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Abstract

This thesis is concerned with self-dual affine monomial varieties. Duality is defined
in terms of higher-order tangent spaces and generalizes the classical notion of duality
in the familiar sense of a plane curve. The main result is a characterization of self-
duality in terms of Hilbert functions. The existence of an infinite class of self-dual
surfaces is shown.







Chapter 1

Introduction

Affine monomial varieties are of interest because of the peculiar relationship between
their geometric properties and the combinatorial properties of their “exponent sets.”
They also form the building blocks for more complex geometric objects called toric
varieties. The study of the higher-order osculating spaces of these varieties leads to
the concept of self-duality which is the focus of this thesis.

In Chapter 1, the necessary concepts and tools are introduced, a method for
determining whether a given affine monomial variety is self-dual is presented, and
several examples are explored. Chapter 2 gives the results of this thesis along with
their proofs. Chapter 3 consists of a listing of all currently known self-dual affine
monomial varieties.

1.1 Duality of Plane Curves

The construction of duals to plane curves is relatively simple, and exhibits the
geometric concepts used in this thesis in an elementary setting. The process by
which we construct the duals of affine monomial varieties is entirely analagous, so
the reader not familiar with the concepts of algebraic geometry may wish to get
accustomed to the procedure.

Consider a parametrized plane curve such as the parabola

t 7→ (t, t2).

This is a parametrization of the graph of the well-known parabola y = x2. At each
point of the parabola (equivalently for each value of t) we can find the tangent line.
As we know, we can completely describe any line by its y-intercept and its slope.
Hence we can form a one-to-one correspondence between points in R2 and lines in
R2, identifying

the line y = mx + b↔ the point (b, m).

If we examine the parabola, we find that the tangent line at time t is given
by y = 2tx − t2. This line can be represented in the “dual-space” consisting of
parameter points by the point (−t2, 2t). At time t = 2, the tangent line is y = 4x−4,
as pictured in Figure 1.1. The point in the dual space corresponding to this tangent
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Figure 1.1: The parabola (t, t2) and the tangent line at t = 2

line is (−4, 4), The set of all points corresponding to tangent lines as t moves along
the real number-line is another curve in R2 parametrized by (−t2, 2t). We note that
this is also a parabola, parametrizing the graph of y2 = −4x.

In general, we say that the dual curve of a plane curve is the set of points
parametrizing the set of all tangent lines to the curve. A plane curve is self-dual
if we can find a change of coordinates taking the parametrization of the dual to
the parametrization of the original curve. For example we have just seen that the
parabola (t, t2) is self-dual since the only difference between the curve and its dual
is a reversal of the order of the components and multiplying them by 2 and −1
respectively. In fact, the graph of any polynomial y = f(x) can be parametrized as

t 7→ (t, f(t)).

With a bit of calculation, it is not difficult to see that the only self-dual curve
parametrized in the form (t, f(t)) is the parabola.

As a final example, consider the nodal cubic y2 = x2(x + 1) which can be
parametrized as (t2 − 1, t3 − t). The tangent line at time t is given by

y =
3t2 − 1

2t
x− (t− 1)2(t + 1)2

2t
.

Thus the dual-curve to the nodal cubic can be parametrized as

t 7→ (−(t− 1)2(t + 1)2

2t
,
3t2 − 1

2t
).

The nodal cubic is shown along with its dual curve in Figure 1.2. It’s immediately
apparent that this curve is not self-dual.

It turns out that the dual of the dual of a plane curve (with the exception of
lines) is in fact the original curve, as can be easily verified for the given examples.
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Figure 1.2: The nodal cubic and its dual curve

In higher dimensions, we will see that certain duals may not exist, and in the case
where they do, it’s possible that the dual of the dual may not be the original curve.

1.2 The Varieties Themselves

Though the objects which we will be studying have a rather simple definition, their
geometry is relatively complicated. The development of the theory will be much
simpler to follow if the reader refers to the intuitions just developed based on the
duals of plane curves. The question of which manifolds are self-dual is intractable
in general. The tools of algebraic geometry are useful here because of the essential
simplicity of the manifolds or varieties we are studying.

Put simply, affine monomial varieties are mappings of complex affine spaces,
whose component functions are monomials.

Definition 1.2.1. An affine monomial variety v is a mapping

v : Cn → Ct+1

x 7→ (a0x
m0 , a1x

m1 , . . . , atx
mt)

where xmi =
∏n

j=1 xmij for mij = (mi1, . . . .min) ∈ Zn and ai ∈ C for 0 ≤ i ≤ t.
We consider two varieties the same if they are equivalent under a “toric change
of coordinates”, i.e. if they have identical components up to scaling by non-zero
coefficients and reordering.

An affine monomial variety is standard if m0 = 0, ai = 1 for 0 ≤ i ≤ t, and
mi ≤ mi+1 for 0 ≤ i < t in the standard ascending lexicographic ordering.

We force the leading coordinate of standard mappings to be one because it
will make our final results easier to state and prove. The “extra coordinate” may
be considered simply as a placeholder, or the means by which we will eventually
homogenize the coordinates of the mapping.
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Figure 1.3: The lattice points in V1

Two examples of affine monomial varieties are:

v1 : (x, y) 7→ (1, x2, y3, xy4, x3y5)
v2 : (x, y, z) 7→ (1, x, y, z, xy, xz, yz, xyz)

Associated with each affine monomial variety is a set of lattice points: the ex-
ponents of the monomials.

Definition 1.2.2. To each affine monomial variety v we associate a lattice set
V ⊂ Zn

≥0, given by
V = {m0, m1, . . . ,mt}.

For example, the two affine monomial varieties shown above correspond to the
lattice sets:

V1 = {(0, 0), (2, 0), (0, 3), (1, 4), (3, 5)}
V2 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}

The position of the points of V1 are shown in Figure 1.3. The points in V2 are
the vertices of the unit cube.

1.3 The Varieties and their Tangent Spaces

To define the dual of a plane curve, we think of a tangent line as corresponding to a
point in a dual plane, as described in Section 1.1. To develop the notion of a dual to
one of our varieties, we need to examine a more general concept of tangent spaces.

