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Abstract

Given a permutation group G in S, we can construct the set of permutation
matrices of G' as a set of n X n matrices with exactly one 1 per row and column,
where each matrix is defined using an element of G. We can take the convex hull
of these matrices, thought of as points in R™ space, to form the G-permutation
polytope. We find the projection of this polytope from R™ — R defined by each
permutation matrix X acting on a vector a = (ay, ..., a,). We call this the G-orbit
polytope. We find properties of these two polytopes for the symmetric, alternating,
and dihedral groups.



Chapter 1

Introduction

1.1 Permutation groups

A permutation is a bijection which takes a set A to itself. A permutation group of a
set A is a set of permutations of A that forms a group under function composition.
We will be looking at groups of permutations of a nonempty, finite set A of the
form {ay,as,...,a,}. Permutations of finite sets are given by an explicit listing of
each element of the domain and its corresponding functional value. For example,

we define a permutation « of the set {1,2,3,4} by specifying

A more convenient way to express this correspondence is to write « in cyclic form.
Cyclic form is always written as a product of m-cycles: elements (a,as, ..., ay,)
where a; is permuted to a, and so on until a,, is permuted to a;. In cyclic notation,
a = (123), a 3-cycle. To take products of m-cycles, move from right to left from
one cycle to the next, where any missing symbol is left where it is. For example,
take J = (321)(54). Start with 1 in the right cycle; however, 1 does not appear in
this cycle, so (54) fixes 1. Move on to the second cycle. It tells you to move 1 to 3;
(321) sends 1 to 3. Continuing in this way, the numbers {1,2,3,4,5} are permuted
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0(2,3,1,5,4), in order. We could just as easily have used some list of 5 elements
{a,b,c,d,e}. Under the same action 3, this would be permuted to (b, ¢, a, e, d). Two
cycles are disjoint if they share no elements in common. For example, (123) and
(45) are disjoint, (123) and (25) are not disjoint. Every permutation can be written
as a product of disjoint cycles.

Define S,, to be the symmetric group of order n. The symmetric group of order n
is the set of all permutations of the n-element set A. A standard counting argument
shows that S,, has n! =n(n —1)(n —2)---2-1 elements. Here are the elements of

541

(1) (1234) (1324) (14)(23) (12)(34) (13)(24)
12)  (34)  (13) (24) (14) (23)
(123)  (234)  (132)  (142)  (1243)  (143)
(1342) (1432) (243)  (134)  (124)  (1423)

One subset of S, consists of all of the even permutations of n objects, which we now
describe. Remember that we represented a permutation of n objects as a product
of m-cycles. We can rewrite each m-cycle as a product of 2-cycles. For example,
(1234)=(12)(13)(14). This decomposition is not unique, and we can even decompose
to different numbers of 2-cycles. However, we always decompose to either an even or
an odd number of decompositions. If a permutation can be decomposed to an even
number of 2-cycles, then it is an even permutation. The set of even permutations
forms a group. This subgroup of S, is called A,,, the alternating group of degree
n. For an example, look at the elements of A4, the set of even permutations of 4

elements. Notice that exactly half of the elements of S,, are in A,,.

(1) (12)(34) (13)(24) (14)(23)
(123)  (134)  (243)  (142)
(132)  (234)  (124)  (143)

Another subset of S,, consists of all of the symmetries of a regular n-gon. This subset

consists of the 2n elements of S,, which rotate or reflect some n-gon while preserving
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its position in space. In general, we can say D, = (p, ¢ | p" = ¢* = e, pd = ¢p" 1),
where p is a rotation of an n-gon by 360/n degrees, ¢ is a reflection about a line of
mirror symmetry, and e is the identity permutation, where no points are permuted.
In other words, D, is the set of all products of various powers of p and ¢ but
we can use the relation ¢™ = p? = (1). This subset actually forms a subgroup,
called D,,, the dihedral group of order 2n. For example, take a 4-gon, commonly
known as a square. We can rotate the square in increments of 90 degrees without
changing the square’s position in space. We can also flip the square like a pancake-
horizontally, vertically, and diagonally. When we label the four corners of the square
in a clockwise manner with 1,2,3,4, p and ¢ can be represented in cyclic notation
as (1234) and (12)(34) respectively. Repeatedly combining these two actions with
themselves or with each other give all of the possible elements of D,. Here are the

elements of D,, the symmetries of the square. Note there are 8 elements:
(1), (12)(34), (13)(24), (24), (1234), (13), (14)(23), (1432).

When n is odd, we have an odd dihedral group. A permutation in an odd dihedral
group fixes either 0 points or 1 point. This is obvious, because the rotations change
all points, and the line of mirror symmetry of a regular odd sided n-gon goes through
exactly one vertex. Therefore a reflection through this line fixes one point. When n
is even, we have an even dihedral group. A permutation in an even dihedral group
fixes either 0 points or 2 points. Clearly, the line of mirror symmetry of an regular
even sided n-gon will contain either zero or two vertices. Thus, a reflection through

this line will fix either zero or two points.
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Figure 1.1: A point set and its convex hull

1.2 Polytopes

A point set is convex if for any two points z and y in the point set, the straight line

segment

[yl ={Az+ (1 -Ny[0<A< 1}

between them is also in the point set. Every intersection of convex sets is convex.
The convex hull of a set of points is the “smallest” convex set containing the points.
Specifically, for any point set K, the convex hull of K is constructed by taking the

intersection of all convex sets that contain K:
conv(K) :=[{K'CR"| K C K',K' is convex}.

If K is a finite set, this convex hull will be called a V-polytope.

Another creation is the H-polyhedron, which uses the concept of halfplanes. A
halfplane is just as it sounds: all of the area to one side of a defining cut; that is,
those points x € R"™ defined by ¢ - x < ¢y for some constant ¢y and some ¢ € R"™.

An H-polyhedron P is formed by taking the intersection of finitely many closed
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Figure 1.2: A V-polytope and an H-polytope

halfplanes in some R
P=P(Az2)={r€R| Av < 2z} forsomeA € R™? » € R™.

An H-polyhedron that is bounded in the sense that it does not contain a ray {x+ty |
t > 0} for any y # 0 is called an H-polytope. It turns out that every V-polytope is
an H-polytope, and vice-versa (for the proof, see [Ziegler|, p. 29). From now on, we

will use the word polytope to mean V-polytope or H-polytope.

