e., the set of states with which it communicates) consists of
all y ∈ Ω that are accessible from x.

This means that if a state x is essential, then any state which can be accessed
from x can also access x. Now, we define a recurrent state on a Markov chain.
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Definition 1.2.4. For a Markov chain, (Ω, P,Xt), a state x ∈ Ω is recurrent if,
starting from x, the probability that the chain returns to x at some point is 1.

Proposition 1.2.1. On a Markov chain (Ω, P,Xt), a state is recurrent if and only
if it is essential. Every Markov chain has at least one essential state, and for any
inessential state there is some essential state which is accessible from it.

There are several statements we can make about the long-term behavior of a
Markov chain in terms of stationary distributions. Given some initial probability
distribution π0 on our set of states, we can write πt to be the probability distribution
at some time (i.e., number of steps) t, where πt = πt−1P . If there exists a limiting
distribution π, that is, if π = limt→∞ πt for some initial π0 then it must be the case
that π = πP .

Definition 1.2.5. A probability distribution π on Ω is a stationary distribution if
π = πP .

Proposition 1.2.2. Suppose π is a stationary distribution for (Ω, P,Xt). Then if
x ∈ Ω is inessential, π(x) = 0.

We will need one more definition to guarantee the existence of a stationary dis-
tribution.

Definition 1.2.6. For a finite Markov chain, (Ω, P,Xt) we define the period of a
state x to be the greatest common divisor of the set T (x) := {n ≥ 1 : P n(x, x) > 0},
that is, the greatest common divisor of the set of times for which it is possible for x
to return to itself. If no such set exists then the period is not defined. If each state
has period 1, we say the Markov chain is aperiodic.

Theorem 1. Suppose (Ω, P,Xt) is an irreducible finite Markov chain. Then there
exists a unique stationary distribution π. Furthermore, if the chain is also aperiodic,
then for any initial distribution π0, the chain will converge to π.

1.3 The Abelian Sandpile Model

1.3.1 Without Sink

We will apply our theory of Markov chains first to the sinkless sandpile model. At
each step in time we will randomly drop a grain of sand on some vertex of a graph
and attempt to stabilize until the system becomes alive. We write,

Definition 1.3.1. The Sinkless Abelian Sandpile Model on a graph G = (V,E)
is a finite Markov chain (Ω, P,Dt) where the state space Ω consists of the set of
divisors, Div(G). The probability matrix, given D,D′ ∈ Div(G) and some probability
distribution on the vertices α : V → [0, 1] where α(v) > 0 for all v, is given by

P (D,D′) :=

{
α(v), if D′ = D + v and D + v is alive∑

v∈V :(D+v)◦=D′ α(v), otherwise,
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where (D + v)◦ denotes the stabilization of D + v.

Proposition 1.3.1. Let D ∈ Div be a stabilizable divisor. Then the firing script σ
for the stabilization of D is unique up to the all 1s vector, 1V =

∑
v∈V v.

Additionally, we define an operator av to represent dropping a grain of sand on
v ∈ V and attempting to stabilize. So,

avD :=

{
D + v, if D + v is alive

(D + v)◦, otherwise.

The random variable (Dt), beginning at D0 ∈ Div(G), is given by Dt+1 = avt+1Dt.

We will want to consider the states at which the sandpile first becomes alive. We
call these threshold states and define a time τ for the first divisor Dτ which is alive.

Definition 1.3.2. The threshold time from starting state D0 is the random variable
on the sinkless Abelian Sandpile defined as,

τ := τ(D0) = min{t ≥ 0: Dt is alive}.

Accordingly, Dτ is a threshold state, and vτ is the vertex of first unstabilizability or
epicenter.

These are all random variables on our Markov chain.

Definition 1.3.3. The threshold density of graph G in the sinkless Abelian Sandpile
model is the expected value of the average amount of sand on any given vertex at
threshold, as given by

ζτ (D0) := ED0

deg(Dτ )

|V |
.

1.3.2 With Sink

The Abelian Sandpile model with a sink will also be a Markov chain, defined in a
similar fashion to the sinkless model, except with the property that the chain will not
terminate, since a sandpile cannot become alive. This will allow us to find a limiting
distribution and define the recurrent.

Definition 1.3.4. Let α : V → [0, 1] be a probability distribution on the vertices of G,
with α(v) > 0 for all v (so that there is a non-zero chance of sand being dropped
on any vertex, including the sink). The Abelian Sandpile with a sink is defined as
the Markov chain (Ω, P, ct) on G(V,E, s), with the state space Ω = Stab(G), and
probability matrix given by

P (c, c′) =
∑

v∈V :(c+v)◦=c′

α(v).

Here, our sequence of random variables ct starts at c0 ∈ Stab(G) and proceeds as
ct+1 = avt+1ct, where we define avc = (c+ v)◦ if v 6= s and asc = c.
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Definition 1.3.5. A stable sandpile c ∈ Stab(G) is a recurrent if for every a ∈
Config(G), there exists b ∈ Config(G) where b ≥ 0 such that a~ b = c.

Proposition 1.3.2. The set of recurrents, S(G), a subset of Stab(G) forms a group
with respect to the operation ~, which denotes addition followed by stabilization. Fur-
ther, this group is isomorphic to K(G), the critical group of a graph, as well as Jac(G),
the Jacobian group.

Though we cannot always easily find the recurrent sandpiles, the maximal stable
sandpile, cmax, is always a recurrent, therefore universally accessible.

Proposition 1.3.3. The maximal stable configuration, given by

cmax :=
∑
v∈Ṽ

(degG(v)− 1)v

is always a recurrent.

Proof. For any a ∈ Config(G), let b = cmax − a◦, and let σ be the firing script that
stabilizes a. Then, since cmax is the largest possible stable sandpile, b ≥ 0. Firing σ
on a + b = a + (cmax − a0) will then also be legal, and yield a◦ + cmax − a◦ = cmax.
Hence, (a+ b)◦ = cmax and it follows that cmax is recurrent.