Definition 1.3.1. The k-th order osculating space of an affine monomial variety
v is given by

Osckv = Span{va}0≤|a|≤k,

where a = (a1, . . . , an) ∈ Zn
≥0, |a| =

∑
ai, and va = ∂|a|

∂x
a1
1 ...∂xan

n
.
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As a convenient technical device, we place the partial derivatives in a matrix.
We will see that this use of the language of linear algebra simplifies matters a great
deal.

Definition 1.3.2. The matrix of k-jets of an affine monomial variety v is the
matrix consisting of the partial derivatives of v up to order k as rows:

Jkv = [va]0≤|a|≤k.

First, we note that for x ∈ Cn the rank of Jkv(x) is dim(Osckv(x))+1. Since the
rank can be calculated as the number of certain minor determinants which vanish,
the rank will have a generic value dk. Points where rank(Jkv) < dk are called k-
th order inflections. The inflectionary behavior of affine monomial varieties is
explored in [3] and [6].

The dimension of the space spanned by the first partials shows how much the
surface is flexing to first order, while the dimension of the space spanned by the
partials up to degree two shows how much the tangent space is flexing, and so on.
The rank of the matrix of k-jets measures how much the (k− 1)-th osculating space
is “flexing” or “moving around” in its ambient space. For a perfectly uninflected
variety, the rank of the matrix of k-jets would be

(
n+k

n

)
. The amount that the

generic dimension drops below this is a measure of how “lazy” the surface is being
in general. At a k-th order inflection, the surface is being even lazier than at a
generic point, and more of its partial derivatives are vanishing.

1.4 The Varieties and their Dual-Spaces

In imitation of the case of plane curves, we would naively like to consider the dual to
be the set of all hyperplanes tangent to the variety v at a given point. Unfortunately,
there will often be more than one, i.e. there will not be a single, well-defined normal
direction. Thus we increase the order of the osculating space under consideration
hoping to find one normal direction for each point (except at order k inflections).
We will see later that we can use the language of linear algebra to simplify this
process. We thus make the following definition.

Definition 1.4.1. The k-th order dual of v is

Dualkv =

hyperplanes H ⊂ Pt∗ :
H ⊃ Osckv(p)
for some p ∈ Cn such that
rank(Jkv(p)) = dk


−

.

We note for those not familiar with the concept of projective space that Pt∗ is
Ct+1 where we identify points that are non-zero scalar multiples of one another.
We think of the hyperplane with defining equation

∑t
i=0 ajxi = 0 as the point

(a0, a1, . . . , at) ∈ Pt∗. We note in passing that scaling all the coefficients ai by a non-
zero scalar does not change the hyperplane. The closure in the above definition is in
the algebreo-geometric sense of the smallest set defined by homogenous polynomial



6 CHAPTER 1. INTRODUCTION

equations vanishing on the above set. These concepts are fully explained in any
basic text on algebraic geometry, for instance [1] or [4].

When the dimension of Dualkv is 1, there is a unique hyperplane containing
the k-th order osculating space at all non-inflected points. It is not hard to show
that, in this case, Dualkv will be the projective closure of a monomial variety. For
details see the beginning of Chapter 2. We call this affine monomial variety the
dual variety of the original variety, and note that this dual will not exist for many
affine monomial varieties. From this point on, we blur the distinction between the
dual variety and the dual, using the notation Dualkv to refer to the dual variety, if
it exists.

We choose the following definition of self-duality, which generalizes the classical
notion of self-duality from plane curves.

Definition 1.4.2. An affine monomial variety v is self-dual if it is equal to its
dual, up to a toric change of coordinates, i.e. if they have identical components up
to scaling by non-zero coefficients and reordering.

Recall that we consider two monomial varieties to be the same if they are the
same up to a toric change of coordinates. Thus we can reorder the component
monomials and multiply them by any non-zero constants without changing the affine
monomial variety. This condition is equivalent to saying that two varieties are the
same if they have the same corresponding lattice sets.

For instance, the following two varieties are considered identical.

(1, x, y, xy2)↔ (−x, 2xy2,
15

3
,−12y)



1.5. EXAMPLES 7

1 2 3 4

1

2

3

4

Figure 1.4: Points Chosen at Random

1.5 Examples

All the examples we consider will be surfaces, because we can represent their lattice
sets graphically and can easily see the workings of the theory in this context. All
higher-dimensional varieties can be analyzed using the same method.

Since every element of the kernel of Jkv will dot to zero with each partial deriva-
tive of v of order ≤ k, each element of a basis for ker(Jkv) will be a direction
perpendicular to the osculating space Osckv. Thus when we find a k such that
dim(ker(Jkv)) = 1, we have found a unique hyperplane containing all the osculating
spaces of degree ≤ k. The coefficients of this hyperplane’s defining equation will be
the component functions of the dual-variety to v.

1.5.1 The Generic Case: Points Chosen at Random

To begin with, we choose a set of points in the quarter-plane at random, including
the origin as we must for any standard affine monomial variety. Here we examine
the variety corresponding to

V = {(0, 0), (3, 0), (4, 0), (4, 1), (1, 2), (3, 2), (4, 2), (3, 4)},

pictured in Figure 1.4.

