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AbstratGiven a permutation group G in Sn, we an onstrut the set of permutationmatries of G as a set of n � n matries with exatly one 1 per row and olumn,where eah matrix is de�ned using an element of G. We an take the onvex hullof these matries, thought of as points in Rn2 spae, to form the G-permutationpolytope. We �nd the projetion of this polytope from Rn2 ! Rn de�ned by eahpermutation matrix X ating on a vetor a = (a1; :::; an). We all this the G-orbitpolytope. We �nd properties of these two polytopes for the symmetri, alternating,and dihedral groups.



Chapter 1Introdution
1.1 Permutation groupsA permutation is a bijetion whih takes a set A to itself. A permutation group of aset A is a set of permutations of A that forms a group under funtion omposition.We will be looking at groups of permutations of a nonempty, �nite set A of theform fa1; a2; :::; ang. Permutations of �nite sets are given by an expliit listing ofeah element of the domain and its orresponding funtional value. For example,we de�ne a permutation � of the set f1,2,3,4g by speifying�(1) = 2; �(2) = 3; �(3) = 1; �(4) = 4:A more onvenient way to express this orrespondene is to write � in yli form.Cyli form is always written as a produt of m-yles: elements (a1; a2; :::; am)where a1 is permuted to a2 and so on until am is permuted to a1. In yli notation,� = (123), a 3-yle. To take produts of m-yles, move from right to left fromone yle to the next, where any missing symbol is left where it is. For example,take � = (321)(54). Start with 1 in the right yle; however, 1 does not appear inthis yle, so (54) �xes 1. Move on to the seond yle. It tells you to move 1 to 3;(321) sends 1 to 3. Continuing in this way, the numbers f1; 2; 3; 4; 5g are permuted



2 CHAPTER 1. INTRODUCTIONto (2; 3; 1; 5; 4), in order. We ould just as easily have used some list of 5 elementsfa; b; ; d; eg. Under the same ation �, this would be permuted to (b; ; a; e; d). Twoyles are disjoint if they share no elements in ommon. For example, (123) and(45) are disjoint, (123) and (25) are not disjoint. Every permutation an be writtenas a produt of disjoint yles.De�ne Sn to be the symmetri group of order n. The symmetri group of order nis the set of all permutations of the n-element set A. A standard ounting argumentshows that Sn has n! = n(n� 1)(n� 2) � � �2 � 1 elements. Here are the elements ofS4: (1) (1234) (1324) (14)(23) (12)(34) (13)(24)(12) (34) (13) (24) (14) (23)(123) (234) (132) (142) (1243) (143)(1342) (1432) (243) (134) (124) (1423)One subset of Sn onsists of all of the even permutations of n objets, whih we nowdesribe. Remember that we represented a permutation of n objets as a produtof m-yles. We an rewrite eah m-yle as a produt of 2-yles. For example,(1234)=(12)(13)(14). This deomposition is not unique, and we an even deomposeto di�erent numbers of 2-yles. However, we always deompose to either an even oran odd number of deompositions. If a permutation an be deomposed to an evennumber of 2-yles, then it is an even permutation. The set of even permutationsforms a group. This subgroup of Sn is alled An, the alternating group of degreen. For an example, look at the elements of A4, the set of even permutations of 4elements. Notie that exatly half of the elements of Sn are in An.(1) (12)(34) (13)(24) (14)(23)(123) (134) (243) (142)(132) (234) (124) (143)Another subset of Sn onsists of all of the symmetries of a regular n-gon. This subsetonsists of the 2n elements of Sn whih rotate or reet some n-gon while preserving



1.1. PERMUTATION GROUPS 3its position in spae. In general, we an say Dn = h�; � j �n = �2 = e; �� = ��n�1i;where � is a rotation of an n-gon by 360=n degrees, � is a reetion about a line ofmirror symmetry, and e is the identity permutation, where no points are permuted.In other words, Dn is the set of all produts of various powers of � and � butwe an use the relation �n = �2 = (1). This subset atually forms a subgroup,alled Dn, the dihedral group of order 2n. For example, take a 4-gon, ommonlyknown as a square. We an rotate the square in inrements of 90 degrees withouthanging the square's position in spae. We an also ip the square like a panake-horizontally, vertially, and diagonally. When we label the four orners of the squarein a lokwise manner with 1,2,3,4, � and � an be represented in yli notationas (1234) and (12)(34) respetively. Repeatedly ombining these two ations withthemselves or with eah other give all of the possible elements of D4. Here are theelements of D4, the symmetries of the square. Note there are 8 elements:(1); (12)(34); (13)(24); (24); (1234); (13); (14)(23); (1432):When n is odd, we have an odd dihedral group. A permutation in an odd dihedralgroup �xes either 0 points or 1 point. This is obvious, beause the rotations hangeall points, and the line of mirror symmetry of a regular odd sided n-gon goes throughexatly one vertex. Therefore a reetion through this line �xes one point. When nis even, we have an even dihedral group. A permutation in an even dihedral group�xes either 0 points or 2 points. Clearly, the line of mirror symmetry of an regulareven sided n-gon will ontain either zero or two verties. Thus, a reetion throughthis line will �x either zero or two points.



4 CHAPTER 1. INTRODUCTION

Figure 1.1: A point set and its onvex hull1.2 PolytopesA point set is onvex if for any two points x and y in the point set, the straight linesegment [x; y℄ = f�x+ (1� �)y j 0 � � � 1gbetween them is also in the point set. Every intersetion of onvex sets is onvex.The onvex hull of a set of points is the \smallest" onvex set ontaining the points.Spei�ally, for any point set K, the onvex hull of K is onstruted by taking theintersetion of all onvex sets that ontain K:onv(K) := \fK 0 � Rd j K � K 0; K 0 is onvexg:If K is a �nite set, this onvex hull will be alled a V-polytope.Another reation is the H-polyhedron, whih uses the onept of halfplanes. Ahalfplane is just as it sounds: all of the area to one side of a de�ning ut; that is,those points x 2 Rn de�ned by  � x � 0 for some onstant 0 and some  2 Rn.An H-polyhedron P is formed by taking the intersetion of �nitely many losed



1.2. POLYTOPES 5

Figure 1.2: A V-polytope and an H-polytopehalfplanes in some Rd:P = P (A; z) = fx 2 Rd j Ax � zg for someA 2 Rm�d; z 2 Rm:An H-polyhedron that is bounded in the sense that it does not ontain a ray fx+ty jt � 0g for any y 6= 0 is alled an H-polytope. It turns out that every V-polytope isan H-polytope, and vie-versa (for the proof, see [Ziegler℄, p. 29). From now on, wewill use the word polytope to mean V-polytope or H-polytope.1.2.1 FaesWe will be looking at properties of faes of polytopes, de�ned to be the intersetionsof the polytope P with hyperplanes for whih the polytope is entirely ontained inone of the two halfspaes determined by the hyperplane. In other words, F is a faeof P if F = P \ fx 2 Rd j  � x = 0gwhere  � x � 0 is satis�ed for all points x 2 P .