Example of Recurrents

We will examine the recurrents of the diamond graph we presented in the introduction.
There are several methods for finding the set of recurrents on a graph, analytically
or experimentally, but we will not go into detail about this. Suppose we again have
the diamond graph:

v1

v2 v3

v4

If we choose v4 as the sink, and write configurations as (c(v1), c(v2), c(v3)), the
recurrents will be given by,

S(G) = {(1, 2, 2), (0, 2, 2), (0, 1, 2), (1, 2, 0), (1, 0, 2), (0, 2, 1), (1, 1, 2), (1, 2, 1)}.

Observing the addition of two elements, say, (0, 2, 1) and (1, 1, 2), we see,

1

3 3

s

v2, v3

3

1 1

s

v4

1

2 2

s
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Likewise, if we choose v2 to be the sink, writing configurations as (c(v1), c(v3), c(v4))
we will get the following:

S(G) = {(1, 2, 1), (0, 1, 1), (0, 2, 1), (1, 0, 1), (1, 1, 1), (1, 2, 0), (0, 2, 0), (1, 1, 0)}.
Under the operation ~, these two groups are isomorphic.

Proposition 1.3.4. For a graph G = (V,E, s) with sink s, the set S(G) of recur-
rent configurations is identical to the set of recurrent states on the Markov chain
(Stab(G), P, ct) for the Abelian Sandpile.

Proof. In the Markov chain, we said that a state was recurrent if and only if it was
essential. However, it immediately follows from the definition of a recurrent sandpile
that every pair of recurrent sandpiles communicate.

In order to guarantee a limiting distribution and convergence to it from any start-
ing distribution, we recall, we specified that a Markov chain had to be irreducible and
aperiodic. Accordingly, to assure irreducibility, we first modify the Abelian Sandpile
model with sink by restricting its state space to S(G) ⊂ Stab(G).

Theorem 2. The stationary distribution of the chain (S(G), P, ct) is the uniform
distribution π(c) = u(c) = 1

|S(G)| for all c ∈ S(G).

Proof. We know the corresponding Markov chain must be aperiodic since at any point
a grain of sand may be dropped on the sink, with no effect on the graph. So the period
of each state must be 1, and so the chain will converge to the stationary distribution
from any initial distribution.

To show that u(c), the uniform distribution, is a limiting distribution, it will suffice
to show that u = uP . For c, c′ ∈ S(G),

uP (c′) = u
(∑

c∈S(G) P (c, c′)
)

=
1

|S(G)|
∑
c∈S(G)

∑
v∈V :(c+v)◦=c′

α(v).

For a, b ∈ S(G) and v ∈ V , (a+ v)◦ = (b+ v)◦ if and only if a = b. So, for each v
there will be a unique c such that (c+ v)◦ = c′. Summing α over each v ∈ V gives 1
since α is a probability distribution on V . Therefore,

1

|S(G)|
∑
c∈S(G)

∑
v∈V : (c+v)◦=c′

α(v) =
1

|S(G)|
= u(c′).

Thus, the probability of being at any given recurrent c becomes equally likely as
time goes on.

Finally we state a theorem due to Dhar [1990], which will motivate something
called a basic alive divisor in the next chapter.

Theorem 3. Suppose c ∈ Stab(G) is a configuration on some graph G = (V,E, s)
with sink s and c′ is the sandpile obtained from c by firing the sink. Then c is recurrent
if and only if in the stabilization of c′ each nonsink vertex fires exactly once, in which
case (c′)◦ = c.





Chapter 2

The Threshold Density Theorem

In this chapter we relate the Abelian Sandpile Model with the sink to that without.
We then invoke a theorem called the “Markov Renewal Theorem,” which will allow
us to compute the limit of the threshold density, as the degree of our starting divisor
tends towards −∞. Our reference for this chapter is Perkinson and Corry [2017] and
Levine [2015].

Definition 2.0.1. A basic alive divisor B on a graph G = (V,E, s) consists of a
recurrent c ∈ S(G) plus an amount of sand on the sink equal to degG(s). That is,
B = c+ degG(s)s. The set of basic alive divisors is denoted B(G, s) or just B(G).

A basic alive divisor is clearly alive, since by Dhar’s Theorem, firing the sink causes
every nonsink vertex to fire once and return to the original divisor. The following
number gives the expected amount of sand on any given vertex at the time it becomes
alive, under the assumption that reaching any basic alive divisor at the threshold is
equally likely.

Definition 2.0.2. The stationary density of a graph G = (V,E, s) is

ζst =
1

|S(G)|
∑

B∈B(G)

deg(B)

|V |
=

degG(s)

|V |
+

1

|S(G)|
∑
c∈S(G)

deg(c)

|V |
.

Two Examples

The Diamond Graph

We previously found all the recurrents of the diamond graph for s = v4 and s = v2.
We will calculate the stationary density for both and show that they are the same.

S(G, v4) = {(1, 2, 2), (0, 2, 2), (0, 1, 2), (1, 2, 0), (1, 0, 2), (0, 2, 1), (1, 1, 2), (1, 2, 1)}

S(G, v2) = {(1, 2, 1), (0, 1, 1), (0, 2, 1), (1, 0, 1), (1, 1, 1), (1, 2, 0), (0, 2, 0), (1, 1, 0)}
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ζst,v1 =
degG(v1)

|V |
+

1

|S(G)|
∑
c∈S(G)

deg(c)

|V |
=

2

4
+

1

8
· 5 + 4 + 3 + 3 + 3 + 3 + 4 + 4

4

=
1

2
+

29

32
=

45

32

ζst,v2 =
3

4
+

1

8
· 4 + 2 + 3 + 2 + 3 + 3 + 2 + 2

4
=

3

4
+

21

32
=

45

32
= ζst,v1 .

It turns out that for an undirected graph, the stationary density is always inde-
pendent of the choice of sink vertex.

Combining Two Graphs

The nature of the stationary density, being dependent only on the recurrents of a
graph, makes it easy to examine the concatenation of two graphs, connected at a
single point.

Definition 2.0.3. Let G = (VG, EG) and H = (VH , EH) both be graphs. The
concatenation of G and H at (v, w) ∈ VG×VH is the graph Gv ∨wH formed from the
disjoint union of G and H by identifying the vertices v and w.

