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Abstra
tGiven a permutation group G in Sn, we 
an 
onstru
t the set of permutationmatri
es of G as a set of n � n matri
es with exa
tly one 1 per row and 
olumn,where ea
h matrix is de�ned using an element of G. We 
an take the 
onvex hullof these matri
es, thought of as points in Rn2 spa
e, to form the G-permutationpolytope. We �nd the proje
tion of this polytope from Rn2 ! Rn de�ned by ea
hpermutation matrix X a
ting on a ve
tor a = (a1; :::; an). We 
all this the G-orbitpolytope. We �nd properties of these two polytopes for the symmetri
, alternating,and dihedral groups.



Chapter 1Introdu
tion
1.1 Permutation groupsA permutation is a bije
tion whi
h takes a set A to itself. A permutation group of aset A is a set of permutations of A that forms a group under fun
tion 
omposition.We will be looking at groups of permutations of a nonempty, �nite set A of theform fa1; a2; :::; ang. Permutations of �nite sets are given by an expli
it listing ofea
h element of the domain and its 
orresponding fun
tional value. For example,we de�ne a permutation � of the set f1,2,3,4g by spe
ifying�(1) = 2; �(2) = 3; �(3) = 1; �(4) = 4:A more 
onvenient way to express this 
orresponden
e is to write � in 
y
li
 form.Cy
li
 form is always written as a produ
t of m-
y
les: elements (a1; a2; :::; am)where a1 is permuted to a2 and so on until am is permuted to a1. In 
y
li
 notation,� = (123), a 3-
y
le. To take produ
ts of m-
y
les, move from right to left fromone 
y
le to the next, where any missing symbol is left where it is. For example,take � = (321)(54). Start with 1 in the right 
y
le; however, 1 does not appear inthis 
y
le, so (54) �xes 1. Move on to the se
ond 
y
le. It tells you to move 1 to 3;(321) sends 1 to 3. Continuing in this way, the numbers f1; 2; 3; 4; 5g are permuted



2 CHAPTER 1. INTRODUCTIONto (2; 3; 1; 5; 4), in order. We 
ould just as easily have used some list of 5 elementsfa; b; 
; d; eg. Under the same a
tion �, this would be permuted to (b; 
; a; e; d). Two
y
les are disjoint if they share no elements in 
ommon. For example, (123) and(45) are disjoint, (123) and (25) are not disjoint. Every permutation 
an be writtenas a produ
t of disjoint 
y
les.De�ne Sn to be the symmetri
 group of order n. The symmetri
 group of order nis the set of all permutations of the n-element set A. A standard 
ounting argumentshows that Sn has n! = n(n� 1)(n� 2) � � �2 � 1 elements. Here are the elements ofS4: (1) (1234) (1324) (14)(23) (12)(34) (13)(24)(12) (34) (13) (24) (14) (23)(123) (234) (132) (142) (1243) (143)(1342) (1432) (243) (134) (124) (1423)One subset of Sn 
onsists of all of the even permutations of n obje
ts, whi
h we nowdes
ribe. Remember that we represented a permutation of n obje
ts as a produ
tof m-
y
les. We 
an rewrite ea
h m-
y
le as a produ
t of 2-
y
les. For example,(1234)=(12)(13)(14). This de
omposition is not unique, and we 
an even de
omposeto di�erent numbers of 2-
y
les. However, we always de
ompose to either an even oran odd number of de
ompositions. If a permutation 
an be de
omposed to an evennumber of 2-
y
les, then it is an even permutation. The set of even permutationsforms a group. This subgroup of Sn is 
alled An, the alternating group of degreen. For an example, look at the elements of A4, the set of even permutations of 4elements. Noti
e that exa
tly half of the elements of Sn are in An.(1) (12)(34) (13)(24) (14)(23)(123) (134) (243) (142)(132) (234) (124) (143)Another subset of Sn 
onsists of all of the symmetries of a regular n-gon. This subset
onsists of the 2n elements of Sn whi
h rotate or re
e
t some n-gon while preserving



1.1. PERMUTATION GROUPS 3its position in spa
e. In general, we 
an say Dn = h�; � j �n = �2 = e; �� = ��n�1i;where � is a rotation of an n-gon by 360=n degrees, � is a re
e
tion about a line ofmirror symmetry, and e is the identity permutation, where no points are permuted.In other words, Dn is the set of all produ
ts of various powers of � and � butwe 
an use the relation �n = �2 = (1). This subset a
tually forms a subgroup,
alled Dn, the dihedral group of order 2n. For example, take a 4-gon, 
ommonlyknown as a square. We 
an rotate the square in in
rements of 90 degrees without
hanging the square's position in spa
e. We 
an also 
ip the square like a pan
ake-horizontally, verti
ally, and diagonally. When we label the four 
orners of the squarein a 
lo
kwise manner with 1,2,3,4, � and � 
an be represented in 
y
li
 notationas (1234) and (12)(34) respe
tively. Repeatedly 
ombining these two a
tions withthemselves or with ea
h other give all of the possible elements of D4. Here are theelements of D4, the symmetries of the square. Note there are 8 elements:(1); (12)(34); (13)(24); (24); (1234); (13); (14)(23); (1432):When n is odd, we have an odd dihedral group. A permutation in an odd dihedralgroup �xes either 0 points or 1 point. This is obvious, be
ause the rotations 
hangeall points, and the line of mirror symmetry of a regular odd sided n-gon goes throughexa
tly one vertex. Therefore a re
e
tion through this line �xes one point. When nis even, we have an even dihedral group. A permutation in an even dihedral group�xes either 0 points or 2 points. Clearly, the line of mirror symmetry of an regulareven sided n-gon will 
ontain either zero or two verti
es. Thus, a re
e
tion throughthis line will �x either zero or two points.
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Figure 1.1: A point set and its 
onvex hull1.2 PolytopesA point set is 
onvex if for any two points x and y in the point set, the straight linesegment [x; y℄ = f�x+ (1� �)y j 0 � � � 1gbetween them is also in the point set. Every interse
tion of 
onvex sets is 
onvex.The 
onvex hull of a set of points is the \smallest" 
onvex set 
ontaining the points.Spe
i�
ally, for any point set K, the 
onvex hull of K is 
onstru
ted by taking theinterse
tion of all 
onvex sets that 
ontain K:
onv(K) := \fK 0 � Rd j K � K 0; K 0 is 
onvexg:If K is a �nite set, this 
onvex hull will be 
alled a V-polytope.Another 
reation is the H-polyhedron, whi
h uses the 
on
ept of halfplanes. Ahalfplane is just as it sounds: all of the area to one side of a de�ning 
ut; that is,those points x 2 Rn de�ned by 
 � x � 
0 for some 
onstant 
0 and some 
 2 Rn.An H-polyhedron P is formed by taking the interse
tion of �nitely many 
losed
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Figure 1.2: A V-polytope and an H-polytopehalfplanes in some Rd:P = P (A; z) = fx 2 Rd j Ax � zg for someA 2 Rm�d; z 2 Rm:An H-polyhedron that is bounded in the sense that it does not 
ontain a ray fx+ty jt � 0g for any y 6= 0 is 
alled an H-polytope. It turns out that every V-polytope isan H-polytope, and vi
e-versa (for the proof, see [Ziegler℄, p. 29). From now on, wewill use the word polytope to mean V-polytope or H-polytope.1.2.1 Fa
esWe will be looking at properties of fa
es of polytopes, de�ned to be the interse
tionsof the polytope P with hyperplanes for whi
h the polytope is entirely 
ontained inone of the two halfspa
es determined by the hyperplane. In other words, F is a fa
eof P if F = P \ fx 2 Rd j 
 � x = 
0gwhere 
 � x � 
0 is satis�ed for all points x 2 P .