The affine monomial variety corresponding to v, as well as the various matrices
of k-jets and their respective kernels, are reproduced in Table 1.1. In the middle
column we see the matrix of k-jets, and in the third column the matrix whose
columns span the kernel of the corresponding matrix of k-Jets. We observe that the
dimension of these kernels drops with each increase in k, and becomes constant at
0 for k ≥ 3. We note in particular that the dimension of the kernel of the matrix
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Table 1.1: Points Chosen at Random

v(x, y) = (1, x3, x4, x4y, xy2, x3y2, x4y2, x3y4)

k Jk(v) ker(Jk(v))

0
[
1x3 x4 x4yxy2 x3y2 x4y2 x3y4

]


−x3−xy2−x4−x4y−x3y2−x4y2−x3y4

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



1

1 x3 x4 x4y xy2 x3y2 x4y2 x3y4

03x2 4x3 4x3y y2 3x2y2 4x3y2 3x2y4

0 0 0 x4 2xy 2x3y 2x4y 4x3y3





x4 2x3y2−4x4y2−x4y2 4x3y4

−4x−2y2 7xy2 4xy2 −y4

1 0 0 0 0
0 0 −6y −6y 0
0 −3x2 3x3 0 −6x2y2

0 3 0 0 0
0 0 0 3 0
0 0 0 0 3



2



1 x3 x4 x4y xy2 x3y2 x4y2 x3y4

03x2 4x3 4x3y y2 3x2y2 4x3y2 3x2y4

0 0 0 x4 2xy 2x3y 2x4y 4x3y3

0 6x 12x2 12x2y 0 6xy2 12x2y2 6xy4

0 0 0 4x3 2y 6x2y 8x3y 12x2y3

0 0 0 0 2x 2x3 2x4 12x3y2





−x4y2−x4y4

4xy2 5xy4

−3y2 −7y4

0 8y3

2x3 2x3y2

−6x −8xy2

4 0
0 x



3



1 x3 x4 x4y xy2 x3y2 x4y2 x3y4

03x2 4x3 4x3y y2 3x2y2 4x3y2 3x2y4

0 0 0 x4 2xy 2x3y 2x4y 4x3y3

0 6x 12x2 12x2y 0 6xy2 12x2y2 6xy4

0 0 0 4x3 2y 6x2y 8x3y 12x2y3

0 0 0 0 2x 2x3 2x4 12x3y2

0 6 24x 24xy 0 6y2 24xy2 6y4

0 0 0 12x2 0 12xy 24x2y 24xy3

0 0 0 0 2 6x2 8x3 36x2y2

0 0 0 0 0 0 0 24x3y


~0
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Figure 1.5: The Octagon

of k-Jets never reaches 1, so this variety cannot be self-dual– it doesn’t even have a
dual. This isn’t very surprising for a set of exponents chosen at random.

1.5.2 Central Symmetry: The Octagon

The first theorem we will prove in the results section is that if an affine monomial
variety is self-dual then it has a centrally-symmetric corresponding lattice set. Cen-
tral symmetry is the property that the lattice set has a midpoint (equivalent to the
“center of mass” of the points) such that a given point is in the lattice set if and
only if its reflection through the midpoint is also in the set. Note that this implies
two interesting facts about self-dual varieties: firstly that there can be an odd num-
ber of points only if the midpoint is in the lattice set, and secondly that twice the
midpoint is always in the set, since the origin must be. This surprising symmetry
property suggests the existence of several self-dual affine monomial varieties such as
the following one.

The variety corresponding to the lattice set

V = {(0, 0), (1, 0), (0, 1), (2, 1), (1, 3), (3, 3), (2, 4), (3, 4)},

pictured in Figure 1.5 will be called The Octagon.
As we can see by examining the matrices of k-jets shown in Table 1.2, the nullity

of the matrix of 3-jets of v is 1, and the components are indeed the same as those
of the original mapping up to multiplication of some of the components by −1 and
the fact that they appear in reversed order. The reversal of order of the component
functions is not accidental, and will be important in the proof of the fact that all
self-dual affine monomial varieties have centrally-symmetric lattice sets.

It is also interesting, and thus far unexplained, that there is a strong symmetry
of the matrices in Table 1.2: for 0 ≤ k ≤ 3, Jkv(x) = ker(J3−kv(x)) up to row
operations on Jkv or column operations on ker(Jkv).

Another non-obvious fact, which is worth noting now as it will be important for
the solution of the question at hand, is that the dimension of the matrix of k-Jets
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Table 1.2: The Octagon

v(x, y) = (1, x, y, x2y, xy3, x3y3, x2y4, x3y4)

k Jk(v) ker(Jk(v))

0
[
1xyx2yxy3x3y3x2y4x3y4

]


−x−y−x2y−xy3−x3y3−x2y4−x3y4

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



1

1xy x2y xy3 x3y3 x2y4 x3y4

01 02xy y3 3x2y3 2xy4 3x2y4

00 1 x2 3xy2 3x3y2 4x2y3 4x3y3





2x2y 3xy3 5x3y3 5x2y4 6x3y4

−2xy −y3 −3x2y3 −2xy4 −3x2y4

−x2 −3xy2−3x3y2−4x2y3−4x3y3

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



2



1xy x2y xy3 x3y3 x2y4 x3y4

01 02xy y3 3x2y3 2xy4 3x2y4

00 1 x2 3xy2 3x3y2 4x2y3 4x3y3

00 0 2y 0 6xy3 2y4 6xy4

00 0 2x 3y2 9x2y2 8xy3 12x2y3

00 0 0 6xy 6x3y 12x2y2 12x3y2





−4x3y3−3x2y4−6x3y4

4x2y3 2xy4 5x2y4

3x3y2 3x2y3 5x3y3

−3xy2 −y3 −3xy3

−x2 −2xy −2x2y

1 0 0

0 1 0

0 0 1



3



1xy x2y xy3 x3y3 x2y4 x3y4

01 02xy y3 3x2y3 2xy4 3x2y4

00 1 x2 3xy2 3x3y2 4x2y3 4x3y3

00 0 2y 0 6xy3 2y4 6xy4

00 0 2x 3y2 9x2y2 8xy3 12x2y3

00 0 0 6xy 6x3y 12x2y2 12x3y2

00 0 0 0 6y3 0 6y4

00 0 2 0 18xy2 8y3 24xy3

00 0 0 6y 18x2y 24xy2 36x2y2

00 0 0 6x 6x3 24x2y 24x3y





x3y4

−x2y4

−x3y3

xy3

x2y

−y

−x

1


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Figure 1.6: The Octagon Plus Two Points

will be strictly decreasing with k until some value of k after which the dimension will
be constant at zero1. Specifically note that the nullity of the matrix of k-jets cannot
remain constant at a non-zero value as k increases—so we can find the value of k
for which the dimension of the kernel (and thus the dimension of the linear space
of hyperplanes containing the osculating space) is 0. We then examine ker(Jk−1v)
and compare it with the original variety to check if the variety is self-dual. If its
dimension is not 1, then it definitely isn’t self-dual, in fact we can’t even make such
a comparison as there is be no dual in this case.