For example, combining the diamond graph with the complete graph K4 by com-
bining v3 and w2 would look like,

v1

v2 v3

v4

∨

w1

w2 w3

w4

=

v1

v2 w2

v4

w1

w3

w4

Since the stationary density of a graph is defined as,

ζst =
degG(s)

|V |
+

1

|S(G)|
∑
c∈S(G)

deg(c)

|V |,

it will suffice to find all the recurrents on Gs ∨t H to find its stationary density. To
do so we will examine configurations on Gs ∨Ht.

Definition 2.0.4. For a graph G = (VG, EG, s) with sink s and a graph H =
(VH , EH , t) with sink t, a configuration on Gs ∨t H will be uniquely given by a =
(aG, aH), where aG ∈ Config(G, s) and aH ∈ Config(H, t).

Since the two graphs are divided by a sink, there is no way for any sand to go
from one side to the other. This means addition on the respective halves will function
as it does for Config(G, s) and Config(H, t), respectively.
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Proposition 2.0.1. Suppose G ∨s,t H is the concatenation of graphs G and H, and
a = (aG, aH), b = (bG, bH) ∈ Config(Gs∨tH), where aG, bG ∈ Config(G) and aH , bH ∈
Config(H). Then,

a+ b = (aG + bG, aH + bH)

and further,

(a+ b)◦ = ((aG + bG)◦, (aH + bH)◦).

Proposition 2.0.2. The recurrents on Gs∨tH will simply be all combinations (cG, cH),
where cG is a recurrent on G with respect to sink s = t and cH a recurrent on H with
respect to sink t.

Proof. Suppose c = (cG, cH) is a recurrent on Gs ∨t H. We claim that cG and cH are
recurrent, that is, c ∈ S(G) and cH ∈ S(H). First note that since c is stable, so are
cG and cH . Now, take aG ∈ Config(G) and aH ∈ Config(H), and define a = (aG, aH).
Since c is recurrent, there exists b = (bG, bH) ∈ Config(Gs ∨tH) with b ≥ 0 such that

(a+ b)◦ = ((aG + bG)◦, (aH + bH)◦) = (cG, cH) = c.

So, for any configurations aG and aH , we have configurations bG ≥ 0 and bH ≥ 0 such
that (aG + bG)◦ = cG and (aH + bH)◦ = cH . This proves that if c ∈ S(Gs ∨t H), then
cG ∈ S(G) and cH ∈ S(H).

Now we examine the converse. Suppose cG ∈ S(G) and cH ∈ S(H). We would
like to show c = (cG, cH) ∈ S(Gs ∨t H).

First note that since cG and cH are both stable sandpiles, (cG, cH) is also a stable
sandpile.

Next, take a = (aG, aH) ∈ Config(Gs ∨t H). Since cG and cH are recurrent, there
exist bG ≥ 0 and bH ≥ 0 such that (aG + bG)◦ = cG and (aH + bH)◦ = cH . Letting
b = (bG, bH), we have b ≥ 0 and (a+ b)◦ = ((aG+ bG)◦, (aH + bH)◦) = (cG, cH). Hence,
c is recurrent.

Corollary 3.1. The stationary density of Gs ∨t H, the concatenation of the graphs
at s, t is given by

ζst(Gs ∨t H) =
ζst(G)|VG|+ ζst(H)|VH |
|VG|+ |VH | − 1

.

Proof. Since the recurrents on G ∨s,t H are all the combinations (cG, cH) where cG ∈
S(G) and cH ∈ S(H), the size of |S(Gs ∨t H)| will be |S(G)||S(H)|, and the size of
the vertex set will be |VG| + |VH | − 1, since one pair of vertices is being combined.
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This means

ζst =
degG(s)

|V |
+

1

|S(G)|
∑
c∈S(G)

deg(c)

|V |

=
degG(s) + degH(t)

|VG|+ |VH | − 1
+

1

|S(G)||S(H)|
∑

cG∈S(G)

∑
cH∈S(H)

deg(cG) + deg(cH)

|VG|+ |VH | − 1

=
degG(s) + degH(t)

|VG|+ |VH | − 1
+

1

|S(G)|
∑

cG∈S(G)

deg(cG)

|VG|+ |VH | − 1

+
1

|S(H)|
∑

cH∈S(H)

deg(cH)

|VG|+ |VH | − 1

=
1

|VG|+ |VH | − 1

(
degG(s) +

1

|S(G)|
∑

cG∈S(G)

deg(cG) + degH(t)

+
1

|S(H)|
∑

cH∈S(H)

deg(cH)
)

=
ζst(G)|VG|+ ζst(H)|VH |
|VG|+ |VH | − 1

.

So, for the concatenation of a graph, the stationary density will be closely related
to the sum of their respective stationary densities, adjusted by a factor of the ratio of
the sizes of the vertex sets. Additionally, since it turns out the stationary density of
the concatenation is independent of where we choose to combine the graphs, we can
even find the threshold density of the concatenation of any number of graphs.

Corollary 3.2. The stationary density of the concatenation of a series of graphs,
G1, G2 · · ·Gn, with respective stationary densities ζst(G1), ζst(G2) · · · ζst(Gn) is given
by

ζst(∨ni=1Gi) =

n∑
i=1

ζst(Gi)|VGi |
n∑
i=1

|VGi | − n+ 1
.

Proof. We will prove this by induction. The first case, regarding one concatenation,
we just proved. Now, suppose that the concatenation of some n graphs is given by

ζst(G) =

n∑
i=1

ζst(Gi)|VGi |
n∑
i=1
|VGi |−n+1

. Since each concatenation reduces the size of the total vertex set

by 1, we have |VG| =
n∑
i=1

|VGi |−n+1, since for n graphs we have n−1 concatenations.