6 CHAPTER 1. INTRODUCTIONTo de�ne the dimension of a fa
e F , we �rst introdu
e the notion of the aÆnehull of F : Pi
k a point p 2 F , and let L be the linear spa
e spanned by F � p :=fq � p j q 2 Fg. Then the aÆne hull of F , denoted a�(F ), is p + L, i.e., thesmallest aÆne spa
e 
ontaining F . The dimension of a�(F ) is de�ned to be thedimension of L. Say v1; :::; vk is a basis for L. Thus, every point q 2 F 
an bewritten as q = p+P aivi = (1 +P ai)p+P ai(vi � pi). Thus we have found pointsx1 := p; x2 := v1 � p; :::; xk+1 := vk � p of F su
h that a�(F )= fP�ixi j P�i = 1g.De�nition 1.1 The dimension of a fa
e is the dimension of its aÆne hull, dim(F ):= dim(a�(F )).In a d-dimensional polytope P , the fa
es of P of dimension 0 are the verti
es ofP . The edges of P are those fa
es of dimension 1. Fa
ets are the d� 1 dimensionalfa
es. In general, P has a set of fa
es of every dimension k; 0 � k � d. A fa
e of
odimension k has dimension d� k.Consider the square in R2 
reated by the halfplanes x � 0; y � 1; x � 1, andy � 0. Then the verti
es are the points (0,0), (1,0), (1,1), and (0,1). The edges arethe interse
tions of the square with the lines x = 0, x = 1, y = 0, and y = 1. Inthis 
ase, the edges are the fa
ets of this polytope. The 2-dimensional fa
e is theentire square. Two polytopes are 
onsidered 
ombinatorially equivalent if there is abije
tion between their fa
es that preserves the in
lusion relation among fa
es. Toaid the 
ombinatorial analysis we 
an 
onstru
t the fa
e latti
e of a polytope. Let Sdenote the set of fa
es of a polytope P . The in
lusion relation among fa
es de�nes apartial ordering on S. Under this relation, S has a unique maximal element, namelyP itself, and a unique minimal element, ;, the empty set. Further, every two fa
esare minimally 
ontained in a unique fa
e and 
ontain a unique maximal subfa
e.Thus, S forms what is 
alled a latti
e. It turns out that if F is a k-fa
e, then thelength of any maximal totally ordered subset of S having maximal element F has
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Figure 1.3: Hyperplanes de�ning a vertex and an edgelength k+1. For more on this topi
, see [Ziegler℄. Rephrasing what was said earlier,two polytopes are 
ombinatorially equivalent if their fa
e latti
es are isomorphi
.
1.2.2 Simpli
ial polytopesThe 
onvex hull of d + 1 aÆnely independent points in Rn, where n � d, is 
alleda d-simplex; thus, the d-simplex is a polytope of dimension d with d + 1 verti
es.In two dimensions, a triangle is a simplex. A tetrahedron is a three dimensionalsimplex. A polytope P is simpli
ial if every fa
et is a simplex. For example, thei
osahdron is a three dimensional simpli
ial polytope, sin
e ea
h of its fa
ets aretriangles, whi
h are simpli
es. Every fa
et of a simpli
ial polytope has d verti
es,and every k fa
e has k + 1 verti
es for k � d� 1 (for a proof, see [Ziegler℄.)



8 CHAPTER 1. INTRODUCTION1.3 Polytopes arising from permutation groups1.3.1 Permutation matri
esGiven a permutation group G inside Sn, we de�ne the set of permutation matri
esof G by (X�)ij = ( 1 if �(i) = j0 otherwisefor all � in G. The n� n matri
es X� are 0/1-matri
es with exa
tly one 1 per rowand 
olumn.For an example of a permutation matrix, 
onsider � = (123) in S3. Then �(1) =2, �(2) = 3, and �(3) = 1. The permutation matrix asso
iated with � isX� = 0B� 0 1 00 0 11 0 0 1CAFor another example, look at � = (123) in S4. Again, �(1) = 2, �(2) = 3, and�(3) = 1, but now we also have �(4) = 4, whi
h means 4 was not a�e
ted bythe permutation. Whenever a number does not appear in a permutation, it is nota�e
ted by the permutation and a 1 appears on the diagonal:X� = 0BBB� 0 1 0 00 0 1 01 0 0 00 0 0 1 1CCCAThe set of permutation matri
es of the alternating group An 
onsists of exa
tlyhalf of all the permutation matri
es: those matri
es with determinant equal to+1. This is be
ause we only take those matri
es whi
h 
an be obtained from theidentity matrix with a even number of row transpositions. From linear algebra, weknow that ea
h row transposition 
hanges the sign of the determinant. Therefore,a permutation matrix is even only if it has determinant equal to +1.



1.3. POLYTOPES ARISING FROM PERMUTATION GROUPS 91.3.2 How to get a polytope in Rn2 from a permutationgroupEa
h of the permutation matri
es of the set G 
an be 
attened, its rows listed oneafter another, and 
onsidered to be a point in Rn2. The 
onvex hull of this set formsthe G-polytope, or permutation polytope,P (G) := 
onv fX� j � 2 Gg:1.3.3 The stru
ture of P (G)In this se
tion we will look at the verti
es, edges, and fa
ets of the permutationpolytope P (G).Theorem 1.2 Ea
h X� is a vertex of P (G)proof Consider maximizing the inner produ
t < X;X� > as X varies over P (G).< X;X� > = X1�i;j�nx(i; j)x�(i; j)= X1�j�nx(i; �(i)) � nwith equality if and only if X(i; �(i)) = 1 for all i. That is, < X;X� > is maximalexa
tly when X equals X�. So X� is a vertex of the polytope.To des
ribe the edges of P (G), we 
an use the following theorem, known as the
y
le-de
omposition theorem. It tells us when the line between two verti
es X� andX� is an edge.Theorem 1.3 Cy
le De
omposition The line segment fX�; X�g between theverti
es X� and X� is an edge of the polytope 
onstru
ted from the 
onvex hull ofmatri
es X� su
h that � is in a group G, if and only if the 
y
le de
omposition of��1� 
annot be fa
tored into two non-trivial parts, both of whi
h are elements ofG.



10 CHAPTER 1. INTRODUCTIONproof: It suÆ
es to show the theorem with respe
t to the verti
esX� andXe, wheree is the identity permutation. We need to show that the line segment between X�and Xe is an edge of the polytope if and only if the 
y
le de
omposition for � 
annotbe fa
tored into a produ
t of two elements of the group. If the 
y
le de
ompositionfa
tors as � = �1�2 then 1=2Xe + 1=2X� = 1=2X�1 + 1=2X�2. For example, take� = (321)(45). Then �1 = (321) and �2 = (45) and we see that:12Xe + 12X(321)(45) = 12 0BBBBBB� 1 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 1
1CCCCCCA+ 12 0BBBBBB� 0 0 1 0 01 0 0 0 00 1 0 0 00 0 0 0 10 0 0 1 0

1CCCCCCA
= 12 0BBBBBB� 1 0 1 0 01 1 0 0 00 1 1 0 00 0 0 1 10 0 0 1 1

1CCCCCCA
= 12 0BBBBBB� 0 0 1 0 01 0 0 0 00 1 0 0 00 0 0 1 00 0 0 0 1

1CCCCCCA+ 12 0BBBBBB� 1 0 0 0 00 1 0 0 00 0 1 0 00 0 0 0 10 0 0 1 0
1CCCCCCA= 12X(321) + 12X(45):But we know from geometry that two verti
es (extreme points) u and v of a 
onvexpolytope determine an edge if and only if no point 
u+(1�
)v with 0 � 
 � 1 on theline segment joining u and v 
an be represented as a nontrivial 
onvex 
ombinationof two points of the polytope at least one of whi
h does not belong to the linesegment. Hen
e, if � 
an be fa
tored into two nontrivial elements of the group, apoint of the line segment between e and � 
an be written as a 
onvex 
ombination
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Figure 1.4: The point in the 
enter of this polytope is not on an edge be
ause it 
anbe represented as a linear 
ombination of a pair of points not on the same edge.of two other points in the group, and so is not an edge.If the line segment between Xe and X� is not an edge, we will now show thatthe 
y
le de
omposition for � fa
tors nontrivially as � = �� where both � and � arein G.Let X = 12Xe + 12X�. If the line segment between Xe and X� is not an edge,then we 
an write X as a positive 
onvex 
ombinationX = X�2G �iX�; �� � 0; X� �� = 1;where some �� is nonzero for � 62 fe; �g. Fix some su
h �. Sin
e we are takingnonnegative 
ombinations of matri
es with nonnegative entries, whenever a zeroappears in an entry for the matrix X, then a zero must appear in the 
orrespondingentry in X�. Sin
e there are at most two nonzero entries on ea
h row of X, thismeans that if �(i) 6= i, then �(i) = �(i).We now show that every fa
tor in the 
y
le de
omposition for � is a 
y
le inthe 
y
le de
ompostion for �. Thus the 
y
le de
omposition for � 
an be fa
toredinto two parts: � and the produ
t of the remaining 
y
les, whi
h we denote by