6 CHAPTER 1. INTRODUCTIONTo de�ne the dimension of a fae F , we �rst introdue the notion of the aÆnehull of F : Pik a point p 2 F , and let L be the linear spae spanned by F � p :=fq � p j q 2 Fg. Then the aÆne hull of F , denoted a�(F ), is p + L, i.e., thesmallest aÆne spae ontaining F . The dimension of a�(F ) is de�ned to be thedimension of L. Say v1; :::; vk is a basis for L. Thus, every point q 2 F an bewritten as q = p+P aivi = (1 +P ai)p+P ai(vi � pi). Thus we have found pointsx1 := p; x2 := v1 � p; :::; xk+1 := vk � p of F suh that a�(F )= fP�ixi j P�i = 1g.De�nition 1.1 The dimension of a fae is the dimension of its aÆne hull, dim(F ):= dim(a�(F )).In a d-dimensional polytope P , the faes of P of dimension 0 are the verties ofP . The edges of P are those faes of dimension 1. Faets are the d� 1 dimensionalfaes. In general, P has a set of faes of every dimension k; 0 � k � d. A fae ofodimension k has dimension d� k.Consider the square in R2 reated by the halfplanes x � 0; y � 1; x � 1, andy � 0. Then the verties are the points (0,0), (1,0), (1,1), and (0,1). The edges arethe intersetions of the square with the lines x = 0, x = 1, y = 0, and y = 1. Inthis ase, the edges are the faets of this polytope. The 2-dimensional fae is theentire square. Two polytopes are onsidered ombinatorially equivalent if there is abijetion between their faes that preserves the inlusion relation among faes. Toaid the ombinatorial analysis we an onstrut the fae lattie of a polytope. Let Sdenote the set of faes of a polytope P . The inlusion relation among faes de�nes apartial ordering on S. Under this relation, S has a unique maximal element, namelyP itself, and a unique minimal element, ;, the empty set. Further, every two faesare minimally ontained in a unique fae and ontain a unique maximal subfae.Thus, S forms what is alled a lattie. It turns out that if F is a k-fae, then thelength of any maximal totally ordered subset of S having maximal element F has
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Figure 1.3: Hyperplanes de�ning a vertex and an edgelength k+1. For more on this topi, see [Ziegler℄. Rephrasing what was said earlier,two polytopes are ombinatorially equivalent if their fae latties are isomorphi.
1.2.2 Simpliial polytopesThe onvex hull of d + 1 aÆnely independent points in Rn, where n � d, is alleda d-simplex; thus, the d-simplex is a polytope of dimension d with d + 1 verties.In two dimensions, a triangle is a simplex. A tetrahedron is a three dimensionalsimplex. A polytope P is simpliial if every faet is a simplex. For example, theiosahdron is a three dimensional simpliial polytope, sine eah of its faets aretriangles, whih are simplies. Every faet of a simpliial polytope has d verties,and every k fae has k + 1 verties for k � d� 1 (for a proof, see [Ziegler℄.)



8 CHAPTER 1. INTRODUCTION1.3 Polytopes arising from permutation groups1.3.1 Permutation matriesGiven a permutation group G inside Sn, we de�ne the set of permutation matriesof G by (X�)ij = ( 1 if �(i) = j0 otherwisefor all � in G. The n� n matries X� are 0/1-matries with exatly one 1 per rowand olumn.For an example of a permutation matrix, onsider � = (123) in S3. Then �(1) =2, �(2) = 3, and �(3) = 1. The permutation matrix assoiated with � isX� = 0B� 0 1 00 0 11 0 0 1CAFor another example, look at � = (123) in S4. Again, �(1) = 2, �(2) = 3, and�(3) = 1, but now we also have �(4) = 4, whih means 4 was not a�eted bythe permutation. Whenever a number does not appear in a permutation, it is nota�eted by the permutation and a 1 appears on the diagonal:X� = 0BBB� 0 1 0 00 0 1 01 0 0 00 0 0 1 1CCCAThe set of permutation matries of the alternating group An onsists of exatlyhalf of all the permutation matries: those matries with determinant equal to+1. This is beause we only take those matries whih an be obtained from theidentity matrix with a even number of row transpositions. From linear algebra, weknow that eah row transposition hanges the sign of the determinant. Therefore,a permutation matrix is even only if it has determinant equal to +1.



1.3. POLYTOPES ARISING FROM PERMUTATION GROUPS 91.3.2 How to get a polytope in Rn2 from a permutationgroupEah of the permutation matries of the set G an be attened, its rows listed oneafter another, and onsidered to be a point in Rn2. The onvex hull of this set formsthe G-polytope, or permutation polytope,P (G) := onv fX� j � 2 Gg:1.3.3 The struture of P (G)In this setion we will look at the verties, edges, and faets of the permutationpolytope P (G).Theorem 1.2 Eah X� is a vertex of P (G)proof Consider maximizing the inner produt < X;X� > as X varies over P (G).< X;X� > = X1�i;j�nx(i; j)x�(i; j)= X1�j�nx(i; �(i)) � nwith equality if and only if X(i; �(i)) = 1 for all i. That is, < X;X� > is maximalexatly when X equals X�. So X� is a vertex of the polytope.To desribe the edges of P (G), we an use the following theorem, known as theyle-deomposition theorem. It tells us when the line between two verties X� andX� is an edge.Theorem 1.3 Cyle Deomposition The line segment fX�; X�g between theverties X� and X� is an edge of the polytope onstruted from the onvex hull ofmatries X� suh that � is in a group G, if and only if the yle deomposition of��1� annot be fatored into two non-trivial parts, both of whih are elements ofG.



10 CHAPTER 1. INTRODUCTIONproof: It suÆes to show the theorem with respet to the vertiesX� andXe, wheree is the identity permutation. We need to show that the line segment between X�and Xe is an edge of the polytope if and only if the yle deomposition for � annotbe fatored into a produt of two elements of the group. If the yle deompositionfators as � = �1�2 then 1=2Xe + 1=2X� = 1=2X�1 + 1=2X�2. For example, take� = (321)(45). Then �1 = (321) and �2 = (45) and we see that:12Xe + 12X(321)(45) = 12 0BBBBBB� 1 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 1
1CCCCCCA+ 12 0BBBBBB� 0 0 1 0 01 0 0 0 00 1 0 0 00 0 0 0 10 0 0 1 0

1CCCCCCA
= 12 0BBBBBB� 1 0 1 0 01 1 0 0 00 1 1 0 00 0 0 1 10 0 0 1 1

1CCCCCCA
= 12 0BBBBBB� 0 0 1 0 01 0 0 0 00 1 0 0 00 0 0 1 00 0 0 0 1

1CCCCCCA+ 12 0BBBBBB� 1 0 0 0 00 1 0 0 00 0 1 0 00 0 0 0 10 0 0 1 0
1CCCCCCA= 12X(321) + 12X(45):But we know from geometry that two verties (extreme points) u and v of a onvexpolytope determine an edge if and only if no point u+(1�)v with 0 �  � 1 on theline segment joining u and v an be represented as a nontrivial onvex ombinationof two points of the polytope at least one of whih does not belong to the linesegment. Hene, if � an be fatored into two nontrivial elements of the group, apoint of the line segment between e and � an be written as a onvex ombination
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Figure 1.4: The point in the enter of this polytope is not on an edge beause it anbe represented as a linear ombination of a pair of points not on the same edge.of two other points in the group, and so is not an edge.If the line segment between Xe and X� is not an edge, we will now show thatthe yle deomposition for � fators nontrivially as � = �� where both � and � arein G.Let X = 12Xe + 12X�. If the line segment between Xe and X� is not an edge,then we an write X as a positive onvex ombinationX = X�2G �iX�; �� � 0; X� �� = 1;where some �� is nonzero for � 62 fe; �g. Fix some suh �. Sine we are takingnonnegative ombinations of matries with nonnegative entries, whenever a zeroappears in an entry for the matrix X, then a zero must appear in the orrespondingentry in X�. Sine there are at most two nonzero entries on eah row of X, thismeans that if �(i) 6= i, then �(i) = �(i).We now show that every fator in the yle deomposition for � is a yle inthe yle deompostion for �. Thus the yle deomposition for � an be fatoredinto two parts: � and the produt of the remaining yles, whih we denote by