1.2.1 Faces

We will be looking at properties of faces of polytopes, defined to be the intersections
of the polytope P with hyperplanes for which the polytope is entirely contained in
one of the two halfspaces determined by the hyperplane. In other words, F'is a face

of P if
F=Pn{zeR|c-v=cy}

where ¢ - x < ¢ is satisfied for all points x € P.
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To define the dimension of a face F', we first introduce the notion of the affine
hull of F: Pick a point p € F, and let L be the linear space spanned by F' — p :=
{¢ —p | ¢ € F}. Then the affine hull of F, denoted aff(F), is p + L, i.e., the
smallest affine space containing F. The dimension of aff(F’) is defined to be the
dimension of L. Say wvy,...,v; is a basis for L. Thus, every point ¢ € F' can be
written as ¢ = p+ > a;v; = (1 + X a;)p + X a;(v; — p;). Thus we have found points
Ty =P, Ty =V — Py ey Ty1 i= v — p of F such that aff(F)= {3 \iz; | = A = 1}.

Definition 1.1 The dimension of a face is the dimension of its affine hull, dim(F’)

:= dim(aff(F)).

In a d-dimensional polytope P, the faces of P of dimension 0 are the vertices of
P. The edges of P are those faces of dimension 1. Facets are the d — 1 dimensional
faces. In general, P has a set of faces of every dimension k,0 < k < d. A face of

codimension k has dimension d — k.

Consider the square in R? created by the halfplanes z > 0,y < 1,z < 1, and
y > 0. Then the vertices are the points (0,0), (1,0), (1,1), and (0,1). The edges are
the intersections of the square with the lines + = 0, x =1, y =0, and y = 1. In
this case, the edges are the facets of this polytope. The 2-dimensional face is the
entire square. Two polytopes are considered combinatorially equivalent if there is a
bijection between their faces that preserves the inclusion relation among faces. To
aid the combinatorial analysis we can construct the face lattice of a polytope. Let S
denote the set of faces of a polytope P. The inclusion relation among faces defines a
partial ordering on S. Under this relation, S has a unique maximal element, namely
P itself, and a unique minimal element, (), the empty set. Further, every two faces
are minimally contained in a unique face and contain a unique maximal subface.
Thus, S forms what is called a lattice. It turns out that if F' is a k-face, then the

length of any maximal totally ordered subset of S having maximal element F' has
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Figure 1.3: Hyperplanes defining a vertex and an edge

length k£ + 1. For more on this topic, see [Ziegler|. Rephrasing what was said earlier,

two polytopes are combinatorially equivalent if their face lattices are isomorphic.

1.2.2 Simplicial polytopes

The convex hull of d 4+ 1 affinely independent points in R", where n > d, is called
a d-simplex; thus, the d-simplex is a polytope of dimension d with d + 1 vertices.
In two dimensions, a triangle is a simplex. A tetrahedron is a three dimensional
simplex. A polytope P is simplicial if every facet is a simplex. For example, the
icosahdron is a three dimensional simplicial polytope, since each of its facets are
triangles, which are simplices. Every facet of a simplicial polytope has d vertices,

and every k face has k + 1 vertices for k < d — 1 (for a proof, see [Ziegler].)



8 CHAPTER 1. INTRODUCTION

1.3 Polytopes arising from permutation groups

1.3.1 Permutation matrices

Given a permutation group G inside S,,, we define the set of permutation matrices

of G by
1lifo(i) =y
(Xo)ij = { 0 otherwise
for all o in G. The n x n matrices X, are 0/1-matrices with exactly one 1 per row
and column.
For an example of a permutation matrix, consider o = (123) in S3. Then o(1) =

2, 0(2) =3, and 0(3) = 1. The permutation matrix associated with o is
010
Xe=1001
1 00

For another example, look at o0 = (123) in S;. Again, o(1) = 2, 0(2) = 3, and
o(3) = 1, but now we also have o(4) = 4, which means 4 was not affected by
the permutation. Whenever a number does not appear in a permutation, it is not

affected by the permutation and a 1 appears on the diagonal:

0100
0010
Xo = 1 000
0001

The set of permutation matrices of the alternating group A, consists of exactly
half of all the permutation matrices: those matrices with determinant equal to
+1. This is because we only take those matrices which can be obtained from the
identity matrix with a even number of row transpositions. From linear algebra, we
know that each row transposition changes the sign of the determinant. Therefore,

a permutation matrix is even only if it has determinant equal to +1.
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1.3.2 How to get a polytope in R™ from a permutation
group

Each of the permutation matrices of the set G can be flattened, its rows listed one
after another, and considered to be a point in R, The convex hull of this set forms

the G-polytope, or permutation polytope,
P(G) := conv{X, | 0 € G}.

1.3.3 The structure of P(G)

In this section we will look at the vertices, edges, and facets of the permutation
polytope P(G).

Theorem 1.2 Fach X, is a vertex of P(G)

PROOF Consider maximizing the inner product < X, X, > as X varies over P(G).

<X7X(7> = Z LE(Z,])CUJ(Z,])

1<i,j<n

= > z(i,oi) <n

1<j<n

with equality if and only if X (7,0(7)) = 1 for all <. That is, < X, X, > is maximal
exactly when X equals X,. So X, is a vertex of the polytope. O

To describe the edges of P(G), we can use the following theorem, known as the
cycle-decomposition theorem. It tells us when the line between two vertices X, and
X, is an edge.
Theorem 1.3 Cycle Decomposition The line segment {X,, X,} between the
vertices X, and X, is an edge of the polytope constructed from the convex hull of
matrices X, such that o is in a group G, if and only if the cycle decomposition of

1

o~ 'm cannot be factored into two non-trivial parts, both of which are elements of

G.
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PROOF: It suffices to show the theorem with respect to the vertices X, and X., where
e is the identity permutation. We need to show that the line segment between X
and X, is an edge of the polytope if and only if the cycle decomposition for 7 cannot
be factored into a product of two elements of the group. If the cycle decomposition
factors as m = mymy then 1/2X, +1/2X, = 1/2X,, + 1/2X,,. For example, take
m = (321)(45). Then m; = (321) and 7y = (45) and we see that:

10000 00100
01000 10000
IXe+iXgoyusy = 2[00 1 00 [+2] 01000
00010 00001
00001 00010
10100
11000
= il01100
00011
00011
00100 10000
10000 01000
= 3101000 ]|+5/00100
00010 00001
00001 00010

= 1 X@) + 3Xs)-

But we know from geometry that two vertices (extreme points) u and v of a convex
polytope determine an edge if and only if no point cu+ (1—c¢)v with 0 < ¢ < 1 on the
line segment joining u and v can be represented as a nontrivial convex combination
of two points of the polytope at least one of which does not belong to the line
segment. Hence, if 7 can be factored into two nontrivial elements of the group, a

point of the line segment between e and 7 can be written as a convex combination



1.3. POLYTOPES ARISING FROM PERMUTATION GROUPS 11

Figure 1.4: The point in the center of this polytope is not on an edge because it can
be represented as a linear combination of a pair of points not on the same edge.

of two other points in the group, and so is not an edge.