1.5.3 Central Symmetry Isn’t Everything: The Octagon
Plus Two

Following this success, we might easily be tempted to conjecture that all centrally
symmetric lattice sets have self-dual corresponding monomial varieties. Unfortu-
nately, this isn’t the case as the next example demonstrates.

By adding two points to the preceding example, we obtain another centrally
symmetric lattice set

V = {(0, 0), (1, 0), (3, 0), (0, 1), (2, 1), (1, 3), (3, 3), (0, 4), (2, 4), (3, 4)},

pictured in Figure 1.6.
In fact, when we follow the same procedure as in the previous two examples,

examining the matrices of k-Jets and their kernels as shown in Table 1.3, we find
that dim(ker Jkv) has generic value 1. However we see that two of the entries of
ker Jkv are zero. If we look at the lattice points associated with ker Jkv, we find

1This can be shown in two ways. First, if adding derivatives of order k + 1 to Jkv doesn’t
increase its rank, then the derivatives of order k + 1 can be written as linear combinations of
the derivatives of orders up to k. It’s then clear that derivatives of, say, order k + 2 depend on
derivatives of order k. Second, we can show this result using Theorem 2.1.6 and the well-known
fact that Hilbert functions of point sets are strictly increasing until they reach their maximal value.
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Table 1.3: The Octagon Plus Two

v(x, y) = (1, x, x3, y, x2y, xy3, x3y3, y4, x2y4, x3y4)

k Jk(v) ker(Jk(v))

0
[
1xx3yx2yxy3x3y3y4x2y4x3y4

]



−x−y−x3−x2y−xy3−y4−x3y3−x2y4−x3y4

1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



1

1x x3 yx2y xy3 x3y3 y4 x2y4 x3y4

013x202xy y3 3x2y2 0 2xy4 3x2y4

00 0 1 x2 3xy23x3y24y34x2y34x3y3





2x3 2x2y 3xy3 3y4 5x3y3 5x2y4 6x3y4

−3x2−2xy −y3 0 −3x2y3 −2xy4 −3x2y4

1 0 0 0 0 0 0
0 −x2 −3xy2−4y3−3x3y2−4x2y3−4x3y3

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



2



1x x3 yx2y xy3 x3y3 y4 x2y4 x3y4

013x202xy y3 3x2y2 0 2xy4 3x2y4

00 0 1 x2 3xy23x3y2 4y3 4x2y3 4x3y3

00 6x 0 2y 0 6xy3 0 2y4 6xy4

00 0 0 2x 3y2 9x2y2 0 8xy3 12x2y3

00 0 0 0 6xy 6x3y312y212x2y212x3y2





−4x3y3−3x2y4 x3y4 −6x3y4

4x2y3 2xy4 −x2y4 5x2y4

0 0 −y4 0
3x3y2 3x2y3 −x3y3 5x3y3

−3xy2 −y3 3xy3 −3xy3

−x2 −2xy −2x2y −2x2y

1 0 0 0
0 0 x3 0
0 0 0 1



3



1x x3 yx2y xy3 x3y3 y4 x2y4 x3y4

013x202xy y3 3x2y2 0 2xy4 3x2y4

00 0 1 x2 3xy23x3y2 4y3 4x2y3 4x3y3

00 6x 0 2y 0 6xy3 0 2y4 6xy4

00 0 0 2x 3y2 9x2y2 0 8xy3 12x2y3

00 0 0 0 6xy 6x3y312y212x2y212x3y2

00 6 0 0 0 6y3 0 0 6y4

00 0 0 2 0 18xy2 0 8y3 24xy3

00 0 0 0 6y 18x2y 0 24xy2 36x2y2

00 0 0 0 6x 6x3 24y 24x2y 24x3y





x3y4

−x2y4

0
−x3y3

xy3

x2y

−y

0
−x

1


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that only the 8 points making up the octagon are present in the lattice set of the
dual variety, and we have “lost” the two points that we added.

The next question is under what conditions some of the points in a centrally
symmetric variety are not present in its dual. The answer is somewhat surprising,
and will be outlined in the next section, and fully demonstrated in Chapter 2.

1.6 A Sketch of the Results Using Examples

We will be able to give a complete characterization of self-dual affine monomial va-
rieties in the next chapter. However, this characterization uses surprisingly complex
tools, so we present the following analysis of the three previous examples in order to
illustrate how we can determine self-duality for an arbitrarily chosen variety. The
theorem we will eventually use is as follows:

A given affine monomial variety v is self-dual if its lattice set V satisfies the
following conditions:

1. V is centrally symmetric.

2. Consider the codimension of the linear space of algebraic curves vanishing on
the lattice set V . By this we mean the total number of linearly independent
polynomials of some fixed degree k or less2 minus the number of such poly-
nomials vanishing on V. In order for V to correspond to a self-dual variety,
there must be a k such that this codimension is equal to the number of points
in the lattice set minus one. The sequence of codimensions for all k is known
as the Hilbert function of the lattice set, denoted HV . Thus our condition is:
∃k : HV (k) = |V | − 1.

Examples:

(a) As we can see, the Octagon shown in Figure 1.5 lies on three linearly inde-
pendent cubics (actually the product of the unique conic passing through
the eight points of the Octagon with any three linearly independent lines
in the plane). Since there are 10 total linearly independent cubics, and
three linearly independent ones vanishing on the octagon we see that the
codimension of cubics vanishing on V is 10− 3 = 7. Since there are eight
points in the set and the codimension of cubics that are simultaneously
zero on v is 7, Condition 2 is satisfied. We can see an abbreviated form
of this information in Table 1.4.