12 CHAPTER 1. INTRODUCTION� . Sin
e � and � are in G and � = ��1�, it follows that � is in G, and we willbe done. To a

omplish this, take i1 su
h that �(i1) 6= i1. The remarks in theprevious paragraph show that in this 
ase �(i1) = �(i1). Let (i1; : : : ; ik) be the
orresponding 
y
le in the 
y
le de
omposition of �. We need to show that this
y
le o

urs in the de
omposition for �, as well. Suppose �(im) = �(im) = im+1 forsome m < k. By remarks in the previous paragraph, if �(im+1) 6= �(im+1), then�(im+1) = im+1. However, then we have �(im) = �(im+1), 
ontradi
ting the fa
tthat � is a permutation. This 
ompletes the proof.1.3.4 OrbitsGiven a permutation group G in Sn and a point a = (a1; :::; an) 2 Rn, de�ne theorbit of a under G to be the set of all pointsx� := 0BB� a�(1)...a�(n) 1CCA = X� 0BBBB� a1a2...an 1CCCCAfor � 2 G. The 
onvex hull of the orbit de�nes the orbit polytopeO(G; a) = 
onv fx� j � 2 GngAlternatively, O(G; a) is the image of P (G) under the proje
tion Rn2 ! Rn de�nedby X 7! X 0BBBB� a1a2...an 1CCCCAthinking of X 2 Rn2 as an n� n matrix.



1.4. SUMMARY 13In the following 
hapters, we will �nd that the stru
ture of O(G; a) depends onthe ve
tor a for 
ertain groups. In general, we only know about the verti
es of theproje
ted permutation polytope.Theorem 1.4 Ea
h point x� is a vertex of O(G; a).proof Sin
e O(G; a) is the 
onvex hull of the set x�, we know at least one of thesepoints is a vertex. Pi
k a vertex x�. Let x� be any other point in the orbit. Then���1 de�nes a linear isomorphism from Rn 7! Rn sending O(G; a) to itself andsending x� to x�. Hen
e x� is a vertex, too.1.4 Summary1.4.1 The Symmetri
 GroupThe 
onvex hull of the group of all n�n permutation matri
es is 
alled the Birkho�polytope, a polytope of dimension (n � 1)2 with ea
h matrix as a vertex, giving n!verti
es. We 
an des
ribe this polytope with inequalities representing the hyper-planes whi
h de�ne it, (Theorem 2.1). The 
y
le de
omposition theorem tells ushow to �nd the edges of this polytope, (Theorem 2.3).We pro
eed to take the proje
tion of the Birkho� polytope to get the permutahe-dron, whi
h has the permutations of the ve
tor a = (a1; :::; an) under permutationsin Sn as its verti
es. We �nd its dimension, (Theorem 2.4). We 
an des
ribe thispolytope using inequalities whi
h de�ne the hyperplanes framing it, (Theorem 2.7).We realize that the fa
e latti
e of the permutahedron is isomorphi
 to latti
e of
hains of subsets of [n℄ := f1; 2; :::; ng, (Proposition 2.10). With this information,we 
an determine the f -ve
tor, whi
h tells us how many fa
es there are of ea
hdimension, and we know how to �nd su
h fa
es, (Theorem 2.12). Finally, we deter-mine whi
h verti
es are adja
ent to one another, �nding that the verti
es adja
ent



14 CHAPTER 1. INTRODUCTIONto a given vertex are those verti
es whose 
oordinates di�er from the given vertexby a single transposition, (Theorem 2.14).1.4.2 The Alternating GroupIn this 
hapter we look at the alternating polytope, an (n�1)2 dimensional polytopewith n!=2 verti
es, (Theorem 3.1). The 
y
le de
omposition theorem tell us thatthe line segment fX�; X�g in the alternating polytope is an edge if and only if the
y
le de
omposition of ��1� 
onsists of exa
tly 1 
y
le of odd length, or exa
tly two
y
les of even length, (Theorem 3.2). The proje
tion of the alternating polytopeyields the alternahedron, whi
h 
an also be 
onstru
ted by 
utting verti
es o� of thepermutahedron. We give the inequality des
ription, and its dimension, (Theorems3.3 and 3.4). We give data for several alternahedra and ask questions whi
h 
ouldlead to further resear
h.1.4.3 The Dihedral GroupIn this 
hapter we look at the dihedral polytope, and �nd that its dimension 
hangesdepending on the parity of n, (Theorem 4.1). The 
y
le de
omposition theorem tellsus that every vertex is 
onne
ted to every other vertex with an edge of the polytopewhen n > 4, (Theorem 4.2). We also �nd that the dihedral polytopes are simpli
ialfor odd n, (Theorem 4.3). Our data suggest several 
onje
tures whi
h remain to beproved.We 
all the proje
tion of the dihedral polytope the dihedron, and �nd its di-mension, (Theorem 4.7). We also �nd that the dihedron is not unique for generi
a. Depending on the ve
tor we 
hoose to permute, we 
an get drasti
ally di�erentpolytopes. We look at some possibilities and ask more questions.



1.4. SUMMARY 151.4.4 QuestionsWe present a list of questions whi
h have 
ome up in the duration of the thesis.



16 CHAPTER 1. INTRODUCTION



Chapter 2The Symmetri
 Group
This 
hapter is mainly an exposition of theory from two sour
es: [Billera℄ and [YKK℄.We have 
ombined the ideas from both, as well as adding a few ideas of our own, toget a more 
omplete theory than either of the others a
hieved alone.The 
onvex hull of the permutation matri
es of the symmetri
 group, thought ofas points in Rn2, notated Bn := 
onv fX� j � 2 Sng, forms the Birkho� polytope.We will now �nd several properties of this obje
t.2.1 The Birkho� PolytopeTheorem 2.1 Bn is an (n � 1)2 dimensional polytope with n! verti
es having thefollowing inequality des
ription:Bn = fX = (xij) 2 Rn2 j xij � 0; 1 � i; j � n; nXj=1xij = 1for i = 1; :::; n; and nXi=1 xij = 1 for j = 1; :::; ngThus, Bn 
onsists of what are 
alled doubly sto
hasti
 matri
es: matri
es withnonnegative entries and whose row and 
olumn sums are 1. We will 
all the right



18 CHAPTER 2. THE SYMMETRIC GROUPhand side of the equality Cn. Before jumping into the proof for this theorem, observethe following results about Cn:Lemma 2.2 The equations of Cn satisfy 2n� 1 independent linear equations.proof: In the 
ase of n = 3 it is easy to represent the equations of Cn with thefollowing matrix: 0BBBBBBBB� 1 1 1 0 0 0 0 0 00 0 0 1 1 1 0 0 00 0 0 0 0 0 1 1 11 0 0 1 0 0 1 0 00 1 0 0 1 0 0 1 00 0 1 0 0 1 0 0 1
��������������
111111
1CCCCCCCCASubtra
ting the bottom three rows from the �rst gives0BBBBBBBB� 0 0 0 �1 �1 �1 �1 �1 �10 0 0 1 1 1 0 0 00 0 0 0 0 0 1 1 11 0 0 1 0 0 1 0 00 1 0 0 1 0 0 1 00 0 1 0 0 1 0 0 1
��������������
�211111