If the line segment between X, and X is not an edge, we will now show that
the cycle decomposition for 7 factors nontrivially as 7 = o7 where both o and 7 are
in G.

Let X = %Xe + %Xﬂ. If the line segment between X, and X, is not an edge,
then we can write X as a positive convex combination

X:Z)\iX,,, Ao >0, Z)\U:I,
oeG o
where some A, is nonzero for o ¢ {e,7}. Fix some such o. Since we are taking
nonnegative combinations of matrices with nonnegative entries, whenever a zero
appears in an entry for the matrix X, then a zero must appear in the corresponding
entry in X,. Since there are at most two nonzero entries on each row of X, this
means that if (i) # 4, then o(i) = ().

We now show that every factor in the cycle decomposition for o is a cycle in

the cycle decompostion for 7. Thus the cycle decomposition for m can be factored

into two parts: ¢ and the product of the remaining cycles, which we denote by
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Lz, it follows that 7 is in G, and we will

7. Since m and o are in G and 7 = o~
be done. To accomplish this, take i; such that o(i;) # i;. The remarks in the
previous paragraph show that in this case o(iy) = w(iy). Let (i1,...,i) be the
corresponding cycle in the cycle decomposition of m. We need to show that this
cycle occurs in the decomposition for o, as well. Suppose 0 (i) = (i) = i1 for
some m < k. By remarks in the previous paragraph, if o(i,,+1) # 7(éms1), then

0(imy1) = imy1. However, then we have o(i,,) = 0(im1), contradicting the fact

that o is a permutation. This completes the proof. O

1.3.4 Orbits

Given a permutation group G in S, and a point a = (aq,...,a,) € R", define the

orbit of a under G to be the set of all points

a1

Go(1) 0

Ty i= - XO' .
Go(n) o

for 0 € GG. The convex hull of the orbit defines the orbit polytope

O(G,a) = conv{z, | o€ G,}

Alternatively, O(G, a) is the image of P(G) under the projection R** — R" defined
by

431
a2

Qnp

thinking of X € R™ as an n X n matrix.
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In the following chapters, we will find that the structure of O(G,a) depends on
the vector a for certain groups. In general, we only know about the vertices of the
projected permutation polytope.

Theorem 1.4 FEach point z, is a vertex of O(G,a).

PROOF Since O(G, a) is the convex hull of the set z,,, we know at least one of these
points is a vertex. Pick a vertex x,. Let x, be any other point in the orbit. Then
or ! defines a linear isomorphism from R" — R™ sending O(G,a) to itself and

sending x, to x,. Hence x, is a vertex, too. O

1.4 Summary

1.4.1 The Symmetric Group

The convex hull of the group of all n x n permutation matrices is called the Birkhoff
polytope, a polytope of dimension (n — 1)? with each matrix as a vertex, giving n!
vertices. We can describe this polytope with inequalities representing the hyper-
planes which define it, (Theorem 2.1). The cycle decomposition theorem tells us
how to find the edges of this polytope, (Theorem 2.3).

We proceed to take the projection of the Birkhoff polytope to get the permutahe-
dron, which has the permutations of the vector a = (ay, ..., a,) under permutations
in S, as its vertices. We find its dimension, (Theorem 2.4). We can describe this
polytope using inequalities which define the hyperplanes framing it, (Theorem 2.7).
We realize that the face lattice of the permutahedron is isomorphic to lattice of
chains of subsets of [n] := {1,2,...,n}, (Proposition 2.10). With this information,
we can determine the f-vector, which tells us how many faces there are of each
dimension, and we know how to find such faces, (Theorem 2.12). Finally, we deter-

mine which vertices are adjacent to one another, finding that the vertices adjacent
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to a given vertex are those vertices whose coordinates differ from the given vertex

by a single transposition, (Theorem 2.14).

1.4.2 The Alternating Group

In this chapter we look at the alternating polytope, an (n—1)? dimensional polytope
with n!/2 vertices, (Theorem 3.1). The cycle decomposition theorem tell us that
the line segment {X,, X} in the alternating polytope is an edge if and only if the
cycle decomposition of o~ consists of exactly 1 cycle of odd length, or exactly two
cycles of even length, (Theorem 3.2). The projection of the alternating polytope
yields the alternahedron, which can also be constructed by cutting vertices off of the
permutahedron. We give the inequality description, and its dimension, (Theorems
3.3 and 3.4). We give data for several alternahedra and ask questions which could

lead to further research.

1.4.3 The Dihedral Group

In this chapter we look at the dihedral polytope, and find that its dimension changes
depending on the parity of n, (Theorem 4.1). The cycle decomposition theorem tells
us that every vertex is connected to every other vertex with an edge of the polytope
when n > 4, (Theorem 4.2). We also find that the dihedral polytopes are simplicial
for odd n, (Theorem 4.3). Our data suggest several conjectures which remain to be
proved.

We call the projection of the dihedral polytope the dihedron, and find its di-
mension, (Theorem 4.7). We also find that the dihedron is not unique for generic
a. Depending on the vector we choose to permute, we can get drastically different

polytopes. We look at some possibilities and ask more questions.
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1.4.4 Questions

We present a list of questions which have come up in the duration of the thesis.

15
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INTRODUCTION



Chapter 2

The Symmetric Group

This chapter is mainly an exposition of theory from two sources: [Billera] and [YKK].
We have combined the ideas from both, as well as adding a few ideas of our own, to
get a more complete theory than either of the others achieved alone.

The convex hull of the permutation matrices of the symmetric group, thought of
as points in R", notated B, := conv {X, | 0 € S,}, forms the Birkhoff polytope.

We will now find several properties of this object.