(b) Similarly, since there are ten points in the Octagon Plus Two pictured
in Figure 1.6, and there are ten total linearly independent plane cubics,
and additionally we find that there is a unique cubic through all ten
points (shown in Figure 1.7), the codimension of cubics vanishing on V
is 10 − 1 = 9, and so Condition 2 is again satisfied. This information is
presented in Table 1.5.

2The number of such linearly independent polynomials of degree ≤ k in Cn is given by
(
n+k

k

)
.
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Table 1.4: Curves through the Octagon

lines conics cubics quartics · · · deg k

total in R2 1 3 6 10 15
(

k+2
2

)
0 on V 0 0 1 3 7

(
k+2
2

)
− 8

dim(Jk) = HV 1 3 5 7 8 8
dim(ker Jk) 7 5 3 1 0 0

Table 1.5: Curves through the Octagon Plus Two

lines conics cubics quartics · · · deg k

total in R2 1 3 6 10 15
(

k+2
2

)
0 on V 0 0 0 1 5

(
k+2
2

)
− 10

dim(Jk) = HV 1 3 6 9 10 10
dim(ker Jk) 9 7 4 1 0 0

1 2 3 4

1

2

3

4

Figure 1.7: The Octagon Plus Two Points and its Unique Cubic



1.6. A SKETCH OF THE RESULTS USING EXAMPLES 15

Table 1.6: Hilbert functions: The Octagon Plus Two

k 0 1 2 3 4 · · · k > 4
HV (k) 1 3 6 9 10 10
HV \{m}(k) 1 3 6 8 9 9

3. For every point m ∈ V , there are no more curves of degree ≤ k vanishing on
V \ {m} than vanish on V . Put more succintly, HV \{m}(k) = HV (k) for all
m ∈ V .

Examples:

(a) As we can see in the case of the Octagon, removing a point doesn’t allow
any additional cubics to pass through the remaining seven points– there is
enough redundancy in the points that any (|V |−1)-size subset determines
precisely the same curves of degree 3 as the full set. This condition will
be clearer when we examine a variety that does not satisfy it, such as the
one below.

(b) In the case of the Octagon Plus Two, removing one of the two points not
in the Octagon results in too many cubics passing through the remaining
points. What is happening is that the removal of one of the two “out-
lying” points allows the remaining points to be covered by the product
of the conic through the points in the Octagon and any line through the
additional point. Since there are two linearly independent lines through
the remaining “outlying” point, we see that there are too many cubics
passing through the reduced set, and thus the variety will not be self-
dual. If we examine the Hilbert function of the lattice set, and of the
lattice set minus one of the “outliers” m, there’s not enough redundancy
in V . In Table 1.6, we see that HV \{m}(3) < HV (3)3. Note, however, that
even though this variety is not self-dual, its dual is the Octogon, which
is self-dual as we have just seen– in fact, the dual of any variety is itself
dual.

We have thus succeeded in restating our problem: We are looking for all centrally
symmetric subsets V of Zn

≥0 which include the origin and for which HV (k) = |V |−1
and HV \{m}(k) = |V | − 1 for some k and all m ∈ V .

In the next chapter we present proofs of the claims we have just made and a
theorem which is useful in the search for self-dual varieties. The final chapter of the
thesis presents all the examples we have found so far.

3Note here that m can be either of the two “outlying” points, (3, 0) or (0, 4).





Chapter 2

The Results

As shown in the last chapter, self-dual affine monomial varieties can be characterized
in terms of central symmetry and certain conditions on the Hilbert functions of their
exponent sets. The results that make up this description are stated and proved in
this chapter. Also, we show that given any affine monomial variety that has a
dual, the dual is itself self-dual. In addition, a result is presented that tells us that
the “generic” centrally symmetric lattice set additionally satisfies one of the other
necessary criteria for self-duality.

2.1 A Characterization of the Self-Duals

The results of this chapter concern a symmetry condition on the lattice sets of self-
dual monomial variety, and a condition on their Hilbert functions. We begin with
the results on symmetry.

2.1.1 Theorems about Central Symmetry

Our first result shows that we can precisely determine all the monomials that po-
tentially can be in the kernel of a given variety’s matrix of k-jets, assuming that it
does have a dual.

Theorem 2.1.1. Let v(x) = (1, xm1 , . . . , xmt) be a standard affine monomial vari-
ety. Suppose there exists an integer k such that the dimension of the kernel of the
matrix of k-jets, Jkv, is generically 1. Then, generically,

ker(Jkv(x)) = Span{a0x
mt , a1x

mt−m1 , . . . , at−1x
mt−mt−1}

for some constants a0, . . . , at−1.

Proof. Since the dimension of ker(Jkv) is 1, we see that there are t linearly inde-
pendent rows in Jkv, as there are t + 1 columns. For each aj, multiply the row
corresponding to the aj-th derivative by xaj , so that the i-th column only contains
multiples of xmi+1 . Hence, performing row operations and discounting rows of zeros
yields:
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Jkv(x) ∼


1 0 0 · · · 0 a0x

mt

0 xm1 0 · · · 0 a1x
mt

0 0 xm2 · · · 0 a2x
mt

...
. . .

...
0 0 0 · · · xmt−1 atx

mt



∼


1 0 0 · · · 0 a0x

mt

0 1 0 · · · 0 a1x
mt−m1

0 0 1 · · · 0 a2x
mt−m2

...
. . .

...
0 0 0 · · · 1 atx

mt−mt−1

 .

From this we can directly read off the kernel, which will be in the form:

ker(Jkv(x)) = Span{(−a0x
mt ,−a1x

mt−m1 ,−a2x
mt−m2 , . . . ,−atx

mt−mt−1 , 1)}.

Example: For instance, let v(x, y) = (1, x, xy, y2). The matrix of 1-jets reduces to:

J1v =

 1 x xy y2

0 1 y 0
0 0 x 2y

 ∼
 1 0 0 y2

0 1 0 −2y2

x

0 0 0 2 y
x

 .

As long as x 6= 0, the kernel of J1v has dimension 1, and can be parametrized by

(x, y) 7→ (−y2, 2
y2

x
, 2

y

x
, 1).