1CCCCCCCCAAdding rows two and three to row one gives0BBBBBBBB� 0 0 0 0 0 0 0 0 00 0 0 1 1 1 0 0 00 0 0 0 0 0 1 1 11 0 0 1 0 0 1 0 00 1 0 0 1 0 0 1 00 0 1 0 0 1 0 0 1
��������������
011111
1CCCCCCCCASubtra
t 
olumns one through three from four through six, and seven through nine,in turn, to get 0BBBBBBBB� 0 0 0 0 0 0 0 0 00 0 0 1 1 1 0 0 00 0 0 0 0 0 1 1 11 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0

��������������
011111
1CCCCCCCCA



2.1. THE BIRKHOFF POLYTOPE 19It is 
lear that this matrix has �ve linearly independent rows. This 
an be generalizedto the matrix with 2n equations0BBBBBBBBBB�
~1 ~0 ~0~0 ~1 ...... ~0 . . . ~1 ~0~0 : : : ~0 ~1In In : : : In In

���������������
11...1~1
1CCCCCCCCCAwhere In is the n � n identity matrix, ~0 = (0; :::; 0) 2 Rn and ~1 = (1; :::; 1) 2 Rn.Using row and 
olumn operations as before, this matrix redu
es to0BBBBBBBBB�

~0 ~0 : : : : : : ~0... ~1 ~0 ~0... ~0 . . . ...~0 ... ~1In ~0 : : : ~0 ~0
�������������
01...1~1
1CCCCCCCAleaving us with 2n� 1 independent linear equations.Now we go on to prove theorem 1.1.proof [Billera℄: Remember that ea
h X� is a vertex of Bn by Theorem 1.2. Weknow that elements of Cn satisfy 2n�1 independent linear equations by the previouslemma; therefore, the dimension of Cn is n2 � (2n � 1) = (n � 1)2. Sin
e ea
h X�is in Cn, it follows that Bn � Cn. To show Bn = Cn, use indu
tion on n to showea
h vertex of Cn is a permutation matrix. If a matrix X is a vertex of Cn then astandard result from the theory of polytopes says that X sits on at least (n � 1)2fa
ets. Sin
e the fa
et de�ning equations of Cn have the form xij = 0, it followsthat X has at least (n � 1)2 entries equal to zero. This implies that X must havea row with n � 1 zeroes. So, xij = 1 for some i and j. Without loss of generality,let i = j = 1. Deleting the �rst row and �rst 
olumn from X leaves us with a



20 CHAPTER 2. THE SYMMETRIC GROUP(n � 1)� (n � 1) matrix whi
h we will 
all ~X. We would like to show that ~X is avertex of Cn�1. Then, by indu
tion ~X is a permutation matrix, hen
e X was one,as desired. Sin
e X is a vertex, there exists some D = (d11; :::; dnn) 2 Rn2 su
h thatmaxfhY;Di j Y 2 Cng = X: This implies that PDijYij � PDijXij for all Y 2 Cn.De�ne ~D 2 R(n�1)2 by removing the �rst \row" and \
olumn" of D, i.e., removingd1i and di1 from D for i = 1; 2; :::; n. If ~X were not a vertex of Cn�1 then therewould exist ~Y in Cn�1, ~Y 6= ~X, su
h that h ~Y ; ~Di � h ~X; ~Di: De�ne Y 2 Rn2 byY :=  1 00 ~Y !It follows that Y 2 Cn; X 6= Y , andhY;Di = d11 + h ~Y ; ~Di � d11 + h ~X; ~Di = hX;Di:whi
h 
ontradi
ts the fa
t that X is a vertex. Thus, ~X is a vertex of Cn�1. It followsthat X must also be a permutation matrix.We 
an use the 
y
le-de
omposition theorem to get the following result.Theorem 2.3 Let X� and X� be verti
es of Bn 
orresponding to �; � 2 Sn. Theline segment between X� and X� is an edge if and only if ��1� is a 
y
le.proof: This follows dire
tly from the 
y
le de
omposition theorem, Theorem 1.3.For example, when n = 4, the points 
onne
ted to X(1) are X� for � being any pure
y
le ex
ept (1) itself: (1234), (1324), (12), (34), (13), (24), (14), (23), (123), (234),(132), (142), (1243), (143), (1342), (1432), (243), (134), (124), and (1423). Thisimplies that there are 20 edges 
ontaining any given vertex.2.2 The PermutahedronNow de�ne the permutahedron Pn � Rn to be the 
onvex hull of all permutationsof the ve
tor (1; 2; :::; n). Spe
i�
ally, in R4, we would have the ve
tor (1; 2; 3; 4).



2.2. THE PERMUTAHEDRON 21Using the symmetri
 group, we �nd all 4!=24 permutations of this ve
tor:(1,2,3,4) (2,1,3,4) (3,1,2,4) (4,1,2,3)(1,2,4,3) (2,1,4,3) (3,1,4,2) (4,1,3,2)(1,3,2,4) (2,3,1,4) (3,2,1,4) (4,2,1,3)(1,3,4,2) (2,3,4,1) (3,2,4,1) (4,2,3,1)(1,4,2,3) (2,4,1,3) (3,4,1,2) (4,3,1,2)(1,4,3,2) (2,4,3,1) (3,4,2,1) (4,3,2,1)It turns out that if we plot all of these points, we �nd that P4 lies on a threedimensional hyperplane. This shape 
an be visualized by �rst imagining an Egyptianpyramid at the edge of a 
alm lake. Looking at the pyramid and its re
e
tion asa single obje
t, we get the o
tahedron. Now, imagine this o
tahedron en
losedin a 
ube just too small for it. Thus, the 
orners of the o
tahedron are 
ut o�,leaving square fa
es near where the verti
es of the o
tahedron used to belong. Thefa
es of the o
tahedron whi
h used to be triangles are now hexagons. Imagine, ifyou will, the Birkho� polytope, sitting in 16-dimensional spa
e. Remember that thispolytope is made up of all of the matri
es of the symmetri
 group of order four, ea
hmatrix being a vertex of this greater polytope. You probably 
annot visualize thisobje
t, sin
e we have a hard time thinking of obje
ts in more than three dimensions.However, we 
an see its shadow. As a hand 
asts a shadow on a wall, the Birkho�polytope 
asts a shadow on a three dimensional hyperplane, and that shadow is thepermutahedron. This mathemati
ally 
rude des
ription will now be re�ned.2.2.1 Fa
e Des
riptionMore generally, let a = (a1; :::; an) 2 Rn and de�ne the permutahedron to be:Pn = 
onv fx� j � 2 Sng



22 CHAPTER 2. THE SYMMETRIC GROUP

4123

3124

3214

4123

4132

2134

2314

4312

3142

4231

2143

4321

1324

2413

1234

3412

1243

3241
1423

3421

2341

1342

1432

2431

Figure 2.1: This is P4(1; 2; 3; 4), the trun
ated o
tahedron.



2.2. THE PERMUTAHEDRON 23where x� := 0BB� a�(1)...a�(n) 1CCA = X� 0BBBB� a1a2...an 1CCCCAfor � 2 Sn.Theorem 2.4 If the 
oordinates of a are pairwise distin
t, then the dimension ofPn(a) is n� 1.proof: Sin
e Pn(a) is 
ontained in the hyperplane with equationPni=1 xi = Pni=1 ai,its dimension is at most n� 1. To see that the dimension of Pn(a) is equal to n� 1,
he
k that (a1; :::; an) and the n � 1 points obtained by transposing ai; ai+1 fori = 1; :::; n� 1 are aÆnely independent.Our next goal is Theorem 2.7, �nding an inequality des
ription for Pn(a). Toprove this des
ription of Pn(a), we must �rst learn some things about majorizingve
tors.De�nition 2.5 The ve
tor x = (x1; :::; xn) majorizes the ve
tor y = (y1; :::; yn),written x � y (we use altered notation from that used by other sour
es for simpli
ity)if, after reordering when ne
essary, x1 � ::: � xn, y1 � ::: � yn, andnXi=1 xi = nXi=1 yiand kXi=1 xi � kXi=1 yi for k = 1; :::; n� 1:The following lemma, due to S
hur, gives the ne
essary and suÆ
ient 
onditionsfor the majorization of ve
tors. Re
all that a doubly sto
hasti
 matrix is exa
tlyan element of the Birkho� polytope, i.e., an n� n matrix with nonnegative entrieswhose row and 
olumn sums are 1.Lemma 2.6 The ve
tor x majorizes the ve
tor y if and only if there is a doublysto
hasti
 matrix � su
h that x = �y.