2.1 The Birkhoff Polytope

Theorem 2.1 B, is an (n — 1)? dimensional polytope with n! vertices having the
following inequality description:
B, = {X:(?Eij)ERn2 | ;> 0;1<4,5<n, > z;5=1
7j=1

fori=1,..,n, and » z;; =1 forj=1,...n}
i1

Thus, B, consists of what are called doubly stochastic matrices: matrices with

nonnegative entries and whose row and column sums are 1. We will call the right
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hand side of the equality C,,. Before jumping into the proof for this theorem, observe
the following results about C,,:

Lemma 2.2 The equations of C,, satisfy 2n — 1 independent linear equations.
PROOF: In the case of n = 3 it is easy to represent the equations of C),, with the

following matrix:

S = O O =
SR OO O
o OO O =
O = O = O
_— o O = O
S OO = O
O = = O O
— o = O O
O O = OO
el e e T e =S =

0 1001001

Subtracting the bottom three rows from the first gives

ooo0 -1 -1 -1 -1 -1 -1 -2
000 1 1 1 0 0 0 1
Oo0o0o 0 0 o0 1 1 1 1
100 1 0 O 1 0 O 1
o010 0 1 0 0 1 0 1
oo0o1 0 O 1 0 0 1 1
Adding rows two and three to row one gives
00 0O0OO0OOOO0OTO0O]O0
0001 1100°O0]|1
00 00OO0OOT1TTI1T1]/|1
1001 0010O0]1
01 0010O0T1O0]|1
001 001O0O0T1]|1

Subtract columns one through three from four through six, and seven through nine,

in turn, to get

000O0OO0OOO0OO0O®O]|O0
0001110001
0000O0O0OT1T1T1]|1
1 0000O0O0O0O0]|1
01 000O0O0O0GO0/|1
001 0O0O0O0OTO0TO0]|1
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It is clear that this matrix has five linearly independent rows. This can be generalized

to the matrix with 2n equations

I 0 0 |1
0 1 Col 1
0
I 0
0 ... o 1 |1
I, I, ... I, I, Il

where I, is the n x n identity matrix, 0 = (0,...,0) € R* and I = (1,...,1) € R".

Using row and column operations as before, this matrix reduces to

0 0 . 0
1 0 0|1
0 - :

0 1|2

I, 0 g gl

leaving us with 2n — 1 independent linear equations. O
Now we go on to prove theorem 1.1.

PROOF [BILLERA|: Remember that each X, is a vertex of B,, by Theorem 1.2. We
know that elements of C,, satisfy 2n—1 independent linear equations by the previous
lemma; therefore, the dimension of C), is n® — (2n — 1) = (n — 1)?. Since each X,
is in C,, it follows that B, C C,. To show B, = C,,, use induction on n to show
each vertex of C), is a permutation matrix. If a matrix X is a vertex of C,, then a
standard result from the theory of polytopes says that X sits on at least (n — 1)?
facets. Since the facet defining equations of (), have the form z;; = 0, it follows
that X has at least (n — 1)? entries equal to zero. This implies that X must have
a row with n — 1 zeroes. So, z;; = 1 for some 7 and j. Without loss of generality,

let ©+ = 7 = 1. Deleting the first row and first column from X leaves us with a
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(n — 1) x (n — 1) matrix which we will call X. We would like to show that X is a
vertex of C,_;. Then, by induction X isa permutation matrix, hence X was one,
as desired. Since X is a vertex, there exists some D = (dy1, ..., d,,) € R™ such that
max{(Y, D) | Y € C,} = X. This implies that 3> D;;Y;; <> D;;X;; for all Y € C,,.
Define D € R Y’ by removing the first “row” and “column” of D, i.e., removing
dy; and d;; from D for ¢ = 1,2,...,n. If X were not a vertex of C,,_1 then there

would exist Y in C,,_1, Y # X, such that (Y, D) > (X, D). Define Y € R"™ by

-(i9)

It follows that Y € C,, X # Y, and
(Y,D) = dy, +(Y,D) >d,, +(X,D) = (X, D).

which contradicts the fact that X is a vertex. Thus, X is a vertex of C,,_;. It follows
that X must also be a permutation matrix. O
We can use the cycle-decomposition theorem to get the following result.

Theorem 2.3 Let X, and X, be vertices of B,, corresponding to o,m € S,. The
line segment between X, and X, is an edge if and only if o~ is a cycle.

PROOF: This follows directly from the cycle decomposition theorem, Theorem 1.3. 0
For example, when n = 4, the points connected to X(;) are X, for o being any pure
cycle except (1) itself: (1234), (1324), (12), (34), (13), (24), (14), (23), (123), (234),
(132), (142), (1243), (143), (1342), (1432), (243), (134), (124), and (1423). This

implies that there are 20 edges containing any given vertex.

2.2 The Permutahedron

Now define the permutahedron P, C R"™ to be the convex hull of all permutations

of the vector (1,2,...,n). Specifically, in R* we would have the vector (1,2,3,4).
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Using the symmetric group, we find all 4!=24 permutations of this vector:

(12,34) (21,34) (3,124) (4,1,23)
(12,4,3) (2,1,43) (3,1,42) (4,13,2)
(1,3,2,4) (2,3,14) (3214) (4,2,1,3)
(1,342) (2,341 (3241) (4,231)
(1,4,23) (24,1,3) (34,1,2) (43,1.2)
(1,4,32) (2431 (3421) (432]1)

It turns out that if we plot all of these points, we find that P, lies on a three
dimensional hyperplane. This shape can be visualized by first imagining an Egyptian
pyramid at the edge of a calm lake. Looking at the pyramid and its reflection as
a single object, we get the octahedron. Now, imagine this octahedron enclosed
in a cube just too small for it. Thus, the corners of the octahedron are cut off,
leaving square faces near where the vertices of the octahedron used to belong. The
faces of the octahedron which used to be triangles are now hexagons. Imagine, if
you will, the Birkhoff polytope, sitting in 16-dimensional space. Remember that this
polytope is made up of all of the matrices of the symmetric group of order four, each
matrix being a vertex of this greater polytope. You probably cannot visualize this
object, since we have a hard time thinking of objects in more than three dimensions.
However, we can see its shadow. As a hand casts a shadow on a wall, the Birkhoff
polytope casts a shadow on a three dimensional hyperplane, and that shadow is the

permutahedron. This mathematically crude description will now be refined.

2.2.1 Face Description

More generally, let a = (a4, ..., a,) € R" and define the permutahedron to be:

P, = conv{xz, | o € S,}
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2134 2143

Figure 2.1: This is Py(1,2,3,4), the truncated octahedron.
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where
Qg (1) Z;
o= | 0 | =X
Ug(n) a.n
foro € S,.

Theorem 2.4 If the coordinates of a are pairwise distinct, then the dimension of
P,(a) isn—1.
PROOF: Since P,(a) is contained in the hyperplane with equation > | z; = > | a;,
its dimension is at most n — 1. To see that the dimension of P,(a) is equal to n — 1,
check that (ai,...,a,) and the n — 1 points obtained by transposing a;,a;;; for
t=1,...,n — 1 are affinely independent. O

Our next goal is Theorem 2.7, finding an inequality description for P, (a). To
prove this description of P,(a), we must first learn some things about majorizing
vectors.
Definition 2.5 The vector © = (xy, ..., z,) majorizes the vector y = (yi, ..., Yn),
written x > y (we use altered notation from that used by other sources for simplicity)

if, after reordering when necessary, x| < ... < x,, y1 < ... < y,, and
n n
Z Ti = Z Yi
and
k k
in > Zyz fork=1,..,n—1.
i=1 i=1
The following lemma, due to Schur, gives the necessary and sufficient conditions
for the majorization of vectors. Recall that a doubly stochastic matrix is exactly
an element of the Birkhoff polytope, i.e., an n X n matrix with nonnegative entries
whose row and column sums are 1.