Since the kernel is a linear space, we can clear denominators to express the kernel
of J1v as an affine monomial variety (at those points where x 6= 0):

(x, y) 7→ (−xy2, 2y2, 2y, x).

Of course, this variety is not self-dual, but this parametrization of its dual suggests
a more precise definition of the dual variety when it exists.

Definition 2.1.2. With the notation and hypotheses of the preceding theorem, the
dual of v is defined to be the affine monomial variety

Dualkv(x) = xl(a0x
mt , a1x

mt−mi , . . . , at−1x
mt−mt−1 , 1)

= (a0x
mt+l, a1x

mt−m1+l, . . . , at−1x
mt−mt−1+l, xl)

where l ∈ Zn
≥0 is chosen with each coordinate as small as possible subject to the

condition that mt −m1 + l, . . . ,mt −mt−1 + l are in Zn
≥0.
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The fact that this definition of the dual is consistent with the original definition
given in Chapter 1 in terms of hyperplanes containing osculating spaces is clear in
light of Theorem 2.1.1. For a given affine monomial variety v, when there exists a
k such that dim(ker(Jkv)) = 1, the dual as given above will be an affine monomial
variety parametrizing the hyperplane containing Osckv(x) at all points x (except for
possibly some set of measure zero).

We now show that self-dual affine monomial varieties have centrally symmetric
corresponding lattice sets as a corollary to Theorem 2.1.1. First we formally define
central symmetry.

Definition 2.1.3. A lattice set V is centrally symmetric if m ∈ V ⇔ 2c−m ∈ V
for all m ∈ V where the midpoint of the lattice set is given by c := 1

|V |
∑

m∈V m.
An equivalent condition is that the sum of any point and its opposite be twice the
midpoint.

Corollary 2.1.4. If an affine monomial variety v is self-dual, then its corresponding
lattice set V is centrally symmetric.

Proof. We choose to put v in standard form, arranging its monomials in ascending
lexicographic order and discarding zero components. Then, since an affine monomial
variety is self-dual exactly when its dual exists and they are the same up to a toric
change of coordinates, we can see that the self-duality condition can be expressed
as:

(1, xm1 , . . . , xmt) = xl(a0x
m
t , a1x

mt−m1 , . . . , at−1x
mt−mt−1 , 1).

This can only happen when l = 0, since otherwise there will be no constant com-
ponent in the dual to correspond to the 1 component in the original variety. Note
now that none of the ai can be zero, since the variety is self-dual. We apply a toric
change of coordinates and set ai = 1 for all i. Since the original mi were arranged in
increasing order, we can see that the components of the dual are listed in decreasing
order. Thus the i-th component of v will correspond to the (t− i)-th component of
Dualkv, and we obtain the condition that xmt−mi = xmt−i . This, in turn, directly
implies that

mi + mt−i = mt,

which is precisely the condition that the corresponding lattice set V be centrally
symmetric with center mt/2.

Remark: We offer a geometric interpretation of what this corollary implies for self-
dual (and certain non-self-dual) varieties. If there is a dual for a given variety (that
is, if the nullity of Jkv reaches 1 for some k), then the exponents of the duals will be
the “flips” of the original exponents through the “center of mass” mt/2. Of course,
some of the ai may be 0, so certain pairs of exponents may disappear in taking the
dual. We will see explicit conditions for these two possibilities in the theorems just
ahead. We thus turn to:
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2.1.2 Theorems about Hilbert Functions

The crux of the remaining results is the relationship between the ranks of the matri-
ces of partial derivatives and the Hilbert function of the lattice set. For those who
are not familiar with Hilbert functions, any textbook on algebraic geometry will be
useful, such as [1] or [4]. The definition is given below.

Definition 2.1.5. The Hilbert function of a set of lattice points V ⊂ Zn ⊂ Cn is
defined to be the codimension in the linear space of polynomials of degree less than
or equal to k of those polynomials satisfied by V .

Theorem 2.1.6 ([6]). The generic rank of the matrix of k-jets of an affine monomial
variety v is given by the value of the Hilbert function of its lattice set V at k,

rank(Jkv) = HV (k).

Proof. By examining the formula for the partial derivative of a monomial x`:

1

a!
x`

a =
1

a!

∂|a|x`

∂xa1 · · · ∂xan

=

(
`1 · · · `n

a1 · · · an

)
x`−a

=

(
`

a

)
x`−a,

we see that the column of Jkv corresponding to the monomial xmi has the form(
mi

a

)
0≤|a|≤k

=

[(
mi,1

a1

)
· · ·
(

mi,n

an

)]
0≤|a|≤k

,

after multiplying the a-th row of Jkv by 1
a!

. But
{(

x1

a1

)
· · ·
(

xn

an

)}
0≤|a|≤k

forms a basis

for the space of polynomials of degree ≤ k in x1, . . . , xn. Thus, the linear relations
on the rows of Jkv correspond to polynomials of degree ≤ k passing through V .
Finally, we note that v attains its generic rank at the point (1, . . . , 1), since the
minor determinants of Jkv are monomials.

Finally we offer a complete characterization of self-dual affine monomial varieties.

Theorem 2.1.7. An affine monomial variety v is self-dual if and only if its lattice
set V satisfies the following properties:

1. The lattice set V is centrally symmetric.

2. There is a k ∈ N such that HV (k) = |V | − 1.

3. There is no m ∈ V such that HV \{m}(k) < |V | − 1.
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Proof. The necessity of the first property is simply Theorem 2.1.4.
The necessity of the second property follows from the fact that for the dimension

of Dualkv to be 1 for some k, we must have HV (k) = |V | − 1 by the preceeding
result.

The necessity of the third property is less obvious. Proceeding indirectly, we
assume that dim(Dualkv) = 1 for some k, and that one of the components of Dualkv
is zero. But the components of Dualkv are the determinants of the minors consisting
of t linearly independent rows of Jkv, modulo Lemma 2.1.8. If a component is
zero, then some minor determinant is zero, thus the rank of one of these minor
determinants is less than the rank of the full matrix of k-jets. Therefore the Hilbert
function of V minus the point left out corresponding to the deletion of the i-th
column (i.e. HV \{mi}) has dropped below the value of the Hilbert function of V .
This establishes necessity.