24 CHAPTER 2. THE SYMMETRIC GROUPproof: Suppose x1 � ::: � xn and y1 � ::: � yn: The proof goes by indu
tion.Suppose Pki=1 xi � Pki=1 yi for k = 1; :::; n� 1 and Pni=1 xi = Pni=1 yi. It follows thatPni=1 xi = xn + Pn�1i=1 xi = yn + Pn�1i=1 yi. This implies that yn � xn = Pn�1i=1 xi �Pn�1i=1 yi � 0. Therefore yn � xn. Then yn � xn � x1 � y1 whi
h implies that thereexists some k su
h that yk+1 � xn � yk. For this k, 
hoose 0 � � � 1 su
h thatxn = �yk + (1� �)yk+1.De�ne ~x = (x1; :::; xn�1), and ~y = (y1; y2; :::; yk�1; (1� �)yk + �yk+1; yk+2; :::; yn),where 0 � � � 1. Note that the 
omponents of ~y are in in
reasing order of magni-tude, i.e., ~y1 � ~y2 � ::: � ~yn�1. To see this, we just need to 
he
kyk�1 � (1� �)yk + �yk+1 � yk+2Sin
e xn = �yk + (1� �)yk+1 we have:~yk = (1� �)yk + �yk+1 = yk + yk+1 � �yk � (1� �)yk+1 = yk + yk+1 � xn:Sin
e yk+1 � xn, it follows thatyk�1 � yk � yk + (yk+1 � xn) = ~ykAlso, sin
e yk � xn, it follows that~yk = yk+1 + (yk � xn) � yk+1 � yk+2:Thus, we have shown that the 
omponents of ~y are in
reasing.Now we want to show that ~x � ~y. Cal
ulate:Pn�1i=1 ~yi = y1 + � � �+ yk�1 + ~yk + yk+2 + � � �+ yn= y1 + � � �+ yk�1 + (yk + yk+1 � xn) + yk+2 + � � �+ yn= y1 + � � �+ yn � xn= x1 + � � �+ xn � xn= Pn�1i=1 ~xi



2.2. THE PERMUTAHEDRON 25Se
ondly, if ` < k, we haveX̀i=1 ~xi = X̀i=1 xi � X̀i=1 yi = X̀i=1 ~yi:If ` � k, sin
e xn � x`; x � y, and ~yk = yk+ yk+1� xn, we have x1+ � � �+x`+xn �x1 + � � �+ x`+1 � y1 + � � �+ y`+1 whi
h impliesPì=1 ~xi = Pì=1 xi � y1 + � � �+ yk�1 + (yk + yk+1 � xn) + yk+2 + � � �+ y`+1= Pì=1 ~yi:Hen
e, ~x � ~y.By the indu
tive hypothesis, there is a (n�1)� (n�1) doubly sto
hasti
 matrix� su
h that ~x = �~y. In full form, this is:0BB� x1...xn�1 1CCA = 0BB� Æ1;1 � � � Æ1;n�1... . . . ...Æn�1;1 � � � Æn�1;n�1 1CCA
0BBBBBBBBBBBB�

y1...yk�1(1� �)yk + �yk+1yk+2...yn
1CCCCCCCCCCCCAIn the n � n 
ase, we want to �nd the matrix whi
h relates x and y. We �nd thismatrix by splitting the kth 
olumn of � = (Æij) into two and adding a �nal row:0BBBB� x1...xn�1xn 1CCCCA = 0BBBB� Æ1;1 � � � (1� �)Æ1;k �Æ1;k � � � Æ1;n�1... ... ...Æn�1;1 � � � (1� �)Æn�1;k �Æn�1;k � � � Æn�1;n�10 � � � � (1� �) � � � 0 1CCCCA0BB� y1...yn 1CCAThis new matrix is doubly sto
hasti
.We now have the tools ne
essary for proving the following theorem:Theorem 2.7 The permutahedron generated by the ve
tor a = (a1; :::; an), witha1 � � � � � an, denoted Pn(a), has the inequality des
riptionPn(a) = fx 2 Rn j nXi=1 xi = nXi=1 ai; x(S) � �S for all S � [n℄g;



26 CHAPTER 2. THE SYMMETRIC GROUPwhere x(S) = Pi2S xi, �S = PjSji=1 ai, and [n℄ = f1; 2; :::; ng.proof: Given x 2 Rn, let ~x be a point inRn obtained by permuting the 
oordinatesof x so that they appear in non-de
reasing order. It follows that for any S � [n℄, wehave x(S) � PjSji=1 ~xi. Using this fa
t, one 
an see that the above inequalities des
ribethe set of all points x whi
h majorize a. Using the previous lemma, this is the set ofall points of the form x = �y as � runs over all of the doubly-sto
hasti
 matri
es;that is, all points in Bn. This is the proje
tion de�nition of the permutahedron.Therefore, the above inequalities yield the permutahedron Pn(a).Now that we know the inequality des
ription of Pn(a), we 
an go on to des
ribethe latti
e of fa
es of Pn(a), and spe
i�
ally we 
an determine information aboutthe fa
ets, verti
es, and edges of Pn(a). We will use the following result.Lemma 2.8 Let S, T be sets, and let a = (a1; :::; an) 2 Rn with a1 � � � � � an.De�ne the fun
tion �S := PjSji=1 ai. Then �S + �T � �S\T + �S[T . If a1 < � � � < an;then the inequality be
omes equality if and only if S � T or T � S.proof: De�ne jS \ T j = u; jSj = u+ v; jT j = u+w. Then jS [ T j = u+ v +w. Itfollows that �S = a1 + ::: + au+v�T = a1 + ::: + au+w�S[T = a1 + ::: + au+v+w�S\T = a1 + ::: + auFurthermore,(�S\T + �S[T )� (�S + �T ) = (�S[T � �S)� (�T � �S\T )= (au+v+1 + :::+ au+v+w)� (au+1 + :::+ au+w) � 0:If a1 < � � � < an note that the last equation is equal to zero if and only if v = 0, thatis, when S � T , or when w = 0, giving the trivial result of 0 = 0 when T � S.Corollary 2.9 [Billera℄ Let a1 < ::: < an. F is a fa
e of Pn(a) of 
odimension k ifand only if equality in x(S) � �S holds for pre
isely k distin
t proper subsets lyingin a 
hain S1 � ::: � Sk � [n℄.