Lemma 2.6 The vector x majorizes the vector y if and only if there is a doubly

stochastic matrix A such that x = Ay.
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PROOF: Suppose z; < ... < x, and y; < ... < y,. The proof goes by induction.
Suppose Zle T; > Zle yifor k=1,..,n—1and };", z; = >.;" y;- It follows that
St = o, + X0 =y, + 2y This implies that y, — 2z, = 20 @ —
?:_11 y; > 0. Therefore y, > x,. Then y, > x,, > x; > y, which implies that there
exists some k such that yy1 > x, > yx. For this k&, choose 0 < A < 1 such that
Tp = Ay + (1 — X)Yp1.
Define & = (21, ...,z 1), and § = (Y1, Y2, -0y Y15 (1 = N Uk + ANYks1, Yk2y -or Un),s
where 0 < A < 1. Note that the components of § are in increasing order of magni-

tude, i.e., 1 < 9o < ... < y,_1. To see this, we just need to check

Ye-1 < (1= Ny + Arsr1 < Yrio
Since x, = Ayg + (1 — N)ygs1 we have:

U = (1 = Nyk + Mey1r = Yo + Ykrr — AUk — (1 = A)Yrs1 = Yk + Yey1 — Tn-

Since yxy1 > x,, it follows that

Ye-1 < Y S Yk + Yk — Tn) = Ok
Also, since y;, < x,, it follows that

Uk = Ykt1 + (Y — Tn) < Ukt < Yrro

Thus, we have shown that the components of y are increasing.

Now we want to show that z > y. Calculate:

SIAG = oyt et et Yo
= i+ Yo+ Wk Ykt — Tn) F Y2+ F U
YLt Yo —
Z‘1+"'+Z‘n—$n
- Z?:}lii
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Secondly, if ¢ < k, we have

¢ ¢ ¢ ¢

DT =D w2y yi =) Ui

i=1 i=1 i=1 i=1
If ¢ > k, since x, > xp,x > vy, and §x = Y + Yg+1 — Tpn, We have xy +-- -+ 2y + 2, >
L1+ -+ T 2 Y1+ - -+ Yo which implies

Yi @i =Y > oyt Yk Wk Ukt — Za) + Yk + o+ Yo
= Zia b
Hence, Z > 9.
By the inductive hypothesis, there is a (n—1) x (n— 1) doubly stochastic matrix
A such that £ = Ay. In full form, this is:

Y1
T 011t O Yk—1
= S : (1 = Ny + Ak
Tp—1 On-11 " Opn-1p1 Yk+2
Yn

In the n x n case, we want to find the matrix which relates x and y. We find this

matrix by splitting the £ column of A = (4;;) into two and adding a final row:

oo 51,1 Tt (1 - )\)51,k )\51,k T 61,7171
. . . . (1
Tooy | Op—11 o (L= A)0po1e Adp—ip -+ Op—ip—1
Tn 0 - A (1=X) -~ 0 In

This new matrix is doubly stochastic. O
We now have the tools necessary for proving the following theorem:
Theorem 2.7 The permutahedron generated by the vector a = (ay, ..., a,), with

a; < --- < ay,, denoted P,(a), has the inequality description

Pya)={zeR" | Y x; =) a;,x(S) > ag for all S C [n]},
i=1 i=1
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where 2(S) = Yics 71, ag = Y0 a;, and [n] = {1,2,...,n}.
PROOF: Given x € R", let & be a point in R" obtained by permuting the coordinates
of x so that they appear in non-decreasing order. It follows that for any S C [n], we
have z(S) > zﬁ'l Z;. Using this fact, one can see that the above inequalities describe
the set of all points z which majorize a. Using the previous lemma, this is the set of
all points of the form z = Ay as A runs over all of the doubly-stochastic matrices;
that is, all points in B,. This is the projection definition of the permutahedron.
Therefore, the above inequalities yield the permutahedron P, (a). O

Now that we know the inequality description of P,(a), we can go on to describe
the lattice of faces of P,(a), and specifically we can determine information about
the facets, vertices, and edges of P,(a). We will use the following result.
Lemma 2.8 Let S, T be sets, and let a = (ay,...,a,) € R" with a; < --- < a,,.
Define the function ag := Zlﬂl a;. Then as + ar < agnr + asur. If ap < - -+ < ay,
then the inequality becomes equality if and only if S C T orT C S.
PROOF: Define |SNT|=u,|S|=u+v,|T|=u+w. Then |[SUT|=u+v+w. It
follows that

s = a1+ ...+ Quiy
ap = a1+ ...+ Gy
Qgur = 01+ ...+ Quiptw
asnr = Q1+ ...+ ay
Furthermore,
(asnr + asur) — (as +ar) = (asur — ag) — (ar — asar)

= (Gugor1 + o+ Guiviw) — (Guir + oo+ Guiw) > 0.
If ay < -+ < a, note that the last equation is equal to zero if and only if v = 0, that
is, when S C 7', or when w = 0, giving the trivial result of 0 = 0 when 7" C S. O
Corollary 2.9 [Billera] Let a; < ... < a,. F is a face of P,(a) of codimension k if
and only if equality in x(S) > ag holds for precisely k distinct proper subsets lying
in a chain S; C ... C Si C [n].
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PROOF If © € P, (a) satisfies 2(S) = ag and x(71") = a then
as+ar=z(S)+z(T)=x(SUT)+z(SNT) > asur + asar-

It follows from the previous lemma that ag + ar = asur + asnr and further that
S CTorT C S. Thus, equality holds in z(S) > ag for k proper subsets S if
and only if the subsets form a chain S; C --- C Sg C [n]. The resulting system of
linear equations will look something like xy,x; + 22, ..., 1 + 22 + ... + x; which are
necessarily linearly independent. O

Note: From now on, we will assume a; < ay < --- < a,.

Thus, with the above assumption, the face lattice of P,(a) is the same as as
the lattice of chains of subsets in [n], ordered by refinement. For an alternative
description, denote by I, the partially ordered set of all ordered partitions of [n],
ordered by refinement. The elements of II,, are ordered tuples 7 = (Q1, ..., Qx) where
the Q; are pairwise disjoint subsets of [n] whose union is [n]. Elements smaller than
7 have the form (Q11, ..., Q1j,, .- @k, .-y Qij,) Where (Qs, ..., Qsj,) is an ordered
partition on ();. For example, in II4, ({1,4},{3},{2}) < ({1,3,4},{2}). If we
include in IT,, an element 0 such that 0 < 7 for every ordered partition , then II,

forms a lattice. Look at a sample lattice, Il5:

{1,2,3}
v + p
{1,2},{3} {1},{2,3} {1,3}, {2}
p + v
{1}, {2}, {3}
'
0

where each layer is less than the layer above it.