Conversely, if the lattice set is centrally symmetric and the nullity of Jkv reaches
1 for some k, then we can find a dual using Theorem 2.1.1, and furthermore the
lattice points will all be in ker Jkv if their coefficients are not zero. When the Hilbert
function of V \ {mi} is the same as the Hilbert function of V for all mi, none of
the minor determinants can be zero, and thus none of the coefficients can be zero
by the reverse of the argument of the necessity of Condition 3. This completes the
proof.

There remains only to prove the following technical result:

Lemma 2.1.8. Given an m× n matrix A with rank n− 1, let Ã be an (n− 1)× n
matrix consisting of any n− 1 linearly independent rows of A. Then

ker(A) = Span{(c1, . . . , cn)},

where cj is the determinant of the (n − 1) × (n − 1) submatrix of Ã obtained by
deleting the j-th column of Ã.

Proof. For a fixed i ∈ [1, n−1], let Di be the n×n matrix constructed by appending
the i-th row of Ã to the bottom of Ã. Then clearly det(Di) = 0 since it contains the
same row twice. Performing cofactor expansion along this additional bottom row,
we see that

0 = det(Di) =
n∑

k=1

(−1)n+kãikck.

However, this equation can also be interpreted as the explicit formulation of a matrix
multiplication: the product of the vector of determinant minors and any fixed row
of Ã is zero. Thus (c1, . . . , cn) ⊂ ker(A), and since we know that rank(A) = n− 1,
the result follows.

2.2 Duals are Self-Dual

In Sections 1.5.2 and 1.5.3 we saw that when comparing an affine monomial variety
to its dual, we sometimes lose elements of the lattice set. The remaining lattice



22 CHAPTER 2. THE RESULTS

points generate a self-dual affine monomial variety. In other words, if a variety has
a dual, then that dual is self-dual, as the following result shows.

Theorem 2.2.1. Suppose V is centrally symmetric, HV (k) = |V | − 1, and let
W = {m ∈ V : HV \{m}(k) < |V | − 1}. Then V \W = Dualkv generates a self-dual
affine monomial variety.

Proof. First, note that V \W is centrally symmetric since HV is invariant under the
change of coordinates taking each point to its reflection through the midpoint of V .

Now, let v and w be the standard affine monomial varieties corresponding to V
and V \W respectively. Then, by the proof of Theorem 2.1.7, Dualkv will have zero
entries in the components corresponding to the elements of W . Let L = Dualkv with
its zero entries removed. Then L, considered as a column vector, lies in ker Jkw,
since its product with each row of Jkw is zero.

On the other hand, if there were another element in a basis for ker Jkw then this
vector with zeros added in entries corresponding to elements of W would lie in ker Jkv
and would be linearly independent from Dualkv, which would be a contradiction.
We thus see that dim(ker Jkw) = 1, and since an element of ker Jkw has no zero
entries by construction, the proof of Theorem 2.1.7 shows that w is a self-dual affine
monomial variety.

2.3 A Theorem For Finding Self-Dual Varieties

According to the next theorem, the “generic” affine monomial variety will have the
correct Hilbert function– it will reach the number of points in the lattice set minus
1. This does not guarantee that Condition 3 of Theorem 2.1.7 will be satisfied, but
the construction used in the proof allows for a constructive search for self-duals.

Theorem 2.3.1 (Reichstein). 1

1. Fix an odd integer k = 2d + 1. Then for a generic choice of r points p1, . . . , pr

in C2 we have HV (k − 1) = |V | − 1 = 2r − 1 where r = d2 + d + 1 and
V = {p1, . . . , pr,−p1, . . . ,−pr}.

2. Similarly, if k = 2d is an even integer, for a generic choice of r points
p1, . . . , pr in C2 we have HV (k − 1) = |V | − 1 = 2r − 1 where r = d2 + 1
and V = {p1, . . . , pr,−p1, . . . ,−pr}.

Proof. Only the case where k is odd, k = 2d + 1, will be treated, as the case for
even k is similar.

First we make the definitions:

W := Span{xmyn ⊂ C[x, y] : m + n ≤ k − 1 = 2d}
W0 := Span{xmyn ⊂ W : m + n is odd}
W1 := Span{xmyn ⊂ W : m + n is even}.

1This result was received in private communication from Zinovy Reichstein at OSU.
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Since for each i there are exactly i + 1 monomials of degree i, we can see that

dim W0 = 1 + 3 + · · ·+ 2d + 1 = (d + 1)2

dim W1 = 2 + 4 + · · ·+ 2d = d(d + 1)

dim W = 1 + 2 + · · ·+ 2d + 1 = (d + 1)(2d + 1) = dim W0 + dim W1.

We make the notational convention that for any set of points S, W (S) will be
the subspace of those elements in W vanishing on S, and similarly for W0(S) and
W1(S).

We make the following two observations:

1. If S is symmetric about the origin then W (S) is a direct sum of W0(S) and
W1(S). In particular,

dim W (S) = dim W0(S) + dim W1(S).

2. For an arbitrary subset S ⊂ C2,

W0(S) = W0(S ∪ −S) and W1(S) = W1(S ∪ −S).

Now we are ready to construct V . Let i = d(d + 1) = dim W1 < dim W0. For a
generic choice of distinct points p1, . . . , pi ⊂ Z2, we have:

dim W0(p1, . . . , pi) = dim W0 − i = (d + 1)2 − i
dim W1(p1, . . . , pi) = dim W1 − i = d(d + 1)− i = 0

Combining the above two observations we see that

dim W (p1, . . . , pi,−p1, . . . ,−pi) = dim W0(p1, . . . , pi) + dim W1(p1, . . . , pi)

= (dim W0 − i) + (dim W1 − i)

= dim W − 2i

Now we add one more point pr where r = dim W1+1 = d(d+1)+1 = d2+d+1. If
we choose it generically, it will reduce the dimension of W0 by 1. On the other hand,
it cannot reduce the dimension of W1 any more because W1(p1, . . . , pi) is already
0-dimensional. Thus the two points pr and −pr impose only one additional linear
condition on W which causes the Hilbert function to be 1 less than its maximal
value. More precisely, if V = (p1, . . . , pr,−p1, . . . ,−pr), then

dim W (V ) = dim W0(p1, . . . , pr) + dim W1(p1, . . . , pr)

= (dim W0 − r) + 0 = dim W0 − r,

and thus

HV (k − 1) = dim W − dim W (V ) = dim W − dim W0 + r

= dim W1 + r = 2r − 1 = |V | − 1.