We will combine this graph with another, Gn+1, which has stationary density
ζst(Gn+1). By the previous corollary, the stationary density is given by,

ζst(G ∨H) =
ζst(G)|VG|+ ζst(H)|VH |
|VG|+ |VH | − 1
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So we have,

ζst(G ∨Gn+1) =
ζst(G)|VG|+ ζst(Gn+1)|VGn+1|

|VG|+ |VGn+1| − 1

=

n∑
i=1

ζst(Gi)|VGi |
n∑
i=1
|VGi |−n+1

( n∑
i=1

|VGi| − n+ 1
)

+ ζst(Gn+1)|VGn+1 |

n∑
i=1

|VGi | − n+ 1 + |VGn+1| − 1

=

n∑
i=1

ζst(Gi)|VGi |+ ζst(Gn+1)|VGn+1|
n∑
i=1

|VGi | − n+ 1 + |VGn+1| − 1

=

n+1∑
i=1

ζst(Gi)|VGi |

n+1∑
i=1

|VGi | − (n+ 1) + 1

= ζst(∨n+1
i=1 Gi).

Basic alive divisors allow us to think of a divisor on the sinkless model in terms
of the sink model and the stationary density as a quantity related to the threshold
density. We may drive this relation further: any divisor can be represented uniquely
in terms of a basic alive divisor, along with two other quantities:

Theorem 4. Let G = (V,E), and D ∈ Div(G) a divisor. For any choice of sink
s ∈ V we can uniquely represent D as a triple, (B,m, σ), where B is a basic alive
divisor c+ degs(s), m ∈ Z, and σ : V → Z a firing script with σ(s) = 0, such that,

D = B +ms− Lσ.

Corollary 4.1. A divisor D ∈ Div(G), written as D = B +ms+ Lσ, will be stable
if and only if m < 0.

Now, we have a preliminary way of relating the threshold density to the stationary
density. However, in the sinkless model, it is not the case that every basic alive divisor
will be equally likely for representing a threshold state, since threshold is reached after
a finite number of steps, which will not allow for sufficient mixing.

The other problem with our comparison of models is that in the sinkless model,
not every threshold state is reached with equal probability. We will address this in the
next chapter, where we will compute the limiting distribution of the sinkless Abelian
Sandpile Model as the degree of the initial divisor goes to negative infinity. We will
find that, though basic alive divisors are not reached with equal probability in the
limit, basic alive divisors of any given degree are. This will be enough to prove the
convergence of the threshold density to the stationary density.
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Non-Basic Threshold Divisors

Let D be a threshold divisor and suppose v is the epicenter vertex. Thus, the addition
of a grain on s caused the chain to reach an unstabilizable state D. Then D is linearly
equivalent to c + degG(s)s. However, it may be the case that D 6= c + degG(s)s for
any choice of s and c ∈ S(G, s).

For example, consider the graph G consisting of a line segment with two vertices
attached to a triangle:

v3

v4 v5

v2

v1

For the sink model, this graph has three recurrents for any of the five choices of
sink. However, in the sinkless model, it has 17 threshold states—this means that two
of these cannot be represented as c + degG(s)s. Namely, the threshold states B1 =
(0, 0, 2, 2, 1) and B2 = (0, 0, 2, 1, 2) have no such representations: B1(v4) = degG(v4)
and B2(v5) = degG(v5), the configurations with respect to v4 and v5, respectively
being the sink are not recurrent.

2.1 The Stationary Density Theorem

We will map out a way to prove that the threshold density converges to the stationary
density as D0 →∞. Since we have a way of uniquely decomposing a divisor in terms
of a triple, we will want to find a distribution which tells us the likelihood of reaching
that exact triple at threshold. To do so, we will use something called the Markov
Renewal Theorem, which gives a stationary distribution for a Markov chain once it
reaches a certain cumulative “length.” In our case, this length will be the cumulative
amount of sand which has fallen down the sink, and we will find the distribution of c
being the recurrent and v being the vertex at the time when this amount of sand on
the sink overflows and causes the divisor to become alive. This limiting distribution
will tell us that as the initial amount of sand on the sink (hence the degree of the
original divisor) approaches −∞, the limiting distribution of any given basic alive
divisor being the threshold state does not become uniform, but the number of basic
alive divisors reached with degree n does reach a uniform distribution, which means
that the threshold density converges to the stationary density.

We next define the burst size, which tracks the amount of sand going into the sink
for any firing, and allows us to examine the decomposition of avD.

Definition 2.1.1. For some basic alive divisor, B = c+ms ∈ B(G, s), the burst size,
βv(B) denotes the amount of sand which flows down the sink in the stabilization of
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c from the addition of v:

βv(B) = βv(c) := deg(c̃)− deg(c) + 1

where c̃ is the unique recurrent such that (c̃+ v)◦ = c.

We will also need the odometer function, odo(c), which assigns to each configura-
tion c the firing script σ of its stabilization. This means the odometer function will
record the number of times each vertex fires in the stabilization of c→ c◦. It follows
that the basic decomposition of avD will be,

avD = (c+ v)◦ + (m+ degG(s) + β)s− L(σ − odo(c+ v) + µ− µ(s)).

Here, β refers to βv((c + v)◦), µ is the stabilization script for D + v, and µ(s) is
the constant script, µ(s) ·~1.

Finally, we state the Threshold Density Theorem.

Theorem 5. Threshold Density Theorem Let G = (V,E) be a sinkless Abelian Sand-
pile. Then, as deg(D0)→ −∞,

ζD0 → ζst.

In order to prove this theorem, we will examine a related Markov chain which
keeps track of the vertices chosen at each point in time. This Markov chain will be
endowed with a “length” function based on the burst sizes, which will keep track
of the amount of sand on the sink, and we will want to figure out when the chain
surpasses a certain length. The key technical result upon which we ultimately rely is
given by the following, the Markov Renewal Theorem, a general proof of which can
be found in Kesten [1974].

Theorem 6. (Markov Renewal Theorem) Consider an irreducible Markov chain,
(Ω, P, (Xt)) and its set of edges, E = {(x, y) : P (x, y) > 0}. Let l : E → N be
a length function, and assume the chain is aperiodic with respect to l: gcd{n ≥
1: P n(x, x) > 0} = 1. Let π be the stationary distribution. For each n ∈ N, the
random time is defined as τn = min{t : λt ≥ n}, for the cumulative length function,
λt :=

∑t
j=1 l(Xj−1, Xj). Then, as n→∞, for any states x0, x, y ∈ Ω and m ∈ N we

will have:

Px0{(Xτn−1, Xτn , λτn − n) = (x, y,m)} → 1

Z
π(x)P (x, y)1{0 ≤ m ≤ l(x, y)}.