2.2. THE PERMUTAHEDRON 27proof If x 2 Pn(a) satis�es x(S) = �S and x(T ) = �T then�S + �T = x(S) + x(T ) = x(S [ T ) + x(S \ T ) � �S[T + �S\T :It follows from the previous lemma that �S + �T = �S[T + �S\T and further thatS � T or T � S. Thus, equality holds in x(S) � �S for k proper subsets S ifand only if the subsets form a 
hain S1 � � � � � Sk � [n℄. The resulting system oflinear equations will look something like x1; x1 + x2; :::; x1 + x2 + ::: + xk whi
h arene
essarily linearly independent.Note: From now on, we will assume a1 < a2 < � � � < an.Thus, with the above assumption, the fa
e latti
e of Pn(a) is the same as asthe latti
e of 
hains of subsets in [n℄, ordered by re�nement. For an alternativedes
ription, denote by �n the partially ordered set of all ordered partitions of [n℄,ordered by re�nement. The elements of �n are ordered tuples � = (Q1; :::; Qk) wherethe Qi are pairwise disjoint subsets of [n℄ whose union is [n℄. Elements smaller than� have the form (Q11; :::; Q1j1; :::; Qk1; :::; Qkjk) where (Qi1; :::; Qiji) is an orderedpartition on Qi. For example, in �4, (f1; 4g; f3g; f2g) � (f1; 3; 4g; f2g). If wein
lude in �n an element 0̂ su
h that 0̂ � � for every ordered partition �, then �nforms a latti
e. Look at a sample latti
e, �3:f1; 2; 3g. # &f1; 2g; f3g f1g; f2; 3g f1; 3g; f2g& # .f1g; f2g; f3g#̂0where ea
h layer is less than the layer above it.Proposition 2.10 Pn(a) is isomorphi
 to �n



28 CHAPTER 2. THE SYMMETRIC GROUPproof: De�ne a mapping � : Pn(a) ! �n as follows: For a fa
e F � Pn(a) of
odimension k, let S1 � � � � � Sk � [n℄ be the 
hain given in Corollary 2.9. Fornotational purposes, let S0 = 0̂ and Sk+1 = [n℄. Then de�ne �(F ) = (Q1; :::; Qk+1)where Qi := Si n Si�1. It is straightforward to 
he
k that � : Pn(a) 7! �n is anisomorphism of latti
es whi
h sends a fa
e of 
odimension k to a (k + 1)-tuple in�n.Corollary 2.11 [Billera℄ Fa
es of Pn(a) are 
ombinatorially equivalent to Pn1(a)�:::� Pnk(a) where n1 + ::: + nk = n.proof: Under the isomorphism de�ned in the previous proposition, the fa
e latti
eof a fa
e of Pn(a) is isomorphi
 to an interval [0̂; �℄ in �n where � = (Q1; :::; Qk),using the notations from the proof of the proposition. Letting ni = jQij, it is easyto see that the interval [0̂; �℄ is isomorphi
 as a latti
e to �n1(a)� :::� �nk(a).Let f = (f0; :::; fn�1) 2 Zn where fi is the number of fa
es of Pn(a) of dimension i.This is 
alled the f -ve
tor of Pn(a).Theorem 2.12 [YKK℄ The 
omponents of the f-ve
tor of the permutation polytopePn(a) are given by, for all k 2 [n� 1℄,fk(Pn(a)) =X n!t1!t2! � � � tn�k!where the sum is 
arried out over all positive integral solutions of the equationt1 + t2 + � � �+ tn�k = n.proof: A

ording to Corollary 2.9, fa
es of Pn(a) of dimension k have a one-to-one 
orresponden
e with ordered partitions (Q1; :::; Qn�k). So fk is given by thenumber of (n � k)-tuples (Q1; :::; Qn�k) where the Qi are disjoint, non-empty, andQ1 [ � � � [Qn�k = [n℄. The result follows from standard 
ombinatorial analysis.For an example, 
al
ulate the f -ve
tor for P4(a).Take n = 4.For k = 0, we write 1 + 1 + 1 + 1 = 4 to get f0 = 4! = 24.



2.2. THE PERMUTAHEDRON 29For k = 1, we write 2 + 1 + 1 = 1 + 2 + 1 = 1 + 1 + 2 = 4 to givef1 = 4!2!1!1! + 4!1!2!1! + 4!1!1!2! = 36:For k = 2, we write 1 + 3 = 2 + 2 = 3 + 1 = 4 to givef2 = 4!1!3! + 4!2!2! + 4!3!1! = 14:For k = 3, we write 4=4 to give f3 = 4!4! = 1Therefore, the f -ve
tor is f(P4(a)) = (24; 36; 14; 1):We would now like to give an expli
it des
ription of the verti
es of ea
h fa
e ofPn(a). Denote the k-fa
e 
orresponding to the ordered partition (Q1; :::; Qn�k) byF (Q1; :::; Qn�k). Let �(Q1; :::; Qn�k) = f� j �(Smi=1Qi) = f1; 2; :::; jSmi=1Qijgg.Theorem 2.13 ([YKK℄) The verti
es of the k-fa
e F (Q1; :::; Qn�k) are the pointsx� for all � 2 �(Q1; :::; Qn�k).proof: We will �rst show that the vertex x� for � 2 �(Q1; :::; Qn�k), lies in thefa
e F (Q1; :::; Qn�k). For ea
h m 2 [n � k℄, let Sm := Smi=1Qi, then �(Sm) =f1; 2; :::; jSmjg. Therefore, x�(Sm) = Pi2Sm x�(i) = Pi2Sm a�(i) = PjSmji=1 ai = �Sm , asrequired.On the other hand, if � =2 �(Q1; :::; Qn�k), 
hoose an m 2 [n � k℄ su
h that�(Sm) 6= f1; 2; :::; jSmjg. We have x�(Sm) = Pi2Sm x�(i) = Pi2Sm a�(i) > PjSmji=1 ai =�Sm . The last inequality follows sin
e a1 < a2 < ::: < am. Sin
e x�(Sm) 6= �Sm , wehave x� =2 F (Q1; :::; Qn�k).Theorem 2.14 [YKK℄ The verti
es of Pn(a) adja
ent to the vertex x� are theverti
es obtained by transposing some pair of adja
ent 
omponents of x�.



30 CHAPTER 2. THE SYMMETRIC GROUPproof: Suppose the line segment between x� and x� forms an edge for some � 2 Sn.The edge then has the form F (Q1; :::; Qn�1). Sin
e SQi = [n℄ and theQi are pairwisedisjoint, it follows that ea
h Qi ex
ept for exa
tly one, say Qk, has one element andQk has two elements. Say Q1 = fq1g; :::; Qk�1 = fqk�1g; Qk = fqk; qk+1g; Qk+1 =fqk+2g; :::; Qn�1 = fqng. Then �(Q1; :::; Qn�1) has two elements, � and say � . Wehave �(i) = �(i) = qi for i = 1; :::; k�1 and �(i) = �(i) = qi�1 for i = k+2; :::; n�1.Without loss of generality, we 
an take �(k) = �(k + 1) = qk and �(k + 1) =�(k) = qk+1. Thus x�;i = a�(i) = x�;i for i 6= k; k + 1 and x�;k = x�;k+1 = aqk andx�;k+1 = x�;k = aqk+1. Thus, we get a transposition in two adja
ent pla
es.



Chapter 3The Alternating Group
3.1 The Alternating PolytopeThe 
onvex hull inRn2 of the set of even permutation matri
es forms the alternatingpolytope En.Theorem 3.1 (Brualdi) En is an (n�1)2 dimensional polytope with n!=2 verti
es.sket
h of proof: We know that ea
h X� for � 2 An is a vertex by Theorem1.2. There are n!=2 elements of the alternating group An, so En has n!=2 verti
es.The proof that En is (n � 1)2 dimensional involves showing that there exist(n � 1)2 even permutation matri
es P0 = In; P1; :::; P(n�1)2 su
h that the set ofmatri
es fPi � P0 j 1 � (n � 1)2g is linearly independent. Please see [Brualdi℄ forthe 
omplete proof.The fa
et de�ning equations and the 
ombinatorial stru
ture of En are not knownin general. However, we have the following des
ription of the edges of En. We 
anuse the 
y
le-de
omposition theorem again to des
ribe the edges of En. It tells uswhen the line between two verti
es X� and X� is an edge.Theorem 3.2 (Brualdi) Let � and � be distin
t permutations in An. Then theline fX�; X�g is an edge of En if and only if the 
y
le de
omposition of ��1� 
onsists