Proposition 2.10 P,(a) is isomorphic to I1,,
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PROOF: Define a mapping 7 : P,(a) — II,, as follows: For a face F' C P,(a) of
codimension k, let S} C --- C Sk C [n] be the chain given in Corollary 2.9. For
notational purposes, let Sy = 0 and Sy, = [n]. Then define 7(F) = (Q1, ..., Qrr1)
where Q; := S; \ Si_1. It is straightforward to check that 7 : P,(a) — II, is an
isomorphism of lattices which sends a face of codimension & to a (k + 1)-tuple in
I1,. O
Corollary 2.11 [Billera] Faces of P, (a) are combinatorially equivalent to P, (a) X
... X Py, (a) where ny + ... + ng = n.
PROOF: Under the isomorphism defined in the previous proposition, the face lattice
of a face of P,(a) is isomorphic to an interval [0, 7] in II, where 7 = (Q, ..., Qx),
using the notations from the proof of the proposition. Letting n; = |Q;], it is easy
to see that the interval [0, 7] is isomorphic as a lattice to IT,, (a) X ... x I, (a). O

Let f = (fo, .., fn_1) € Z™ where f; is the number of faces of P, (a) of dimension i.
This is called the f-vector of P,(a).
Theorem 2.12 [YKK] The components of the f-vector of the permutation polytope
P,(a) are given by, for all k € [n — 1],

n!
fr(Pu(a)) =3 TR

where the sum is carried out over all positive integral solutions of the equation
tidto+- e+ tog =n.
PROOF: According to Corollary 2.9, faces of P,(a) of dimension k£ have a one-to-
one correspondence with ordered partitions (Q1,...,Q, ). So fi is given by the
number of (n — k)-tuples (Q1, ..., @n_x) Where the @); are disjoint, non-empty, and
QLU UQu— = [n]. The result follows from standard combinatorial analysis. O

For an example, calculate the f-vector for Py(a).
Take n = 4.
For k =0, we write 1 + 1 + 1+ 1 =4 to get fo = 4! = 24.
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Fork=1 wewrite2+14+1=14+2+1=1+142=4to give

Al Al A1
=gt em *1me 3
For £ =2, we write 1 +3=2+4+2=341 =4 to give
Al 44
=gt o tam —

For k = 3, we write 4=4 to give

Therefore, the f-vector is
f(P4(a)) = (247 367 147 1)

We would now like to give an explicit description of the vertices of each face of

P,(a). Denote the k-face corresponding to the ordered partition (@1, ...,Qn k) by
F(Q1, ..., Qn k) Let ®(Q1,..., Qn k) = {0 | o(U"1Q:) ={1,2,.... U™ ,Q:|} }.
Theorem 2.13 ([YKK]) The vertices of the k-face F(Q1, ..., Qn_x) are the points
x, for all o € ®(Q1, ..., Qn_r)-
PROOF: We will first show that the vertex z, for o € ®(Q1,...,Q, ), lies in the
face F(Q,...,Qn k). For each m € [n — k|, let S,, := U",Q;, then o(S,,) =
{1,2,...,|Sm|}. Therefore, x,(Sn) = Yics,, Toi) = Yics,, Go(i) = Zﬁ"{' a; = ag, , as
required.

On the other hand, if 0 ¢ ®(Q1,...,Q, &), choose an m € [n — k| such that
7(Sm) # {1,2, ..., |Sm|}. We have @, (Spn) = Sics,, To() = Sics,, Got) > Lot a; =
«s, . The last inequality follows since a1 < ag < ... < ap,. Since x,(Sy,) # asg,, , we
have z, ¢ F(Q1,...,Qn k). O
Theorem 2.14 [YKK] The vertices of P,(a) adjacent to the vertex x, are the

vertices obtained by transposing some pair of adjacent components of x.
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PROOF: Suppose the line segment between x, and x, forms an edge for some o € §,,.
The edge then has the form F(Q, ..., @, 1). Since U Q; = [n] and the Q); are pairwise
disjoint, it follows that each Q; except for exactly one, say )y, has one element and
Q has two elements. Say Q1 = {q1}, ..., Qk—1 = {@h—1}, Qr = {ah: k1 }, Q1 =
{@s2}, -, Qno1 = {qn}. Then ®(Q,...,Q,_1) has two elements, o and say 7. We
have o(i) =7(i) = ¢ fori=1,....k—land o(i) = 7(i) = ¢;—1 fori =k+2,...,n—1.
Without loss of generality, we can take o(k) = 7(k + 1) = ¢, and o(k + 1) =
7(k) = qey1. Thus 245 = o) = @ for i # k,k+1 and 2, = 27441 = ag, and

To ki1 = Ty = Gg,,,. Thus, we get a transposition in two adjacent places. O
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The Alternating Group

3.1 The Alternating Polytope

The convex hull in R™ of the set of even permutation matrices forms the alternating
polytope E,,.
Theorem 3.1 (Brualdi) E, is an (n—1)? dimensional polytope with n!/2 vertices.
SKETCH OF PROOF: We know that each X, for o € A, is a vertex by Theorem
1.2. There are n!/2 elements of the alternating group A,, so E, has n!/2 vertices.
The proof that E, is (n — 1)? dimensional involves showing that there exist
(n — 1)? even permutation matrices Py = I, Py, ..., Py —1)2 such that the set of
matrices {P; — Py | 1 < (n — 1)?} is linearly independent. Please see [Brualdi] for
the complete proof. O
The facet defining equations and the combinatorial structure of E,, are not known
in general. However, we have the following description of the edges of E,,. We can
use the cycle-decomposition theorem again to describe the edges of E,,. It tells us
when the line between two vertices X, and X, is an edge.
Theorem 3.2 (Brualdi) Let o and 7 be distinct permutations in A,. Then the

line {X,, X} is an edge of E,, if and only if the cycle decomposition of o~ consists
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of exactly 1 cycle of odd length, or exactly two cycles of even length.