The normalization constant is Z =
∑

(x,y)∈E π(x)P (x, y)l(x, y).

This tells us that, starting from some initial position (x0, y0) on our Markov chain,
as the required length approaches infinity, the likelihood of reaching that required
length at some particular (x, y) will converge to the stationary distribution, π(x)P (x, y),
as long as the excess is not more than the length of the last edge traveled (in which
case the chain would have finished in the prior step).
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Theorem 7. For a graph G, a probability distribution α : V → [0, 1], with α(v) > 0
for all v ∈ V , let Dt be the Markov chain for the sinkless Abelian Sandpile, with
threshold time τ = τ(D0) and epicenter vτ . With respect to some sink s, our divisor
may be written as

Dτ ∼ Bτ +mτs− Lστ .

Then, as deg(D0)→ −∞, the joint probability of the triple (vτ , Bτ ,mτ ) converges:

PD0{(vτ , Bτ ,mτ ) = (v,B,m)} →

{
α(v)
|S(G)| , if 0 ≤ m < βv(B)

0, otherwise.

Proof. We begin by defining a new Markov chain:

Ω = V × S(G);

P ((v′, c′), (v, c)) = α(v)1{c = (c′ + v)◦};
Xt = (vt, ct).

The above chain is nearly identical to our Abelian Sandpile Model with sink, ex-
cept that we keep track of which vertices we fire. Since we are restricting ourselves to
the recurrents, the Markov chain will be irreducible, and so have stationary distribu-
tion π(v, c) = α(v)

|S(G)| . Since we will reach a basic alive divisor once the amount of sand
on the sink exceeds the degree of the sink, we will want to know the expected time,
after which we have m > 0, as well as how much“excess” there will be. Conveniently,
this is just what the Markov Renewal Theorem allows us to do.

In our case, the initial state will be some recurrent c, paired with the vertex to
be fired, and the length the total amount of sand which will be required to fill up the
sink.

We define the length function:

l((v′, c′), (v, c)) = βv(c) = deg(c′)− deg(c) + 1.

That is, the amount of sand that flows into the sink going from c′ to c by firing v.
We note that l((s, c), (s, c)) will trivially be zero, and will also mean that our length
function is aperiodic (since we can always drop sand on the sink with no effect.) The
cumulative length function will be:

λt :=
t∑

j=1

l(Xj−1, Xj) =
t∑

j=1

l((cj−1, vj−1), (cj, vj)).

The amount of excess sand on the sink, will be denoted m, as it was in our
decomposition. Recall that the divisor will be stable if and only if mt < 0, so our
threshold τ will naturally be τ := min{t ≥ 0: mt ≥ 0}. The length and mt will thus
be intimately related: mt = m0 +λt. To show this, we recall the basic decomposition,
Dt = Bt +mts+ Lσt, and the decomposition of avD to find that for m,

mt = mt−1 + βvt(ct) = mt−1 + l((ct−1, vt−1), (c, v)).
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This means we can also write τ as τ = min{t ≥ 0: λt ≥ −m0}. We now have
everything in place to invoke the Markov renewal theorem: a set of states (c, v)
endowed with a length function, a variable target −m0, a random time τ , and a
stationary distribution π(x). So, we find that,

Px0{((vτ−1, cτ−1), (vτ , cτ ),mτ ) = ((v′, c′), (v, c),m)}

→ 1

Z

α(v′)

|S(G)|
α(v)1{c = (c′ + v)◦, 0 ≤ m < βv(B)}.

The normalization constant Z turns out, conveniently, to be 1. If we sum over all
possible (v′, c′) which would yield the (v, c) we seek, we find that, as m0 → −∞,

PD0{(vτ , Bτ ,mτ ) = (v,B,m)} → α(v)

S(G)
1{0 ≤ m ≤ βv(B)}.

Because of the uniqueness of our decomposition, m0 → −∞ will necessarily mean
deg(D) → −∞. So, we conclude our proof, to find that as the degree of the divisor
approaches negative infinity, the likelihood of the epicenter being some v, the final
recurrent being c, and the excess being m approach the stationary distribution biased
by α.

This result will give us several convenient corollaries. Summing first over all
possible m and v, we get the following:

Corollary 7.1. For all basic alive divisors B, as deg(D0)→ −∞,

PD0{Bτ = B} → 1

|S(G)|
∑
v∈V

α(v)βv(B).

That is, the limiting distribution of a basic alive divisor at the threshold is deter-
mined by the distribution α and the burst size β. Again, we had been expecting that
in order for the threshold density to approach the stationary density, we would want
each basic alive divisor to occur with equal frequency. However, as we will soon see,
all we actually need is the probability for one of those basic alive divisors to be of
degree n to be equal for the Threshold Density Theorem to hold.

Next we consider the distribution for when the epicenter is located at the sink.
Since D is stabilizable if and only if m < 0, we know that the epicenter will necessarily
be at the sink if mτ = 0. So,

PD0{(vτ = s, Bτ = B} = PD0{((vτ , Bτ ,m) = (s, B, 0)} → α(s)

|S(G)|
.

Conveniently, since the choice of sink is arbitrary, we may pick any given sink and
sum over all the recurrents with respect to it, to find the limiting distribution for any
given vertex being the epicenter:

Corollary 7.2. For any v ∈ V , as deg(D)→ −∞,

PD0{vτ = v} → α(v).
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Finally, in order to prove the actual Threshold Density Theorem, we look at the
limiting distribution of the size of a divisor at the moment it becomes critical. We
find,

Corollary 7.3. For any n ≥ 0 and sink s, as n→ −∞,

PD0{deg(Dτ) = n} → |Bs : deg(B) = n|
|S(G)|

.

In order to prove the above, we must consider the breakdown of the divisor with
respect to any possible sink. So, we will have,

Dt = Bs
t +ms

ts− L(σst ).

In order for the sink to be the epicenter, mτ must be zero. So deg(Dτ ) = deg(Bs
τ ).