12 CHAPTER 1. INTRODUCTION� . Sine � and � are in G and � = ��1�, it follows that � is in G, and we willbe done. To aomplish this, take i1 suh that �(i1) 6= i1. The remarks in theprevious paragraph show that in this ase �(i1) = �(i1). Let (i1; : : : ; ik) be theorresponding yle in the yle deomposition of �. We need to show that thisyle ours in the deomposition for �, as well. Suppose �(im) = �(im) = im+1 forsome m < k. By remarks in the previous paragraph, if �(im+1) 6= �(im+1), then�(im+1) = im+1. However, then we have �(im) = �(im+1), ontraditing the fatthat � is a permutation. This ompletes the proof.1.3.4 OrbitsGiven a permutation group G in Sn and a point a = (a1; :::; an) 2 Rn, de�ne theorbit of a under G to be the set of all pointsx� := 0BB� a�(1)...a�(n) 1CCA = X� 0BBBB� a1a2...an 1CCCCAfor � 2 G. The onvex hull of the orbit de�nes the orbit polytopeO(G; a) = onv fx� j � 2 GngAlternatively, O(G; a) is the image of P (G) under the projetion Rn2 ! Rn de�nedby X 7! X 0BBBB� a1a2...an 1CCCCAthinking of X 2 Rn2 as an n� n matrix.



1.4. SUMMARY 13In the following hapters, we will �nd that the struture of O(G; a) depends onthe vetor a for ertain groups. In general, we only know about the verties of theprojeted permutation polytope.Theorem 1.4 Eah point x� is a vertex of O(G; a).proof Sine O(G; a) is the onvex hull of the set x�, we know at least one of thesepoints is a vertex. Pik a vertex x�. Let x� be any other point in the orbit. Then���1 de�nes a linear isomorphism from Rn 7! Rn sending O(G; a) to itself andsending x� to x�. Hene x� is a vertex, too.1.4 Summary1.4.1 The Symmetri GroupThe onvex hull of the group of all n�n permutation matries is alled the Birkho�polytope, a polytope of dimension (n � 1)2 with eah matrix as a vertex, giving n!verties. We an desribe this polytope with inequalities representing the hyper-planes whih de�ne it, (Theorem 2.1). The yle deomposition theorem tells ushow to �nd the edges of this polytope, (Theorem 2.3).We proeed to take the projetion of the Birkho� polytope to get the permutahe-dron, whih has the permutations of the vetor a = (a1; :::; an) under permutationsin Sn as its verties. We �nd its dimension, (Theorem 2.4). We an desribe thispolytope using inequalities whih de�ne the hyperplanes framing it, (Theorem 2.7).We realize that the fae lattie of the permutahedron is isomorphi to lattie ofhains of subsets of [n℄ := f1; 2; :::; ng, (Proposition 2.10). With this information,we an determine the f -vetor, whih tells us how many faes there are of eahdimension, and we know how to �nd suh faes, (Theorem 2.12). Finally, we deter-mine whih verties are adjaent to one another, �nding that the verties adjaent



14 CHAPTER 1. INTRODUCTIONto a given vertex are those verties whose oordinates di�er from the given vertexby a single transposition, (Theorem 2.14).1.4.2 The Alternating GroupIn this hapter we look at the alternating polytope, an (n�1)2 dimensional polytopewith n!=2 verties, (Theorem 3.1). The yle deomposition theorem tell us thatthe line segment fX�; X�g in the alternating polytope is an edge if and only if theyle deomposition of ��1� onsists of exatly 1 yle of odd length, or exatly twoyles of even length, (Theorem 3.2). The projetion of the alternating polytopeyields the alternahedron, whih an also be onstruted by utting verties o� of thepermutahedron. We give the inequality desription, and its dimension, (Theorems3.3 and 3.4). We give data for several alternahedra and ask questions whih ouldlead to further researh.1.4.3 The Dihedral GroupIn this hapter we look at the dihedral polytope, and �nd that its dimension hangesdepending on the parity of n, (Theorem 4.1). The yle deomposition theorem tellsus that every vertex is onneted to every other vertex with an edge of the polytopewhen n > 4, (Theorem 4.2). We also �nd that the dihedral polytopes are simpliialfor odd n, (Theorem 4.3). Our data suggest several onjetures whih remain to beproved.We all the projetion of the dihedral polytope the dihedron, and �nd its di-mension, (Theorem 4.7). We also �nd that the dihedron is not unique for generia. Depending on the vetor we hoose to permute, we an get drastially di�erentpolytopes. We look at some possibilities and ask more questions.



1.4. SUMMARY 151.4.4 QuestionsWe present a list of questions whih have ome up in the duration of the thesis.



16 CHAPTER 1. INTRODUCTION



Chapter 2The Symmetri Group
This hapter is mainly an exposition of theory from two soures: [Billera℄ and [YKK℄.We have ombined the ideas from both, as well as adding a few ideas of our own, toget a more omplete theory than either of the others ahieved alone.The onvex hull of the permutation matries of the symmetri group, thought ofas points in Rn2, notated Bn := onv fX� j � 2 Sng, forms the Birkho� polytope.We will now �nd several properties of this objet.2.1 The Birkho� PolytopeTheorem 2.1 Bn is an (n � 1)2 dimensional polytope with n! verties having thefollowing inequality desription:Bn = fX = (xij) 2 Rn2 j xij � 0; 1 � i; j � n; nXj=1xij = 1for i = 1; :::; n; and nXi=1 xij = 1 for j = 1; :::; ngThus, Bn onsists of what are alled doubly stohasti matries: matries withnonnegative entries and whose row and olumn sums are 1. We will all the right



18 CHAPTER 2. THE SYMMETRIC GROUPhand side of the equality Cn. Before jumping into the proof for this theorem, observethe following results about Cn:Lemma 2.2 The equations of Cn satisfy 2n� 1 independent linear equations.proof: In the ase of n = 3 it is easy to represent the equations of Cn with thefollowing matrix: 0BBBBBBBB� 1 1 1 0 0 0 0 0 00 0 0 1 1 1 0 0 00 0 0 0 0 0 1 1 11 0 0 1 0 0 1 0 00 1 0 0 1 0 0 1 00 0 1 0 0 1 0 0 1
��������������
111111
1CCCCCCCCASubtrating the bottom three rows from the �rst gives0BBBBBBBB� 0 0 0 �1 �1 �1 �1 �1 �10 0 0 1 1 1 0 0 00 0 0 0 0 0 1 1 11 0 0 1 0 0 1 0 00 1 0 0 1 0 0 1 00 0 1 0 0 1 0 0 1
��������������
�211111