32 CHAPTER 3. THE ALTERNATING GROUPof exa
tly 1 
y
le of odd length, or exa
tly two 
y
les of even length.proof: The line segment fX�; X�g is an edge of En if and only if ��1� 
annot bede
omposed into two nontrivial disjoint elements of An, by the 
y
le de
ompositiontheorem, (Theorem 1.3). This 
an only o

ur when ��1� is one odd length 
y
le orthe produ
t of two even length 
y
les.3.2 The AlternahedronThe 
onvex hull of all even permutations of the point a = (a1; :::; an), where the
oordinates are pairwise distin
t, is de�ned to be the alternahedron, denoted Hn(a),as dis
ussed in the �rst 
hapter. De�ne On to be the set of odd permutations:On = f� j � 2 Sn n Ang. By Theorem 2.14, we know that for � 2 On, the n � 1aÆnely independent verti
es adja
ent to a�, 
all aÆi for i = 1; :::; n� 1, are all even.Then the unique hyperplane T� whi
h passes through all the verti
es aÆi stri
tlyseparates a� from the polytope 
onv fa� j � 2 Sn n �g whi
h it supports. Thus,the interse
tion of the polytope Pn(a) and all the half spa
es T�; � 2 On is pre
iselythe polytope Hn(a). The equations for these half spa
es are determined in [YKK℄.Setting 
1 = a1; 
2 = a2; 
i = 
i�1 � (an�1 � an)(a1 � a2)an�i+1 � an�i+2The desired hyperplane T� is given by the equationnXi=1 
�(i)xi = nXi=1 
ian�i+1 + (an�1 � an)(a1 � a2):Theorem 3.3 ([YKK℄, Theorem 3.13) The even permutation polytope Hn(a) isgiven by the inequalities of the permutation polytopenXi=1 xi = nXi=1 ai; x(S) � �S for all S � [n℄
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esnXi=1 
�(i)xi � nXi=1 
ian�i+1 + (an�1 � an)(a1 � a2) 8� 2 OnIf n > 4, then every inequaltity de�nes a fa
e.Sin
e we 
an think of the alternadehron as the polytope 
ontru
ted by 
uttingo� half of the verti
es of the permutatedron, and we know the permutahedron hasn!=2 verti
es, we know that the alternahedron has n!=2 verti
es.Theorem 3.4 The alternahedron Hn(a) has dimension n� 1.proof: The points of Hn(a) adja
ent to an odd vertex of the full permutahedronare aÆnely independent.There are many unsolved mysteries 
on
erning the alternahedron. We haveexperimental data for the �rst few 
ases; however, the alternahedron grows largevery qui
kly, and any information above n = 6 takes a very long time for the
omputer to 
ompile. We have the following 
onje
ture about the alternahedron:Conje
ture 3.5 The alternahedronHn(a) has n!=2 fa
ets 
ontaining n�1 verti
es.This says that Hn(a) has n!=2 simpli
ial fa
ets.For n = 3 and 4, these are all of the fa
ets of the alternahedron; however,for n > 4, Hn(a) has other fa
ets with varying numbers of verti
es on them. Forexample, H5(a) has 60 fa
ets with 4 verti
es, whi
h are the fa
ets dis
ussed in the
onje
ture above. However, it also has 10 fa
ets with 12 verti
es, and 20 fa
ets with6 verti
es. We also have information on H6(a), whi
h has 360 fa
ets with 5 verti
es(these are the n!=2 simpli
ial fa
ets again), as well as 20 fa
ets with 18 verti
es, 30fa
ets with 24 verti
es, and 12 fa
ets with 60 verti
es. We have not been able topredi
t in general how many fa
ets we will have, nor how many verti
es are on ea
hfa
et. Sin
e we have been unable to �nd general theorems for the alternahedron, letus look at some examples in detail.



34 CHAPTER 3. THE ALTERNATING GROUPUsing the 
omputer program PORTA (see [PORTA℄), we 
olle
ted the followingdata for the alternahedron:number of dimension verti
es number number of fa
etsn verti
es on fa
ets of fa
ets ea
h vertex is on3 3 2 2 3 24 12 3 3 20 55 60 4 4,6,12 90 86 360 5 5,18,24,60 422 10Ea
h generi
 H4(a) is 
ombinatorially equivalent to an i
osahedron. Che
kingby hand, we noti
ed that any 
opy of A4 sitting inside A5 obtained by �xing oneelement produ
ed a fa
et of H5(a). It would be interesting to 
ompletely determinethe 
orresponden
e between H5(a) and subgroups of A5.This information leads us to ask if there are formulae predi
ting the followingdata:� Number of verti
es on fa
ets� Number of fa
ets� Number of fa
ets ea
h vertex is on
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3124
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4132
2143

1234

3142

4321

32411324

1423

2431

Figure 3.1: This is H4(1; 2; 3; 4), whi
h is 
ombinatorially equivalent to the i
osahe-dron.
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Chapter 4Dihedral group
4.1 The Dihedral PolytopeThe 
onvex hull of the permutation matri
es of the dihedral group forms the dihedralpolytope Tn with 2n verti
es, (Theorem 1.2).Theorem 4.1 The dimension of Tn is 2n� 3 when n is even, and 2n� 2 when n isodd.proof: We need to �nd the dimension of the linear spa
e of hyperplanes 
ontainingTn. To do this, form a matrix whose rows are the elements of the dihedral group,thought of in the usual way as points of Rn2. Augment the matrix by adding a�nal 
olumn of 1s (in order to a

ount for the 
onstants in the equations for thehyperplanes). Call the resulting 2n� (n2 + 1) matrix Z. We will show that Z hasrank 2n� 2 or 2n� 1 depending on whether n is even or odd. Sin
e elements of thekernel of Z 
orrespond exa
tly with hyperplanes 
ontaining Tn, we havedimTn = n2 � dimkernel(Tn) = n2 � (n2 + 1� rank(Z)) = rank(Z)� 1;as required.To expli
itly 
onstru
t Z, take permutations generating the dihedral group:pi
k � = (1; 2; :::; n) for the rotation, and 
hoose the re
e
tion �xing 1, namely



38 CHAPTER 4. DIHEDRAL GROUP� = (2; n)(3; n� 1) � � �. The �rst n rows of Z will 
orrespond the rotations:(1); �; �2; : : : ; �n�1;in the order listed, and the last n rows will 
orrespond to the re
e
tions�; ��; ��3; : : : ; ��n�1;in the order listed. Now augment with a �nal 
olumn of 1s. Letting ei denote thei-th standard basis ve
tor for Rn allows us to write the resulting matrix as:
Z =

0BBBBBBBBBBBBBBB�
e1 e2 e3 : : : en 1en e1 e2 : : : en�1 1... ... ... ... ...e2 e3 e4 : : : e1 1e1 en en�1 : : : e2 1en en�1 en�2 : : : e1 1... ... ... ... ...e2 e1 en : : : e3 1

1CCCCCCCCCCCCCCCAHen
e, with this notation, ea
h 
olumn ex
ept the last represents n 
olumns of Z.Subtra
ting row i from row n + i for i = 1; : : : ; n gives0BBBBBBBBBBBBBBB�
e1 e2 e3 : : : en 1en e1 e2 : : : en�1 1... ... ... ... ...e2 e3 e4 : : : e1 1~0 en � e2 en�1 � e3 : : : e2 � en 0~0 en�1 � e1 en�2 � e2 : : : e1 � en�1 0... ... ... ... ...~0 e1 � e3 en � e4 : : : e3 � e1 0

1CCCCCCCCCCCCCCCANoting the shape of the �rst and last 
olumn, it suÆ
es to show that the following