Setting vτ = s and invoking the distribution for when the epicenter is located at the
sink, we find,

PD0{deg(Dτ) = n} =
∑
s∈V

PD0{vτ = s, deg(Dτ ) = n} =
∑
s∈V

PD0{vτ = s, deg(Bs
τ ) = n}.

As deg(D)→ −∞, this sum converges to,∑
s∈V

α(s)

|S(G)|
|{Bs : deg(B) = n}|.

We invoke Merino’s theorem from Merino López [1997], and find that the number
of elements in Bs with degree n is independent of the choice of sink. This proves the
threshold density theorem:

ζτ (D0) : = ED0

deg(Dτ )

|V |
=
∑
n≥0

PD0{deg(Dτ) = n} n
|V |

→
∑
n≥0

PD0

|{Bs : deg(B) = n}|
|S(G)|

n

|V |

=
1

|S(G)|
∑

B∈B(G)

deg(B)

|V |

= ζst.



Chapter 3

Threshold Density of the Banana
Graph

The banana graph, Bn consists of two vertices, connected by some n number of edges.
For example, B3 is,

Figure 3.1: The Banana Graph.

To find the threshold density we must find the probability that the divisor becomes
alive after some number of grains of sand have been dropped on it. We will suppose
that there is an equal probability of dropping the grain at either vertex.

3.1 From the Zero Divisor

We begin with the zero divisor, (0, 0). The first grain will fall on the first or second
vertex, leading to the divisor (1, 0) or (0, 1). The next grain of sand will fall on either
vertex, which will give us (2, 0), (1, 1), or (0, 2), and then (3, 0), (1, 2), (2, 1), and
(0, 3), and so on. Once either vertex reaches n grains, it will fire, sending n grains
of sand to the other, which will fire, and so the divisor will be alive. So, in the case
of the banana graph, the threshold states will be given by (n, 0), (n, 1) · · · (n, n − 1)
and (0, n), (1, n) · · · (n− 1, n). As example, the possible ways B3 can evolve are given
here:
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(0,0) (1,0)

(0,1) (1,1)

(2,0)

(0,2)

(2,1)

(1,2) (2,2)

(3,0)

(3,1)

(3,2)

(2,3)(1,3)(0,3)

Proposition 3.1.1. Let Bn be the sinkless Abelian Sandpile on the banana graph Bn.
The probability of reaching some non-threshold state (i, j) from (0, 0) after i+j grains
of sand have been dropped is given by

P (i, j) =
1

2i+j

(
i+ j

i

)
=

1

2i+j

(
i+ j

j

)
.

Proof. Suppose λ(i, j) represents the number of possible paths from the divisor (0, 0)
to the non-threshold divisor (i, j). Since (i, j) can be immediately preceded by (i−1, j)
or (i, j − 1) or both, we can say λ(i, j) = λ(i − 1, j) + λ(i, j − 1), where λ(0, 0) = 1
and λ(i, j) = 0 for i < 0 or j < 0.

By induction, we see that λ(i, j) =
(
i+j
i

)
=
(
i+j
j

)
:

λ(i, j) =

(
i+ j

i

)
=

(
i+ j − 1

i− 1

)
+

(
i+ j − 1

j − 1

)
= λ(i− 1, j) + λ(i, j − 1).

The base for induction is
(

0
0

)
= 1 and

(
i+j
i

)
is 0 if i or j < 0.

Since there are two vertices to choose from at each moment in time, there will be
a total of 2i+j paths to the divisors of weight i+ j.

So, the probability that the sandpile reaches the divisor (i, j) after i+ j grains of
sand have been dropped is given by the number of paths to (i, j) divided by the total
number of paths: 1

2i+j

(
i+j
i

)
.

From this, we can deduce the threshold density.

Corollary 7.4. The threshold density of a banana graph Bn, starting at the zero
divisor (0, 0) is given by

ζ~0 =
1

2n

n−1∑
k=0

n+ k

2k

(
n+ k − 1

k

)
= n

(
1− 1

4n

(
2n

n

))
.

Proof. For 0 ≤ k ≤ n− 1, the states which immediately precede the threshold states
are (n − 1, k) and (k, n − 1). That is, (n − 1, 0), (n − 1, 1), · · · , (n − 1, n − 1) and
(0, n− 1), (1, n− 1), · · · , (n− 1, n− 1).
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The probability of reaching any of these states is P (n − 1, k) = P (k, n − 1) =
1

2n+k−1

(
n+k−1

k

)
.

Since, once one of these states is reached, the probability of reaching the threshold
states (n, k) or (k, n) is 1

2
, we may say P (n, k) = P (k, n) = 1

2
P (n−1, k) = 1

2
P (k, n−1).

So,

P (n, k) = P (k, n) =
1

2
· 1

2n+k−1

(
n+ k − 1

k

)
=

1

2n+k

(
n+ k − 1

k

)
.

Recall that the threshold density is given by ζτ (D0) := ED0

deg(Dτ )
|V | . In our case,

|V | = 2 and deg(Dτ ) = n+ k, so,

ζτ (D0) = ED0

deg(Dτ )

|V |
=

n−1∑
k=0

(P (k, n) + P (n, k))
n+ k

2
=

1

2n

n−1∑
k=0

n+ k

2k

(
n+ k − 1

k

)
.

We have proved the first half of the identity.
Next, we prove the second equality. An established identity (5.20) in Graham

et al. [1994] states,
n∑
k=0

1

2k

(
n+ k

k

)
= 2n.

We split the final nth term off the sum on the left and move it to the right side
to get,

n−1∑
k=0

1

2k

(
n+ k

k

)
= 2n − 1

2n

(
2n

n

)
.

Now we use the combinatorial identity
(
n+k
k

)
= n+k

k

(
n+k−1

k

)
:

n−1∑
k=0

1

2k

(
n+ k

k

)
=

n−1∑
k=0

1

2k

(
n+ k − 1

k

)
n+ k

n
= 2n − 1

2n

(
2n

n

)
.

Multiplying both sides by n
2n

, we get our result:

1

2n

n−1∑
k=0

n+ k

2k

(
n+ k − 1

k

)
= n

(
1− 1

4n

(
2n

n

))
= ζD0 .