1CCCCCCCCAAdding rows two and three to row one gives0BBBBBBBB� 0 0 0 0 0 0 0 0 00 0 0 1 1 1 0 0 00 0 0 0 0 0 1 1 11 0 0 1 0 0 1 0 00 1 0 0 1 0 0 1 00 0 1 0 0 1 0 0 1
��������������
011111
1CCCCCCCCASubtrat olumns one through three from four through six, and seven through nine,in turn, to get 0BBBBBBBB� 0 0 0 0 0 0 0 0 00 0 0 1 1 1 0 0 00 0 0 0 0 0 1 1 11 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0

��������������
011111
1CCCCCCCCA



2.1. THE BIRKHOFF POLYTOPE 19It is lear that this matrix has �ve linearly independent rows. This an be generalizedto the matrix with 2n equations0BBBBBBBBBB�
~1 ~0 ~0~0 ~1 ...... ~0 . . . ~1 ~0~0 : : : ~0 ~1In In : : : In In

���������������
11...1~1
1CCCCCCCCCAwhere In is the n � n identity matrix, ~0 = (0; :::; 0) 2 Rn and ~1 = (1; :::; 1) 2 Rn.Using row and olumn operations as before, this matrix redues to0BBBBBBBBB�

~0 ~0 : : : : : : ~0... ~1 ~0 ~0... ~0 . . . ...~0 ... ~1In ~0 : : : ~0 ~0
�������������
01...1~1
1CCCCCCCAleaving us with 2n� 1 independent linear equations.Now we go on to prove theorem 1.1.proof [Billera℄: Remember that eah X� is a vertex of Bn by Theorem 1.2. Weknow that elements of Cn satisfy 2n�1 independent linear equations by the previouslemma; therefore, the dimension of Cn is n2 � (2n � 1) = (n � 1)2. Sine eah X�is in Cn, it follows that Bn � Cn. To show Bn = Cn, use indution on n to showeah vertex of Cn is a permutation matrix. If a matrix X is a vertex of Cn then astandard result from the theory of polytopes says that X sits on at least (n � 1)2faets. Sine the faet de�ning equations of Cn have the form xij = 0, it followsthat X has at least (n � 1)2 entries equal to zero. This implies that X must havea row with n � 1 zeroes. So, xij = 1 for some i and j. Without loss of generality,let i = j = 1. Deleting the �rst row and �rst olumn from X leaves us with a



20 CHAPTER 2. THE SYMMETRIC GROUP(n � 1)� (n � 1) matrix whih we will all ~X. We would like to show that ~X is avertex of Cn�1. Then, by indution ~X is a permutation matrix, hene X was one,as desired. Sine X is a vertex, there exists some D = (d11; :::; dnn) 2 Rn2 suh thatmaxfhY;Di j Y 2 Cng = X: This implies that PDijYij � PDijXij for all Y 2 Cn.De�ne ~D 2 R(n�1)2 by removing the �rst \row" and \olumn" of D, i.e., removingd1i and di1 from D for i = 1; 2; :::; n. If ~X were not a vertex of Cn�1 then therewould exist ~Y in Cn�1, ~Y 6= ~X, suh that h ~Y ; ~Di � h ~X; ~Di: De�ne Y 2 Rn2 byY :=  1 00 ~Y !It follows that Y 2 Cn; X 6= Y , andhY;Di = d11 + h ~Y ; ~Di � d11 + h ~X; ~Di = hX;Di:whih ontradits the fat that X is a vertex. Thus, ~X is a vertex of Cn�1. It followsthat X must also be a permutation matrix.We an use the yle-deomposition theorem to get the following result.Theorem 2.3 Let X� and X� be verties of Bn orresponding to �; � 2 Sn. Theline segment between X� and X� is an edge if and only if ��1� is a yle.proof: This follows diretly from the yle deomposition theorem, Theorem 1.3.For example, when n = 4, the points onneted to X(1) are X� for � being any pureyle exept (1) itself: (1234), (1324), (12), (34), (13), (24), (14), (23), (123), (234),(132), (142), (1243), (143), (1342), (1432), (243), (134), (124), and (1423). Thisimplies that there are 20 edges ontaining any given vertex.2.2 The PermutahedronNow de�ne the permutahedron Pn � Rn to be the onvex hull of all permutationsof the vetor (1; 2; :::; n). Spei�ally, in R4, we would have the vetor (1; 2; 3; 4).



2.2. THE PERMUTAHEDRON 21Using the symmetri group, we �nd all 4!=24 permutations of this vetor:(1,2,3,4) (2,1,3,4) (3,1,2,4) (4,1,2,3)(1,2,4,3) (2,1,4,3) (3,1,4,2) (4,1,3,2)(1,3,2,4) (2,3,1,4) (3,2,1,4) (4,2,1,3)(1,3,4,2) (2,3,4,1) (3,2,4,1) (4,2,3,1)(1,4,2,3) (2,4,1,3) (3,4,1,2) (4,3,1,2)(1,4,3,2) (2,4,3,1) (3,4,2,1) (4,3,2,1)It turns out that if we plot all of these points, we �nd that P4 lies on a threedimensional hyperplane. This shape an be visualized by �rst imagining an Egyptianpyramid at the edge of a alm lake. Looking at the pyramid and its reetion asa single objet, we get the otahedron. Now, imagine this otahedron enlosedin a ube just too small for it. Thus, the orners of the otahedron are ut o�,leaving square faes near where the verties of the otahedron used to belong. Thefaes of the otahedron whih used to be triangles are now hexagons. Imagine, ifyou will, the Birkho� polytope, sitting in 16-dimensional spae. Remember that thispolytope is made up of all of the matries of the symmetri group of order four, eahmatrix being a vertex of this greater polytope. You probably annot visualize thisobjet, sine we have a hard time thinking of objets in more than three dimensions.However, we an see its shadow. As a hand asts a shadow on a wall, the Birkho�polytope asts a shadow on a three dimensional hyperplane, and that shadow is thepermutahedron. This mathematially rude desription will now be re�ned.2.2.1 Fae DesriptionMore generally, let a = (a1; :::; an) 2 Rn and de�ne the permutahedron to be:Pn = onv fx� j � 2 Sng



22 CHAPTER 2. THE SYMMETRIC GROUP
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Figure 2.1: This is P4(1; 2; 3; 4), the trunated otahedron.



2.2. THE PERMUTAHEDRON 23where x� := 0BB� a�(1)...a�(n) 1CCA = X� 0BBBB� a1a2...an 1CCCCAfor � 2 Sn.Theorem 2.4 If the oordinates of a are pairwise distint, then the dimension ofPn(a) is n� 1.proof: Sine Pn(a) is ontained in the hyperplane with equationPni=1 xi = Pni=1 ai,its dimension is at most n� 1. To see that the dimension of Pn(a) is equal to n� 1,hek that (a1; :::; an) and the n � 1 points obtained by transposing ai; ai+1 fori = 1; :::; n� 1 are aÆnely independent.Our next goal is Theorem 2.7, �nding an inequality desription for Pn(a). Toprove this desription of Pn(a), we must �rst learn some things about majorizingvetors.De�nition 2.5 The vetor x = (x1; :::; xn) majorizes the vetor y = (y1; :::; yn),written x � y (we use altered notation from that used by other soures for simpliity)if, after reordering when neessary, x1 � ::: � xn, y1 � ::: � yn, andnXi=1 xi = nXi=1 yiand kXi=1 xi � kXi=1 yi for k = 1; :::; n� 1:The following lemma, due to Shur, gives the neessary and suÆient onditionsfor the majorization of vetors. Reall that a doubly stohasti matrix is exatlyan element of the Birkho� polytope, i.e., an n� n matrix with nonnegative entrieswhose row and olumn sums are 1.Lemma 2.6 The vetor x majorizes the vetor y if and only if there is a doublystohasti matrix � suh that x = �y.