4.1. THE DIHEDRAL POLYTOPE 39submatrix has rank n� 2 or n� 1 depending on whether n is even or odd:Z 0 = 0BBBB� en � e2 en�1 � e3 : : : e2 � enen�1 � e1 en�2 � e2 : : : e1 � en�1... ... ...e1 � e3 en � e4 : : : e3 � e1 1CCCCAFirst we treat the even 
ase. It is easy to 
he
k that the sum of the even-numberedrows and the sum of the odd-numbered rows are both zero. For instan
e, 
onsiderthe sum of the odd-numbered rows of the �rst 
olumn of Z 0:(en � e2) + (en�2 � en) + (en�4 � en�2) + : : :+ (e4 � e6) + (e2 � e4) = 0:Summing up the odd-numbered rows of ea
h 
olumn produ
es a similar teles
opingsum. The same argument works for the sum of the even-numbered rows. Thus, wehave shown that the rank of Z 0 is at most n � 2. To �nish the argument in theeven 
ase, note that the following ve
tors from the �rst 
olumn of Z 0 are obviouslylinearly independent: e1 � e3; e2 � e4; : : : ; en�2 � en.We now treat the odd 
ase. Here, it is easy to 
he
k, as in the even 
ase, thatthe sum of all of the rows is zero. Hen
e, the rank of Z 0 is at most n�1. Again, theve
tors v1 := e1� e3; v2 := e2� e4; : : : ; vn�2 := en�2� en from the �rst 
olumn of Z 0are 
learly linearly independent. The ve
tor en�1�e1 also o

urs in the �rst 
olumn.Adding the odd-numbered vi's to en�1 � e1 produ
es the ve
tor vn�1 = en�1 � en.The ve
tors v1; : : : ; vn�1 are 
learly linearly independent, hen
e, the rank of Z 0 inthe odd 
ase is n� 1.We 
an again use the 
y
le-de
omposition theorem that we used in the previous
hapters to des
ribe the edges of Tn.Theorem 4.2 Every vertex of Tn with n > 4 is 
onne
ted to every other vertex ofTn by an edge of Tn.



40 CHAPTER 4. DIHEDRAL GROUPProof: Without loss of generality, examine the line segment between Xe and X�.By the 
y
le de
omposition theorem, (Theorem 1.3), this line segment is an edge ifand only if the 
y
le de
omposition of � 
annot be fa
tored into two parts, both ofwhi
h form elements of Dn. Suppose we 
ould fa
tor � in su
h a way, say � = �1�2.So a �xed point in � is �xed in �1�2 whi
h implies it is �xed in both �1 and �2.But, sin
e both �1 and �2 are elements of Dn, at most two elements 
an be �xedby either of them. Thus, both �1 and �2 have at least n � 2 non�xed points. By
onstru
tion, the points not �xed by �1 are disjoint from the points not �xed by�2. Sin
e there are only n points altogether, we need (n� 2) + (n� 2) � n, whi
himplies n � 4.Using the language of the proof of Theorem 4.2, the only time we 
an de
ompose� into two non-trivial parts, both of whi
h are inDn, is the 
aseD4, where (23)(14) is
omposed of (23) and (14), whi
h are both non-trivial elements ofD4. It follows thatthe line segment fX(1); X(23)(14)g is not an edge of T4. The line segment fX�; X�g isnot an edge of T4 when ��1� 
an be fa
tored to (23)(14). These are the only su
hline segments. This means that all dihedral polytopes Tn with n > 4 have edges
onne
ting every pair of verti
es. Thus, there are �2n2 � edges.David Perkinson has a proof for the following theorem:Theorem 4.3 The odd dihedral polytopes are simpli
ial.Our data suggest the following 
onje
tures, for whi
h the proofs are unknown.Conje
ture 4.4 Ea
h fa
et of Tn has 2n� 2 verti
es.The fa
t that odd dihedral polytopes are simpli
ial proves this 
onje
ture for oddn; however, the proof for even n is unknown.Conje
ture 4.5 The odd dihedral polytopes have n2 fa
ets. The even dihedralpolytopes have n2=2 fa
ets.



4.2. THE DIHEDRON 41Conje
ture 4.6 The verti
es of the odd dihedral polytopes are on n(n�1) fa
ets.The verti
es of the even dihedral polytopes are on n(n� 1)=2 = �n2� fa
ets.These 
onje
tures are based on 
omputer 
al
ulations yielding the following
harts.n number dimension verti
es number number of fa
etsof points per fa
et of fa
ets ea
h vertex is on4 8 5 6 8 65 10 8 8 25 206 12 9 10 18 157 14 12 12 49 428 16 13 14 32 289 18 16 16 81 7210 20 17 18 50 454.2 The DihedronAs in previous 
hapters, we 
an take the proje
tion of the dihedral polytope to getthe dihedron, Qn(a).Theorem 4.7 The dihedron has dimension n� 1.proof: Look at the subset of rotations of Dn. Consider the set of points 
reatedby these matri
es a
ting on the ve
tor a. For generi
 a, the linear spa
e spanned bythese points has dimension n by a standard result about 
ir
ulent matri
es ([Philip℄,p.75). Hen
e the smallest aÆne spa
e 
ontaining Dn has dimension n� 1.Some point a is generi
 if there is an open set U about a su
h that Qn(b) has thesame 
ombinatorial stru
ture as Qn(a) for all b 2 U . Unlike the 
ases we examinedin previous 
hapters, it is possible to �nd generi
 points a and a0 su
h that Qn(a)and Qn(a0) are not 
ombinatorially equivalent. This behavior was �rst noted in thedihedron by David Perkinson and Douglas Squirrel in 1996. Previously, this typeof behavior was noti
ed for more 
ompli
ated groups in [Onn℄. Depending on the



42 CHAPTER 4. DIHEDRAL GROUPpoint a we 
hoose, we 
an get dramati
ally di�erent polytopes. Choose polytopesQ5(1; 2; 6; 4; 3) and Q5(2; 1; 6; 4; 3). They both have the same dimension, 4, andnumber of verti
es, 10, but the �rst has 35 fa
ets with ea
h vertex being on 14fa
ets, while the se
ond has only 30 fa
ets, with ea
h vertex laying on 12 fa
ets.Here is a 
hart of the possible number of fa
ets from Q5(a) through Q8(a), ea
hpossibility 
oming from a di�erent generi
 point a:n number of fa
ets5 30,356 20,327 140,154,168,182,196,2108 118,150,190,198,222,230,2469 612, 630, 675, 693, 738, 747, 756, 765, 774, 783, 810, 819, 828, 837,846, 864, 873, 891, 900, 909, 918, 927, 936, 945, 954, 963, 972,981, 990, 999, 1008, 1017, 1026, 1044Noti
e that ea
h possiblility for the number of fa
ets di�ers from another by amultiple of n. In fa
t, for odd n, ea
h possibility is a multiple of n. To get this data,we used a program 
alled orb, 
reated by Douglas Squirrel. The program generatesrandom points a, 
he
ks if they are generi
 in the sense de�ned above, and thenoutputs the number of fa
ets on Qn(a). Although we let the program run for sometime to 
olle
t the data, it is possible that not every possibility for the number offa
ets appeared, espe
ially as n in
reased. We predi
t that we would �nd everymultiple of n, within 
ertain bounds, in an in�nite data set. It is an interestingquestion to ask exa
tly what these bounds are.



Chapter 5Questions
In the pro
ess of writing this thesis, we found many more questions than we startedwith, and many of them remain unsolved. The reader may �nd one or more of themworth pursuing in the future. The questions are ordered by the 
hapter to whi
hea
h relates.Chapter Three: The Alternating Group� Show that the alternahedron Hn(a) has n!=2 fa
ets 
ontaining n� 1 verti
es.This says that Hn(a) has n!=2 simpli
ial fa
ets.� Find the 
omplete 
ombinatorial stru
ture of H5(a).� Completely des
ribe H5(a) using relations between fa
es and subgroups.� Find a formula for the number of verti
es on ea
h fa
et of Hn(a).� Find a formula for the number of fa
ets of Hn(a).� Find a formula for the number of fa
ets ea
h vertex of Hn(a) is on.Chapter Four: The Dihedral Group.



44 CHAPTER 5. QUESTIONS� What are the bounds on the possible number of fa
es one 
an get from thedihedron?� Show ea
h fa
et of Tn has 2n� 2 verti
es when n is even.� Show that the odd dihedral polytopes have n2 fa
ets. The even dihedralpolytopes have n2=2 fa
ets.� The verti
es of the odd dihedral polytopes are on n(n�1) fa
ets. The verti
esof the even dihedral polytopes are on n(n� 1)=2 = �n2� fa
ets.� What do dihedral fa
e latti
es look like?
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