3.2 From an Arbitrary Divisor

We will now examine the Abelian Sandpile model, starting from some arbitrary (α, β).
We want to prove that as deg(D) = α + β approaches −∞, the threshold density of
the banana graph will approach the stationary density, as per the Threshold Density
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Theorem. In this proof we will find some good intuition for the Threshold Density
Theorem itself and its proof.

Recall that the stationary density is given by,

ζst =
1

|S(G)|
∑

B∈B(G)

deg(B)

|V |
.

On the banana graph, picking either vertex as the sink, we will have exactly n
elements in S(G), namely, (s, 0), (s, 1), · · · , (s, n−1). Likewise, the elements of B(G)
will just be (n, 0), (n, 1), · · · , (n, n− 1). In our case |V | = 2. So, we find,

ζst =
1

n

n−1∑
i=0

n+ i

2
=

1

2n

(∑n−1
i=0 n+

∑n−1
i=0 i

)
=

1

2n

(
n2 +

n(n− 1)

2

)
=

3n− 1

4
.

In order to examine the behavior of the banana graph at increasingly negative
(α, β), we will first make several remarks. Recall that on our Sandpile model, we
allowed negative amounts of sand to represent “holes” which could be filled in by
sand, and then function normally. We can imagine, then, starting at some (α, β),
going either to (α+ 1, β) or (α, β + 1), and then dropping another grain to get either
(α + 2, β), (α + 1, β + 1), or (α, β + 2), and so on.

We can say that, at least until one of the vertices accumulates n grains of sand,
the model will evolve as it did starting from zero—that is, in a binomial fashion.
Once the divisor reaches degree n, we will begin getting to threshold states.

Proposition 3.2.1. Let Bn be the sinkless Abelian Sandpile on the banana graph
of weight n. The probability pi,j of reaching some divisor (i, j), with i, j ≥ 0 and
i + j ≤ n, from a starting divisor (α, β), after (i + j) − (α + β) grains of sand have
been dropped is given by

pi,j =
∑
r∈Z

2α+β

2i+j

(
(i+ j)− (α + β)

i+ rn− α

)
.

Proof. Let us momentarily disregard stabilization. Then, we can say that the proba-
bility, starting from (α, β) of reaching any (i, j), where i+ j ≤ n is given by,

2α+β

2i+j

(
(i+ j)− (α + β)

i− α

)
.

We are operating on the same principle as before, starting from (0, 0), except offset
by (α, β).

Consider, the case of B3, starting at (−5,−2). If we continually drop sand on
the second vertex, we will eventually reach (−5, 3). Its stabilization is (−2, 0), so
(−5, 3) ∼ (−2, 0). Continuing to add sand to the second vertex, we reach (−5, 6) ∼
(−2, 3) ∼ (1, 0). Since (−5, 6) is similar to a stable divisor, it will behave identically
with regards to reaching threshold states and we may apply our method from the
previous section.
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We re-introduce the notion of divisor classes. Since a firing will move n grains of
sand from one vertex to the other, we may represent a firing as r(n,−n), where r ∈ Z.
A positive r corresponds to firing v2 a total of r times and a negative r corresponds
to firing v1 a total of r times. The set of divisor classes, then, will be given by,

[(i, j)] = {(i, j) + r(n,−n) : r ∈ Z}.

However, not all the divisors in a divisor class will be reachable. Consider the
diagram below:

(α, β)
(-5,-2)

(0,0)

It depicts the possible evolution of B3, starting at D0 = (−5,−2), with rightward
movement corresponding to dropping a grain on the first vertex and upward movement
corresponding to dropping a grain on vertex two. The dashed boxes represent sets of
equivalence classes, corresponding to the set of stable divisors, in the un-dashed box.
Being located at some point in one of these boxes corresponds to linear equivalence
with any correspondingly located point. Thus the four black dots correspond to
linearly equivalent divisors, with the larger one being the stable one. The circles on
the boundary of the un-dashed box represent the threshold divisors, while the circles
on the boundary of the dashed boxes represent linearly equivalent divisors to the
corresponding ones on the main box.

The set of possible divisors reachable from (α, β) through the addition of sand
are those enclosed by the vertical and horizontal lines emanating from (α, β). The
diagonal line represents the set of divisors with degree n.

The probability of reaching some (i, j) with i, j ≥ 0 and i + j ≤ n through the
evolution of the chain will then be the sum of the probabilities of reaching all the
possible linearly equivalent divisors.

So, for all permissible r, the probabilities of reaching (i, j)+r(n,−n) = (i+rn, j−
rn), will be given by
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∑
r∈Z

2α+β

2i+j

(
(i+ j)− (α + β)

i+ rn− α

)
.

Note that when r is too large or small,
(

(i+j)−(α+β)
i+rn−α

)
will be zero. So summing

over all possible r, we find the probability of reaching any divisor (i, j) in terms of
reaching any possible linearly equivalent divisor.

We now use series multisection, as established in Riordan [1968], which will allow
us to compute the limit in the Threshold Density Theorem.

Proposition 3.2.2. Fix some q, d, n ∈ N. Then,(
q

d

)
+

(
q

d+ n

)
+

(
q

d+ 2n

)
+ . . . =

1

n

n−1∑
i=0

(
2 cos(

πi

n
)
)q

cos(
π(q − 2d)i

n
).

Proof. For any n ∈ N, and ω = e
2iπ
n a primitive nth root of unity, we have,

n−1∏
l=0

(x− ωl) = xn − 1 = (x− 1)(1 + x+ x2 + · · ·+ xn−1).

So, for any k ∈ Z,
n−1∑
l=0

ωkl =

{
n, if k = 0 mod n

0, otherwise.

For a formal power series, F (x) =
∑

k≥0 a
kxk, and fixing an offset constant d ∈

{0, 1 · · ·n− 1}, let

G(x) :=
1

n

n−1∑
l=0

ω−dlF (ωlx).