24 CHAPTER 2. THE SYMMETRIC GROUPproof: Suppose x1 � ::: � xn and y1 � ::: � yn: The proof goes by indution.Suppose Pki=1 xi � Pki=1 yi for k = 1; :::; n� 1 and Pni=1 xi = Pni=1 yi. It follows thatPni=1 xi = xn + Pn�1i=1 xi = yn + Pn�1i=1 yi. This implies that yn � xn = Pn�1i=1 xi �Pn�1i=1 yi � 0. Therefore yn � xn. Then yn � xn � x1 � y1 whih implies that thereexists some k suh that yk+1 � xn � yk. For this k, hoose 0 � � � 1 suh thatxn = �yk + (1� �)yk+1.De�ne ~x = (x1; :::; xn�1), and ~y = (y1; y2; :::; yk�1; (1� �)yk + �yk+1; yk+2; :::; yn),where 0 � � � 1. Note that the omponents of ~y are in inreasing order of magni-tude, i.e., ~y1 � ~y2 � ::: � ~yn�1. To see this, we just need to hekyk�1 � (1� �)yk + �yk+1 � yk+2Sine xn = �yk + (1� �)yk+1 we have:~yk = (1� �)yk + �yk+1 = yk + yk+1 � �yk � (1� �)yk+1 = yk + yk+1 � xn:Sine yk+1 � xn, it follows thatyk�1 � yk � yk + (yk+1 � xn) = ~ykAlso, sine yk � xn, it follows that~yk = yk+1 + (yk � xn) � yk+1 � yk+2:Thus, we have shown that the omponents of ~y are inreasing.Now we want to show that ~x � ~y. Calulate:Pn�1i=1 ~yi = y1 + � � �+ yk�1 + ~yk + yk+2 + � � �+ yn= y1 + � � �+ yk�1 + (yk + yk+1 � xn) + yk+2 + � � �+ yn= y1 + � � �+ yn � xn= x1 + � � �+ xn � xn= Pn�1i=1 ~xi



2.2. THE PERMUTAHEDRON 25Seondly, if ` < k, we haveX̀i=1 ~xi = X̀i=1 xi � X̀i=1 yi = X̀i=1 ~yi:If ` � k, sine xn � x`; x � y, and ~yk = yk+ yk+1� xn, we have x1+ � � �+x`+xn �x1 + � � �+ x`+1 � y1 + � � �+ y`+1 whih impliesPì=1 ~xi = Pì=1 xi � y1 + � � �+ yk�1 + (yk + yk+1 � xn) + yk+2 + � � �+ y`+1= Pì=1 ~yi:Hene, ~x � ~y.By the indutive hypothesis, there is a (n�1)� (n�1) doubly stohasti matrix� suh that ~x = �~y. In full form, this is:0BB� x1...xn�1 1CCA = 0BB� Æ1;1 � � � Æ1;n�1... . . . ...Æn�1;1 � � � Æn�1;n�1 1CCA
0BBBBBBBBBBBB�

y1...yk�1(1� �)yk + �yk+1yk+2...yn
1CCCCCCCCCCCCAIn the n � n ase, we want to �nd the matrix whih relates x and y. We �nd thismatrix by splitting the kth olumn of � = (Æij) into two and adding a �nal row:0BBBB� x1...xn�1xn 1CCCCA = 0BBBB� Æ1;1 � � � (1� �)Æ1;k �Æ1;k � � � Æ1;n�1... ... ...Æn�1;1 � � � (1� �)Æn�1;k �Æn�1;k � � � Æn�1;n�10 � � � � (1� �) � � � 0 1CCCCA0BB� y1...yn 1CCAThis new matrix is doubly stohasti.We now have the tools neessary for proving the following theorem:Theorem 2.7 The permutahedron generated by the vetor a = (a1; :::; an), witha1 � � � � � an, denoted Pn(a), has the inequality desriptionPn(a) = fx 2 Rn j nXi=1 xi = nXi=1 ai; x(S) � �S for all S � [n℄g;



26 CHAPTER 2. THE SYMMETRIC GROUPwhere x(S) = Pi2S xi, �S = PjSji=1 ai, and [n℄ = f1; 2; :::; ng.proof: Given x 2 Rn, let ~x be a point inRn obtained by permuting the oordinatesof x so that they appear in non-dereasing order. It follows that for any S � [n℄, wehave x(S) � PjSji=1 ~xi. Using this fat, one an see that the above inequalities desribethe set of all points x whih majorize a. Using the previous lemma, this is the set ofall points of the form x = �y as � runs over all of the doubly-stohasti matries;that is, all points in Bn. This is the projetion de�nition of the permutahedron.Therefore, the above inequalities yield the permutahedron Pn(a).Now that we know the inequality desription of Pn(a), we an go on to desribethe lattie of faes of Pn(a), and spei�ally we an determine information aboutthe faets, verties, and edges of Pn(a). We will use the following result.Lemma 2.8 Let S, T be sets, and let a = (a1; :::; an) 2 Rn with a1 � � � � � an.De�ne the funtion �S := PjSji=1 ai. Then �S + �T � �S\T + �S[T . If a1 < � � � < an;then the inequality beomes equality if and only if S � T or T � S.proof: De�ne jS \ T j = u; jSj = u+ v; jT j = u+w. Then jS [ T j = u+ v +w. Itfollows that �S = a1 + ::: + au+v�T = a1 + ::: + au+w�S[T = a1 + ::: + au+v+w�S\T = a1 + ::: + auFurthermore,(�S\T + �S[T )� (�S + �T ) = (�S[T � �S)� (�T � �S\T )= (au+v+1 + :::+ au+v+w)� (au+1 + :::+ au+w) � 0:If a1 < � � � < an note that the last equation is equal to zero if and only if v = 0, thatis, when S � T , or when w = 0, giving the trivial result of 0 = 0 when T � S.Corollary 2.9 [Billera℄ Let a1 < ::: < an. F is a fae of Pn(a) of odimension k ifand only if equality in x(S) � �S holds for preisely k distint proper subsets lyingin a hain S1 � ::: � Sk � [n℄.