PROOF: The line segment {X,, X, } is an edge of E, if and only if o '7 cannot be
decomposed into two nontrivial disjoint elements of A,, by the cycle decomposition
theorem, (Theorem 1.3). This can only occur when o~ !7 is one odd length cycle or

the product of two even length cycles. O

3.2 The Alternahedron

The convex hull of all even permutations of the point @ = (ay, ..., a,), where the
coordinates are pairwise distinct, is defined to be the alternahedron, denoted H,(a),
as discussed in the first chapter. Define O,, to be the set of odd permutations:
O,={¢| ¢ € S5,\A,}. By Theorem 2.14, we know that for ¢ € O,,, the n — 1
affinely independent vertices adjacent to ay, call a5, for 2 =1,...,n — 1, are all even.
Then the unique hyperplane Ty which passes through all the vertices a;, strictly
separates a, from the polytope conv {a, | 7 € S, \ ¢} which it supports. Thus,
the intersection of the polytope P,(a) and all the half spaces T,,0 € O, is precisely
the polytope H,(a). The equations for these half spaces are determined in [YKK].

Setting
(an1 —a,)(ar — ap)

Ap—it1 — Op—it2

C1 = a1,C = A2,C; = Cj—1 —

The desired hyperplane T, is given by the equation
Z Co(i)Ti = Z Cilnp—it1 + (an—1 — an)(ay — as).
i=1 i=1
Theorem 3.3 ([YKK], Theorem 3.13) The even permutation polytope H,(a) is
given by the inequalities of the permutation polytope
n n
dai=> a;, x(S)>as foralS C[n]
i=1

=1
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and the halfspaces

n n

Z Cop(i)Ti = Z Cin—it1 + (A1 — ay) (a1 —a2) Vo € O,

i=1 i=1
If n > 4, then every inequaltity defines a face.

Since we can think of the alternadehron as the polytope contructed by cutting
off half of the vertices of the permutatedron, and we know the permutahedron has
n!/2 vertices, we know that the alternahedron has n!/2 vertices.

Theorem 3.4 The alternahedron H,(a) has dimension n — 1.
PROOF: The points of H,(a) adjacent to an odd vertex of the full permutahedron
are affinely independent. O

There are many unsolved mysteries concerning the alternahedron. We have
experimental data for the first few cases; however, the alternahedron grows large
very quickly, and any information above n = 6 takes a very long time for the
computer to compile. We have the following conjecture about the alternahedron:
Conjecture 3.5 The alternahedron H,(a) has n!/2 facets containing n—1 vertices.
This says that H,(a) has n!/2 simplicial facets.

For n = 3 and 4, these are all of the facets of the alternahedron; however,
for n > 4, H,(a) has other facets with varying numbers of vertices on them. For
example, Hs(a) has 60 facets with 4 vertices, which are the facets discussed in the
conjecture above. However, it also has 10 facets with 12 vertices, and 20 facets with
6 vertices. We also have information on Hg(a), which has 360 facets with 5 vertices
(these are the n!/2 simplicial facets again), as well as 20 facets with 18 vertices, 30
facets with 24 vertices, and 12 facets with 60 vertices. We have not been able to
predict in general how many facets we will have, nor how many vertices are on each
facet. Since we have been unable to find general theorems for the alternahedron, let

us look at some examples in detail.
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Using the computer program PORTA (see [PORTA]), we collected the following

data for the alternahedron:

CHAPTER 3. THE ALTERNATING GROUP

number of | dimension vertices | number | number of facets
n vertices on facets | of facets | each vertex is on
3 3 2 2 3 2
4 12 3 3 20 5
5 60 4 4,6,12 90 8
6 360 5 5,18,24,60 422 10

Each generic Hy(a) is combinatorially equivalent to an icosahedron. Checking
by hand, we noticed that any copy of A, sitting inside A5 obtained by fixing one
element produced a facet of Hs(a). It would be interesting to completely determine
the correspondence between Hs(a) and subgroups of As.

This information leads us to ask if there are formulae predicting the following

data:
e Number of vertices on facets
e Number of facets

e Number of facets each vertex is on
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Figure 3.1: This is Hy(1,2,3,4), which is combinatorially equivalent to the icosahe-
dron.
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Chapter 4

Dihedral group

4.1 The Dihedral Polytope

The convex hull of the permutation matrices of the dihedral group forms the dihedral
polytope T,, with 2n vertices, (Theorem 1.2).

Theorem 4.1 The dimension of T;, is 2n — 3 when n is even, and 2n — 2 when n is
odd.

PROOF: We need to find the dimension of the linear space of hyperplanes containing
T,. To do this, form a matrix whose rows are the elements of the dihedral group,
thought of in the usual way as points of R"". Augment the matrix by adding a
final column of 1s (in order to account for the constants in the equations for the
hyperplanes). Call the resulting 2n x (n? + 1) matrix Z. We will show that Z has
rank 2n — 2 or 2n — 1 depending on whether n is even or odd. Since elements of the

kernel of Z correspond exactly with hyperplanes containing 7,, we have
dim 7}, = n* — dimkernel(7},) = n* — (n? + 1 — rank(Z)) = rank(Z) — 1,

as required.
To explicitly construct Z, take permutations generating the dihedral group:

pick p = (1,2,...,n) for the rotation, and choose the reflection fixing 1, namely
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¢ =(2,n)(3,n—1)---. The first n rows of Z will correspond the rotations:

(]‘)7p7p27"'7pn717

in the order listed, and the last n rows will correspond to the reflections

¢7¢p7¢p37"'7¢pn717

in the order listed. Now augment with a final column of 1s. Letting e; denote the

i-th standard basis vector for R" allows us to write the resulting matrix as:

€1 €9 €3 PN €n 1
e, € ey ... €p_1 1
7 ey e e4 ... e 1
er €, €p_1 ... ey 1
€n €n_1 €p—2 ... € 1
e e e, ... e3 1

Hence, with this notation, each column except the last represents n columns of Z.

Subtracting row ¢ from row n + ¢ for e =1,...,n gives
el € es3 . en 1
en e1 €s . €n—1 1
€2 €3 €4 e €1 1
0O e,—€e e, 1—€3 ... e—e, 0O
0 €p—1 — €1 €2 —€E ... €] —€x_1 0
0 e —es e, —€ ... e3s—e 0

Noting the shape of the first and last column, it suffices to show that the following
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submatrix has rank n — 2 or n — 1 depending on whether 7 is even or odd:

€n — €9 €n—1 — €3 ... €o — €,
7 €n—1 — €1 €2 — €2 ... €] —€x
€1 — €3 €, — €4 €3 — €1

First we treat the even case. It is easy to check that the sum of the even-numbered
rows and the sum of the odd-numbered rows are both zero. For instance, consider

the sum of the odd-numbered rows of the first column of Z':
(en — 62) + (en_2 — en) + (en_4 — en_Q) +...+ (64 — 66) + (62 - 64) =0.