We will want to prove that,

G(x) =
∑
m≥0

ad+mnx
d+mn = adx

d + ad+nx
d+n + ad+2nx

d+2n + · · ·

The coefficient of xk in G(x) is,

[xk]G(x) = [x]k
1

n

n−1∑
l=0

ω−dlF (ωlx)

=
1

n

n−1∑
l=0

ω−dl[xk]F (ωlx)

=
1

n

n−1∑
l=0

ω−dlakω
kl

= ak
1

n

n−1∑
l=0

ω(k−d)l

=

{
ak, if k = d mod n

0, otherwise.
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So the coefficients of G(x) are the coefficients of F (x), starting at d and spaced
apart by factors of n.

Now, let

F (x) = (1 + x)q =

(
q

0

)
+

(
q

1

)
x+ · · · =

∑
k≥0

(
q

k

)
xk

and G(x) be as it was above. Then, evaluating G(x) at 1, we get,

G(1) =
1

n

n−1∑
l=0

ω−dlF (ωl)

=
1

n

n−1∑
l=0

ω−dl(1 + ωl)q

=
1

n

n−1∑
l=0

e( 2iπ
n

)(−dl)(1 + e
2iπl
n )q

=
1

n

n−1∑
l=0

e( 2iπ
n

)(−dl)((e
πil
n + e−

πil
n )(e

πil
n ))q

=
1

n

n−1∑
l=0

e
lπ(q−2d)i

n

(
2 cos(

πl

n
)
)q

We know the sum is real, so we can replace the exponential with the real part:

=
1

n

n−1∑
l=0

cos(
π(q − 2d)l

n
)
(

2 cos(
πl

n
)
)q

= ad + ad+n + ad+2n + · · ·

=

(
q

d

)
+

(
q

d+ n

)
+

(
q

d+ 2n

)
+ . . .

As a result of this, we find a limit for the probability of reaching (n− k, k).

Corollary 7.5. For a banana graph Bn , the probability pn−k,k of reaching some
divisor, (n− k, k) from initial divisor D0 = (α, β) approaches 1

n
as deg(D0)→ −∞.

Proof. The probability of reaching a divisor (n− k, k) is the sum of the probabilities
of reaching a divisor linearly equivalent to it. We define d ∈ {0, 1, . . . , n − 1} such
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that d ≡ k − α mod n to be our offset coefficient. So, by our prior proposition,

pi,j =
∑
r∈Z

2α+β

2i+j

(
(i+ j)− (α + β)

i+ rn− α

)
=⇒

pn−k,k =
∑
r∈Z

2α+β

2n

(
n− (α + β)

d+ rn

)

=
2α+β

2n

((
n− (α + β)

d

)
+

(
n− (α + β)

d+ n

)
+

(
n− (α + β)

d+ 2n

)
+ . . .

)
.

Given our identity from Riordan, we can rewrite our sum as

pn−k,k =
1

n2n−(α+β)

n−1∑
i=0

(
2 cos(

πi

n
)
)n−(α+β)

cos(
π(n− (α + β)− 2d)i

n
)
)

=
1

n
+

1

n

n−1∑
i=1

(
cos(

πi

n
)
)n−(α+β)

cos(
π(n− (α + β)− 2d)i

n
)
)
.

Since
∣∣cos(πi

n
)
∣∣ < 1, as n− (α+ β) approaches ∞, the second sum will go to zero

and the total sum will approach,

pn−k,k →
1

n
.

Now, we will examine the behavior of the sandpile starting at (n− k, k).

Proposition 3.2.3. Let pn−k,k be the probability of reaching a divisor (n − k, k)
starting from (α, β). Then the probability P (l) that the threshold weight will be n+ l,
where 1 ≤ l ≤ n− 1, is given by

P (l) =
1

2l

l−1∑
k=0

(
l − 1

k

)
(pn−k−1,k+1 + pk+1,n−k−1).

The probability P (0) is given by pn,0. Thus the expected threshold density, in terms
of P (l), is given by

ζτ =
n−1∑
l=0

P (l)
n+ l

2
.

Proof. As we saw in the previous section, a threshold divisor, (n, l) or (l, n), where
0 ≤ l ≤ n − 1 and l ∈ N will be reached with a 1

2
probability, only from a divisor

(n − 1, l) or (n, l − 1). Any one of these pre-critical divisors will be reachable by
exactly

(
l−1
k

)
paths from some divisor (n − k, k). So, the probability that (n, l) or

(l, n) will be reached will be
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P (l) =
1

2l

l−1∑
k=0

(
l − 1

k

)
pn−k−1,k+1 +

1

2l

l−1∑
k=0

(
l − 1

k

)
pk+1,n−k−1

=
1

2l

l−1∑
k=0

(
l − 1

k

)
(pn−k−1,k+1 + pk+1,n−k−1).

P (0) is given to be pn,0 since (0, n) and (n, 0) are threshold states.

Since we know that the probability pn−k,k of reaching each (n− k, k) converges to
1
n

as deg(D0)→ −∞,

P (l) =
1

2l

l−1∑
k=0

(
l − 1

k

)
(pn−k−1,k+1 + pk+1,n−k−1)

→ 1

2l

l−1∑
k=0

(
l − 1

k

)
2

n
=

1

2l
· 2l−1 · 2

n
=

1

n
.

Therefore, if it is equally likely that the divisor starts at any (n − k, k), then the
likeliness of attaining weight n+ l will be 1

n
.

This means our threshold density will be, as deg(D)→ −∞,

ζD0 =
n−1∑
l=0

P (l)
n+ l

2
→

n−1∑
l=0

n+ l

2n
=

3n− 1

4
= ζst.





Conclusion

In this paper we have given an exposition of the Threshold Density theorem. The
equality between the stationary density and the threshold density in the limit as the
degree of the starting divisor goes to −∞ came as a result of the uniform stationary
distribution of threshold divisors of a certain degree. We gave an explicit calculation
of the threshold density for the banana graph.

Attempts were also independently made to explicitly find the threshold density,
starting from zero, for the complete graph, Kn, but the complex nature of finding
the probability of reaching a threshold divisor made finding a closed-form solution
difficult. That work does not appear here. For most general graphs, other than trees,
the banana graphs, and cycle graphs, the threshold density starting at zero is still
unknown.
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