2.2. THE PERMUTAHEDRON 27proof If x 2 Pn(a) satis�es x(S) = �S and x(T ) = �T then�S + �T = x(S) + x(T ) = x(S [ T ) + x(S \ T ) � �S[T + �S\T :It follows from the previous lemma that �S + �T = �S[T + �S\T and further thatS � T or T � S. Thus, equality holds in x(S) � �S for k proper subsets S ifand only if the subsets form a hain S1 � � � � � Sk � [n℄. The resulting system oflinear equations will look something like x1; x1 + x2; :::; x1 + x2 + ::: + xk whih areneessarily linearly independent.Note: From now on, we will assume a1 < a2 < � � � < an.Thus, with the above assumption, the fae lattie of Pn(a) is the same as asthe lattie of hains of subsets in [n℄, ordered by re�nement. For an alternativedesription, denote by �n the partially ordered set of all ordered partitions of [n℄,ordered by re�nement. The elements of �n are ordered tuples � = (Q1; :::; Qk) wherethe Qi are pairwise disjoint subsets of [n℄ whose union is [n℄. Elements smaller than� have the form (Q11; :::; Q1j1; :::; Qk1; :::; Qkjk) where (Qi1; :::; Qiji) is an orderedpartition on Qi. For example, in �4, (f1; 4g; f3g; f2g) � (f1; 3; 4g; f2g). If weinlude in �n an element 0̂ suh that 0̂ � � for every ordered partition �, then �nforms a lattie. Look at a sample lattie, �3:f1; 2; 3g. # &f1; 2g; f3g f1g; f2; 3g f1; 3g; f2g& # .f1g; f2g; f3g#̂0where eah layer is less than the layer above it.Proposition 2.10 Pn(a) is isomorphi to �n



28 CHAPTER 2. THE SYMMETRIC GROUPproof: De�ne a mapping � : Pn(a) ! �n as follows: For a fae F � Pn(a) ofodimension k, let S1 � � � � � Sk � [n℄ be the hain given in Corollary 2.9. Fornotational purposes, let S0 = 0̂ and Sk+1 = [n℄. Then de�ne �(F ) = (Q1; :::; Qk+1)where Qi := Si n Si�1. It is straightforward to hek that � : Pn(a) 7! �n is anisomorphism of latties whih sends a fae of odimension k to a (k + 1)-tuple in�n.Corollary 2.11 [Billera℄ Faes of Pn(a) are ombinatorially equivalent to Pn1(a)�:::� Pnk(a) where n1 + ::: + nk = n.proof: Under the isomorphism de�ned in the previous proposition, the fae lattieof a fae of Pn(a) is isomorphi to an interval [0̂; �℄ in �n where � = (Q1; :::; Qk),using the notations from the proof of the proposition. Letting ni = jQij, it is easyto see that the interval [0̂; �℄ is isomorphi as a lattie to �n1(a)� :::� �nk(a).Let f = (f0; :::; fn�1) 2 Zn where fi is the number of faes of Pn(a) of dimension i.This is alled the f -vetor of Pn(a).Theorem 2.12 [YKK℄ The omponents of the f-vetor of the permutation polytopePn(a) are given by, for all k 2 [n� 1℄,fk(Pn(a)) =X n!t1!t2! � � � tn�k!where the sum is arried out over all positive integral solutions of the equationt1 + t2 + � � �+ tn�k = n.proof: Aording to Corollary 2.9, faes of Pn(a) of dimension k have a one-to-one orrespondene with ordered partitions (Q1; :::; Qn�k). So fk is given by thenumber of (n � k)-tuples (Q1; :::; Qn�k) where the Qi are disjoint, non-empty, andQ1 [ � � � [Qn�k = [n℄. The result follows from standard ombinatorial analysis.For an example, alulate the f -vetor for P4(a).Take n = 4.For k = 0, we write 1 + 1 + 1 + 1 = 4 to get f0 = 4! = 24.



2.2. THE PERMUTAHEDRON 29For k = 1, we write 2 + 1 + 1 = 1 + 2 + 1 = 1 + 1 + 2 = 4 to givef1 = 4!2!1!1! + 4!1!2!1! + 4!1!1!2! = 36:For k = 2, we write 1 + 3 = 2 + 2 = 3 + 1 = 4 to givef2 = 4!1!3! + 4!2!2! + 4!3!1! = 14:For k = 3, we write 4=4 to give f3 = 4!4! = 1Therefore, the f -vetor is f(P4(a)) = (24; 36; 14; 1):We would now like to give an expliit desription of the verties of eah fae ofPn(a). Denote the k-fae orresponding to the ordered partition (Q1; :::; Qn�k) byF (Q1; :::; Qn�k). Let �(Q1; :::; Qn�k) = f� j �(Smi=1Qi) = f1; 2; :::; jSmi=1Qijgg.Theorem 2.13 ([YKK℄) The verties of the k-fae F (Q1; :::; Qn�k) are the pointsx� for all � 2 �(Q1; :::; Qn�k).proof: We will �rst show that the vertex x� for � 2 �(Q1; :::; Qn�k), lies in thefae F (Q1; :::; Qn�k). For eah m 2 [n � k℄, let Sm := Smi=1Qi, then �(Sm) =f1; 2; :::; jSmjg. Therefore, x�(Sm) = Pi2Sm x�(i) = Pi2Sm a�(i) = PjSmji=1 ai = �Sm , asrequired.On the other hand, if � =2 �(Q1; :::; Qn�k), hoose an m 2 [n � k℄ suh that�(Sm) 6= f1; 2; :::; jSmjg. We have x�(Sm) = Pi2Sm x�(i) = Pi2Sm a�(i) > PjSmji=1 ai =�Sm . The last inequality follows sine a1 < a2 < ::: < am. Sine x�(Sm) 6= �Sm , wehave x� =2 F (Q1; :::; Qn�k).Theorem 2.14 [YKK℄ The verties of Pn(a) adjaent to the vertex x� are theverties obtained by transposing some pair of adjaent omponents of x�.



30 CHAPTER 2. THE SYMMETRIC GROUPproof: Suppose the line segment between x� and x� forms an edge for some � 2 Sn.The edge then has the form F (Q1; :::; Qn�1). Sine SQi = [n℄ and theQi are pairwisedisjoint, it follows that eah Qi exept for exatly one, say Qk, has one element andQk has two elements. Say Q1 = fq1g; :::; Qk�1 = fqk�1g; Qk = fqk; qk+1g; Qk+1 =fqk+2g; :::; Qn�1 = fqng. Then �(Q1; :::; Qn�1) has two elements, � and say � . Wehave �(i) = �(i) = qi for i = 1; :::; k�1 and �(i) = �(i) = qi�1 for i = k+2; :::; n�1.Without loss of generality, we an take �(k) = �(k + 1) = qk and �(k + 1) =�(k) = qk+1. Thus x�;i = a�(i) = x�;i for i 6= k; k + 1 and x�;k = x�;k+1 = aqk andx�;k+1 = x�;k = aqk+1. Thus, we get a transposition in two adjaent plaes.



Chapter 3The Alternating Group
3.1 The Alternating PolytopeThe onvex hull inRn2 of the set of even permutation matries forms the alternatingpolytope En.Theorem 3.1 (Brualdi) En is an (n�1)2 dimensional polytope with n!=2 verties.sketh of proof: We know that eah X� for � 2 An is a vertex by Theorem1.2. There are n!=2 elements of the alternating group An, so En has n!=2 verties.The proof that En is (n � 1)2 dimensional involves showing that there exist(n � 1)2 even permutation matries P0 = In; P1; :::; P(n�1)2 suh that the set ofmatries fPi � P0 j 1 � (n � 1)2g is linearly independent. Please see [Brualdi℄ forthe omplete proof.The faet de�ning equations and the ombinatorial struture of En are not knownin general. However, we have the following desription of the edges of En. We anuse the yle-deomposition theorem again to desribe the edges of En. It tells uswhen the line between two verties X� and X� is an edge.Theorem 3.2 (Brualdi) Let � and � be distint permutations in An. Then theline fX�; X�g is an edge of En if and only if the yle deomposition of ��1� onsists