Summing up the odd-numbered rows of each column produces a similar telescoping
sum. The same argument works for the sum of the even-numbered rows. Thus, we
have shown that the rank of Z’ is at most n — 2. To finish the argument in the
even case, note that the following vectors from the first column of Z’ are obviously
linearly independent: e; —e3, €0 —€4,...,€, o — €5,.

We now treat the odd case. Here, it is easy to check, as in the even case, that
the sum of all of the rows is zero. Hence, the rank of Z' is at most n — 1. Again, the
Vectors vy := €} — €3, Uy := €9 — €4,...,VUp_9 := €,_9 — €, from the first column of Z’
are clearly linearly independent. The vector e,,_; —e; also occurs in the first column.
Adding the odd-numbered v;’s to e, 1 — e; produces the vector v, | = e, 1 — €.
The vectors vy, ...,v,_1 are clearly linearly independent, hence, the rank of Z' in
the odd case isn — 1. O

We can again use the cycle-decomposition theorem that we used in the previous
chapters to describe the edges of T,.

Theorem 4.2 Every vertex of T,, with n > 4 is connected to every other vertex of

T, by an edge of T,.
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Proor: Without loss of generality, examine the line segment between X, and X.
By the cycle decomposition theorem, (Theorem 1.3), this line segment is an edge if
and only if the cycle decomposition of 7 cannot be factored into two parts, both of
which form elements of D,,. Suppose we could factor 7 in such a way, say m = m7m,.
So a fixed point in 7 is fixed in 77wy which implies it is fixed in both 7 and .
But, since both m; and 7y are elements of D,,, at most two elements can be fixed
by either of them. Thus, both m; and 7y have at least n — 2 nonfixed points. By
construction, the points not fixed by m; are disjoint from the points not fixed by
7. Since there are only n points altogether, we need (n — 2) + (n — 2) < n, which
implies n < 4. O

Using the language of the proof of Theorem 4.2, the only time we can decompose
7 into two non-trivial parts, both of which are in D,,, is the case Dy, where (23)(14) is
composed of (23) and (14), which are both non-trivial elements of D,. It follows that
the line segment {X(1), X(23)(14)} is not an edge of T;. The line segment {X,, X} is
not an edge of Tj when o~'7 can be factored to (23)(14). These are the only such
line segments. This means that all dihedral polytopes 7;, with n > 4 have edges

2”) edges. O

connecting every pair of vertices. Thus, there are (2

David Perkinson has a proof for the following theorem:
Theorem 4.3 The odd dihedral polytopes are simplicial.
Our data suggest the following conjectures, for which the proofs are unknown.
Conjecture 4.4 Fach facet of T, has 2n — 2 vertices.
The fact that odd dihedral polytopes are simplicial proves this conjecture for odd
n; however, the proof for even n is unknown.
Conjecture 4.5 The odd dihedral polytopes have n? facets. The even dihedral
polytopes have n?/2 facets.
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Conjecture 4.6 The vertices of the odd dihedral polytopes are on n(n — 1) facets.
The vertices of the even dihedral polytopes are on n(n —1)/2 = (;) facets.

These conjectures are based on computer calculations yielding the following

charts.

n | number | dimension | vertices | number | number of facets
of points per facet | of facets | each vertex is on

4 8 5 6 8 6

5 10 8 8 25 20

6 12 9 10 18 15

7 14 12 12 49 42

8 16 13 14 32 28

9 18 16 16 81 72

10 20 17 18 50 45

4.2 The Dihedron

As in previous chapters, we can take the projection of the dihedral polytope to get
the dihedron, @, (a).
Theorem 4.7 The dihedron has dimension n — 1.
PROOF: Look at the subset of rotations of D,,. Consider the set of points created
by these matrices acting on the vector a. For generic a, the linear space spanned by
these points has dimension n by a standard result about circulent matrices ([Philip],
p.75). Hence the smallest affine space containing D,, has dimension n — 1. O

Some point a is generic if there is an open set U about @ such that @, (b) has the
same combinatorial structure as ), (a) for all b € U. Unlike the cases we examined
in previous chapters, it is possible to find generic points a and a’ such that Q,(a)
and (), (a') are not combinatorially equivalent. This behavior was first noted in the
dihedron by David Perkinson and Douglas Squirrel in 1996. Previously, this type

of behavior was noticed for more complicated groups in [Onn]. Depending on the
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point a we choose, we can get dramatically different polytopes. Choose polytopes
Q5(1,2,6,4,3) and ()5(2,1,6,4,3). They both have the same dimension, 4, and
number of vertices, 10, but the first has 35 facets with each vertex being on 14
facets, while the second has only 30 facets, with each vertex laying on 12 facets.
Here is a chart of the possible number of facets from Q5(a) through Qg(a), each

possibility coming from a different generic point a:

number of facets

30,35

20,32

140,154,168,182,196,210

118,150,190,198,222,230,246

612, 630, 675, 693, 738, 747, 756, 765, 774, 783, 810, 819, 828, 837,
846, 864, 873, 891, 900, 909, 918, 927, 936, 945, 954, 963, 972,
981, 990, 999, 1008, 1017, 1026, 1044

Notice that each possiblility for the number of facets differs from another by a

©O| ||| o S

multiple of n. In fact, for odd n, each possibility is a multiple of n. To get this data,
we used a program called orb, created by Douglas Squirrel. The program generates
random points a, checks if they are generic in the sense defined above, and then
outputs the number of facets on @, (a). Although we let the program run for some
time to collect the data, it is possible that not every possibility for the number of
facets appeared, especially as n increased. We predict that we would find every
multiple of n, within certain bounds, in an infinite data set. It is an interesting

question to ask exactly what these bounds are.
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Questions

In the process of writing this thesis, we found many more questions than we started
with, and many of them remain unsolved. The reader may find one or more of them
worth pursuing in the future. The questions are ordered by the chapter to which

each relates.

Chapter Three: The Alternating Group

e Show that the alternahedron H,(a) has n!/2 facets containing n — 1 vertices.

This says that H,(a) has n!/2 simplicial facets.

Find the complete combinatorial structure of Hs(a).

Completely describe Hj(a) using relations between faces and subgroups.

e Find a formula for the number of vertices on each facet of H,(a).
e Find a formula for the number of facets of H,(a).
e Find a formula for the number of facets each vertex of H,(a) is on.

Chapter Four: The Dihedral Group.
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CHAPTER 5. QUESTIONS

What are the bounds on the possible number of faces one can get from the

dihedron?
Show each facet of 1}, has 2n — 2 vertices when n is even.

Show that the odd dihedral polytopes have n? facets. The even dihedral
polytopes have n?/2 facets.

The vertices of the odd dihedral polytopes are on n(n— 1) facets. The vertices
of the even dihedral polytopes are on n(n —1)/2 = (g) facets.

What do dihedral face lattices look like?
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