32 CHAPTER 3. THE ALTERNATING GROUPof exatly 1 yle of odd length, or exatly two yles of even length.proof: The line segment fX�; X�g is an edge of En if and only if ��1� annot bedeomposed into two nontrivial disjoint elements of An, by the yle deompositiontheorem, (Theorem 1.3). This an only our when ��1� is one odd length yle orthe produt of two even length yles.3.2 The AlternahedronThe onvex hull of all even permutations of the point a = (a1; :::; an), where theoordinates are pairwise distint, is de�ned to be the alternahedron, denoted Hn(a),as disussed in the �rst hapter. De�ne On to be the set of odd permutations:On = f� j � 2 Sn n Ang. By Theorem 2.14, we know that for � 2 On, the n � 1aÆnely independent verties adjaent to a�, all aÆi for i = 1; :::; n� 1, are all even.Then the unique hyperplane T� whih passes through all the verties aÆi stritlyseparates a� from the polytope onv fa� j � 2 Sn n �g whih it supports. Thus,the intersetion of the polytope Pn(a) and all the half spaes T�; � 2 On is preiselythe polytope Hn(a). The equations for these half spaes are determined in [YKK℄.Setting 1 = a1; 2 = a2; i = i�1 � (an�1 � an)(a1 � a2)an�i+1 � an�i+2The desired hyperplane T� is given by the equationnXi=1 �(i)xi = nXi=1 ian�i+1 + (an�1 � an)(a1 � a2):Theorem 3.3 ([YKK℄, Theorem 3.13) The even permutation polytope Hn(a) isgiven by the inequalities of the permutation polytopenXi=1 xi = nXi=1 ai; x(S) � �S for all S � [n℄



3.2. THE ALTERNAHEDRON 33and the halfspaesnXi=1 �(i)xi � nXi=1 ian�i+1 + (an�1 � an)(a1 � a2) 8� 2 OnIf n > 4, then every inequaltity de�nes a fae.Sine we an think of the alternadehron as the polytope ontruted by uttingo� half of the verties of the permutatedron, and we know the permutahedron hasn!=2 verties, we know that the alternahedron has n!=2 verties.Theorem 3.4 The alternahedron Hn(a) has dimension n� 1.proof: The points of Hn(a) adjaent to an odd vertex of the full permutahedronare aÆnely independent.There are many unsolved mysteries onerning the alternahedron. We haveexperimental data for the �rst few ases; however, the alternahedron grows largevery quikly, and any information above n = 6 takes a very long time for theomputer to ompile. We have the following onjeture about the alternahedron:Conjeture 3.5 The alternahedronHn(a) has n!=2 faets ontaining n�1 verties.This says that Hn(a) has n!=2 simpliial faets.For n = 3 and 4, these are all of the faets of the alternahedron; however,for n > 4, Hn(a) has other faets with varying numbers of verties on them. Forexample, H5(a) has 60 faets with 4 verties, whih are the faets disussed in theonjeture above. However, it also has 10 faets with 12 verties, and 20 faets with6 verties. We also have information on H6(a), whih has 360 faets with 5 verties(these are the n!=2 simpliial faets again), as well as 20 faets with 18 verties, 30faets with 24 verties, and 12 faets with 60 verties. We have not been able topredit in general how many faets we will have, nor how many verties are on eahfaet. Sine we have been unable to �nd general theorems for the alternahedron, letus look at some examples in detail.



34 CHAPTER 3. THE ALTERNATING GROUPUsing the omputer program PORTA (see [PORTA℄), we olleted the followingdata for the alternahedron:number of dimension verties number number of faetsn verties on faets of faets eah vertex is on3 3 2 2 3 24 12 3 3 20 55 60 4 4,6,12 90 86 360 5 5,18,24,60 422 10Eah generi H4(a) is ombinatorially equivalent to an iosahedron. Chekingby hand, we notied that any opy of A4 sitting inside A5 obtained by �xing oneelement produed a faet of H5(a). It would be interesting to ompletely determinethe orrespondene between H5(a) and subgroups of A5.This information leads us to ask if there are formulae prediting the followingdata:� Number of verties on faets� Number of faets� Number of faets eah vertex is on
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Figure 3.1: This is H4(1; 2; 3; 4), whih is ombinatorially equivalent to the iosahe-dron.



36 CHAPTER 3. THE ALTERNATING GROUP



Chapter 4Dihedral group
4.1 The Dihedral PolytopeThe onvex hull of the permutation matries of the dihedral group forms the dihedralpolytope Tn with 2n verties, (Theorem 1.2).Theorem 4.1 The dimension of Tn is 2n� 3 when n is even, and 2n� 2 when n isodd.proof: We need to �nd the dimension of the linear spae of hyperplanes ontainingTn. To do this, form a matrix whose rows are the elements of the dihedral group,thought of in the usual way as points of Rn2. Augment the matrix by adding a�nal olumn of 1s (in order to aount for the onstants in the equations for thehyperplanes). Call the resulting 2n� (n2 + 1) matrix Z. We will show that Z hasrank 2n� 2 or 2n� 1 depending on whether n is even or odd. Sine elements of thekernel of Z orrespond exatly with hyperplanes ontaining Tn, we havedimTn = n2 � dimkernel(Tn) = n2 � (n2 + 1� rank(Z)) = rank(Z)� 1;as required.To expliitly onstrut Z, take permutations generating the dihedral group:pik � = (1; 2; :::; n) for the rotation, and hoose the reetion �xing 1, namely



38 CHAPTER 4. DIHEDRAL GROUP� = (2; n)(3; n� 1) � � �. The �rst n rows of Z will orrespond the rotations:(1); �; �2; : : : ; �n�1;in the order listed, and the last n rows will orrespond to the reetions�; ��; ��3; : : : ; ��n�1;in the order listed. Now augment with a �nal olumn of 1s. Letting ei denote thei-th standard basis vetor for Rn allows us to write the resulting matrix as:
Z =

0BBBBBBBBBBBBBBB�
e1 e2 e3 : : : en 1en e1 e2 : : : en�1 1... ... ... ... ...e2 e3 e4 : : : e1 1e1 en en�1 : : : e2 1en en�1 en�2 : : : e1 1... ... ... ... ...e2 e1 en : : : e3 1

1CCCCCCCCCCCCCCCAHene, with this notation, eah olumn exept the last represents n olumns of Z.Subtrating row i from row n + i for i = 1; : : : ; n gives0BBBBBBBBBBBBBBB�
e1 e2 e3 : : : en 1en e1 e2 : : : en�1 1... ... ... ... ...e2 e3 e4 : : : e1 1~0 en � e2 en�1 � e3 : : : e2 � en 0~0 en�1 � e1 en�2 � e2 : : : e1 � en�1 0... ... ... ... ...~0 e1 � e3 en � e4 : : : e3 � e1 0

1CCCCCCCCCCCCCCCANoting the shape of the �rst and last olumn, it suÆes to show that the following



4.1. THE DIHEDRAL POLYTOPE 39submatrix has rank n� 2 or n� 1 depending on whether n is even or odd:Z 0 = 0BBBB� en � e2 en�1 � e3 : : : e2 � enen�1 � e1 en�2 � e2 : : : e1 � en�1... ... ...e1 � e3 en � e4 : : : e3 � e1 1CCCCAFirst we treat the even ase. It is easy to hek that the sum of the even-numberedrows and the sum of the odd-numbered rows are both zero. For instane, onsiderthe sum of the odd-numbered rows of the �rst olumn of Z 0:(en � e2) + (en�2 � en) + (en�4 � en�2) + : : :+ (e4 � e6) + (e2 � e4) = 0:Summing up the odd-numbered rows of eah olumn produes a similar telesopingsum. The same argument works for the sum of the even-numbered rows. Thus, wehave shown that the rank of Z 0 is at most n � 2. To �nish the argument in theeven ase, note that the following vetors from the �rst olumn of Z 0 are obviouslylinearly independent: e1 � e3; e2 � e4; : : : ; en�2 � en.We now treat the odd ase. Here, it is easy to hek, as in the even ase, thatthe sum of all of the rows is zero. Hene, the rank of Z 0 is at most n�1. Again, thevetors v1 := e1� e3; v2 := e2� e4; : : : ; vn�2 := en�2� en from the �rst olumn of Z 0are learly linearly independent. The vetor en�1�e1 also ours in the �rst olumn.Adding the odd-numbered vi's to en�1 � e1 produes the vetor vn�1 = en�1 � en.The vetors v1; : : : ; vn�1 are learly linearly independent, hene, the rank of Z 0 inthe odd ase is n� 1.We an again use the yle-deomposition theorem that we used in the previoushapters to desribe the edges of Tn.Theorem 4.2 Every vertex of Tn with n > 4 is onneted to every other vertex ofTn by an edge of Tn.



40 CHAPTER 4. DIHEDRAL GROUPProof: Without loss of generality, examine the line segment between Xe and X�.By the yle deomposition theorem, (Theorem 1.3), this line segment is an edge ifand only if the yle deomposition of � annot be fatored into two parts, both ofwhih form elements of Dn. Suppose we ould fator � in suh a way, say � = �1�2.So a �xed point in � is �xed in �1�2 whih implies it is �xed in both �1 and �2.But, sine both �1 and �2 are elements of Dn, at most two elements an be �xedby either of them. Thus, both �1 and �2 have at least n � 2 non�xed points. Byonstrution, the points not �xed by �1 are disjoint from the points not �xed by�2. Sine there are only n points altogether, we need (n� 2) + (n� 2) � n, whihimplies n � 4.Using the language of the proof of Theorem 4.2, the only time we an deompose� into two non-trivial parts, both of whih are inDn, is the aseD4, where (23)(14) isomposed of (23) and (14), whih are both non-trivial elements ofD4. It follows thatthe line segment fX(1); X(23)(14)g is not an edge of T4. The line segment fX�; X�g isnot an edge of T4 when ��1� an be fatored to (23)(14). These are the only suhline segments. This means that all dihedral polytopes Tn with n > 4 have edgesonneting every pair of verties. Thus, there are �2n2 � edges.David Perkinson has a proof for the following theorem:Theorem 4.3 The odd dihedral polytopes are simpliial.Our data suggest the following onjetures, for whih the proofs are unknown.Conjeture 4.4 Eah faet of Tn has 2n� 2 verties.The fat that odd dihedral polytopes are simpliial proves this onjeture for oddn; however, the proof for even n is unknown.Conjeture 4.5 The odd dihedral polytopes have n2 faets. The even dihedralpolytopes have n2=2 faets.



4.2. THE DIHEDRON 41Conjeture 4.6 The verties of the odd dihedral polytopes are on n(n�1) faets.The verties of the even dihedral polytopes are on n(n� 1)=2 = �n2� faets.These onjetures are based on omputer alulations yielding the followingharts.n number dimension verties number number of faetsof points per faet of faets eah vertex is on4 8 5 6 8 65 10 8 8 25 206 12 9 10 18 157 14 12 12 49 428 16 13 14 32 289 18 16 16 81 7210 20 17 18 50 454.2 The DihedronAs in previous hapters, we an take the projetion of the dihedral polytope to getthe dihedron, Qn(a).Theorem 4.7 The dihedron has dimension n� 1.proof: Look at the subset of rotations of Dn. Consider the set of points reatedby these matries ating on the vetor a. For generi a, the linear spae spanned bythese points has dimension n by a standard result about irulent matries ([Philip℄,p.75). Hene the smallest aÆne spae ontaining Dn has dimension n� 1.Some point a is generi if there is an open set U about a suh that Qn(b) has thesame ombinatorial struture as Qn(a) for all b 2 U . Unlike the ases we examinedin previous hapters, it is possible to �nd generi points a and a0 suh that Qn(a)and Qn(a0) are not ombinatorially equivalent. This behavior was �rst noted in thedihedron by David Perkinson and Douglas Squirrel in 1996. Previously, this typeof behavior was notied for more ompliated groups in [Onn℄. Depending on the



42 CHAPTER 4. DIHEDRAL GROUPpoint a we hoose, we an get dramatially di�erent polytopes. Choose polytopesQ5(1; 2; 6; 4; 3) and Q5(2; 1; 6; 4; 3). They both have the same dimension, 4, andnumber of verties, 10, but the �rst has 35 faets with eah vertex being on 14faets, while the seond has only 30 faets, with eah vertex laying on 12 faets.Here is a hart of the possible number of faets from Q5(a) through Q8(a), eahpossibility oming from a di�erent generi point a:n number of faets5 30,356 20,327 140,154,168,182,196,2108 118,150,190,198,222,230,2469 612, 630, 675, 693, 738, 747, 756, 765, 774, 783, 810, 819, 828, 837,846, 864, 873, 891, 900, 909, 918, 927, 936, 945, 954, 963, 972,981, 990, 999, 1008, 1017, 1026, 1044Notie that eah possiblility for the number of faets di�ers from another by amultiple of n. In fat, for odd n, eah possibility is a multiple of n. To get this data,we used a program alled orb, reated by Douglas Squirrel. The program generatesrandom points a, heks if they are generi in the sense de�ned above, and thenoutputs the number of faets on Qn(a). Although we let the program run for sometime to ollet the data, it is possible that not every possibility for the number offaets appeared, espeially as n inreased. We predit that we would �nd everymultiple of n, within ertain bounds, in an in�nite data set. It is an interestingquestion to ask exatly what these bounds are.



Chapter 5Questions
In the proess of writing this thesis, we found many more questions than we startedwith, and many of them remain unsolved. The reader may �nd one or more of themworth pursuing in the future. The questions are ordered by the hapter to whiheah relates.Chapter Three: The Alternating Group� Show that the alternahedron Hn(a) has n!=2 faets ontaining n� 1 verties.This says that Hn(a) has n!=2 simpliial faets.� Find the omplete ombinatorial struture of H5(a).� Completely desribe H5(a) using relations between faes and subgroups.� Find a formula for the number of verties on eah faet of Hn(a).� Find a formula for the number of faets of Hn(a).� Find a formula for the number of faets eah vertex of Hn(a) is on.Chapter Four: The Dihedral Group.



44 CHAPTER 5. QUESTIONS� What are the bounds on the possible number of faes one an get from thedihedron?� Show eah faet of Tn has 2n� 2 verties when n is even.� Show that the odd dihedral polytopes have n2 faets. The even dihedralpolytopes have n2=2 faets.� The verties of the odd dihedral polytopes are on n(n�1) faets. The vertiesof the even dihedral polytopes are on n(n� 1)=2 = �n2� faets.� What do dihedral fae latties look like?
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