N.B. It will be important to note that we can define what we mean by “generic”
rather specifically: we construct the set of {p1, . . . , pr} by choosing pi so that it is
not in {0, p1, . . . , pi−1} and does not lie in the zero loci of two polynomials which we
can choose at random in W0(p1, . . . , pi−1) or W1(p1, . . . , pi−1).





Chapter 3

Examples of Self-Dual Affine
Monomial Varieties

This chapter consists of a list all of the self-dual varieties that we have found to
date. We are primarily interested in the standard, smooth, smoothly embedded
affine monomial varieties, since these are the ones that when glued together will
form well-behaved toric varieties. In order to see why this is true, we refer the
reader to a text on toric varieties such as [2] or [5].

3.1 The Self-Duals So Far

Definition 3.1.1. An affine monomial variety v is smoothly embedded if each
side of the convex hull of its associated lattice set V contains the first lattice point
on that side from each of the vertices.

We see in Figure 3.1 an example of a lattice set generating a smoothly embed-
ded variety, and one that generates a variety that is not smoothly embedded. In
particular, for the non-smoothly embedded lattice set, notice that the points (1, 2)
and (3, 2) are missing along the long sides of the convex hull.

Definition 3.1.2. An affine monomial variety v is smooth if for each vertex of
the convex hull of V the first lattice points along the adjacent edges form a basis for
the lattice when translated to the origin.

In Figure 3.2 we see two lattice sets which respectively generate smooth and non-
smooth affine monomial varieties. In particular for the non-smooth lattice, notice
that the set of vectors {(1, 0), (1, 2)} corresponding to the first points along the edges
from the origin do not form a basis for Z2.

3.2 Examples of Self-Dual Varieties

We list the self-duals we have found so far:
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Figure 3.1: A smoothly embedded lattice set and one that isn’t
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Figure 3.2: A smooth lattice set and one that isn’t
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1. Any curve v : C→ Ct+1 whose lattice set is centrally symmetric. This is easy
to see because n collinear points have no gaps in their Hilbert functions.

2. The three surfaces plus one infinite class of surfaces that were known before
the thesis, shown in Figure 3.3. They were found in [6] in conjunction with
studies of the inflectionary behavior of affine monomial varieties.

• Rectangles and parallelograms which include all of their interior points
(these are very special cases of Hirzebruch surfaces, in fact called Segre
embeddings of P1 × P1).

• V = {(0, 0), (1, 0), (2, 1), (2, 2), (1, 2), (0, 1)}
• V = {(0, 0), (1, 0), (2, 1), (3, 3), (3, 4), (2, 4), (1, 3), (0, 1)}

• V =
{(0, 0), (1, 0), (2, 1), (4, 4), (5, 6), (6, 9), (6, 10),

(5, 10), (4, 9), (2, 6), (1, 4), (0, 1)}

Figure 3.3: The four original surfaces
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3. Theorem 2.3.1 implies that the generic centrally symmetric lattice set will
satisfy Condition 2 of Theorem 2.1.7, provided it contains the right number
of points. Thus we need only construct a class of lattice sets that generically
satisfies Condition 3.

In fact, we have found an infinite class of smooth, smoothly embedded, self-
dual affine monomial varieties. For any (b, c, d, e) ∈ Z4 with c > b > 1 and
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d > e > 1, let

V =
{(0, 0), (1, 0), (0, 1), (b, 1), (c− 1, e), (c, d− 1),

(c, d), (c− 1, d), (c− b, d− 1), (1, d− e)}.

By construction, the variety corresponding to this lattice set is smooth for all
values of (b, c, d, e). It is also smooth by construction at all vertices except
(c− 1, e) and its opposite, (1, d− e). The condition that it be smooth at these
two points is given by:∣∣∣∣ 1 d− 1− e

b− c + 1 1− e

∣∣∣∣ = 1⇒ e =
(b− c + 1)(d− 1)

b− c
.

We will show that the one-parameter set generated by

(b, c, d, e) = (2, 5, 1 + 3k, 2k)

is self dual for each value of k. By substitution it satisfies the above smoothness
condition for all k > 0.

To check self-duality, we verify Conditions 1,2, and 3 of Theorem 2.1.7. By
construction, V is centrally symmetric, so Condition 1 is satisfied. To see
condition 2, use Maple or another computer algebra system to check that there
is a unique irreducible cubic through V . (To show irreducibility we checked
that the cubic’s projective closure is actually smooth.) The uniqueness of the
cubic implies that

HV (3) = 10− 1 = 9 = |V | − 1.

Thus Condition 2 is satisfied. Finally, by the following theorem, Condition 3
is satisfied generically.

Theorem 3.2.1. If there is a unique, irreducible cubic C through the centrally
symmetric points V = {p1, . . . , p10}, then C is the unique cubic passing through
V \ {pi} for 1 ≤ i ≤ 10.

Proof. First we translate V so it is centered at the origin, since this will not affect
the number of cubics passing through the points.

Let C̃ be a cubic vanishing on V \ {pi}. First we show that C̃ is odd.
Write C̃ = C̃O + C̃E as a sum of odd and even components. Then both C̃O

and C̃E vanish on the set V \ {pi,−pi}. Since C̃E meets C at the eight points
V \ {pi,−pi}, and deg(C̃E) ≤ 2, Bézout’s Theorem implies that if C̃E 6= 0 then it is
a factor of C. By assumption C is irreducible, hence C̃E = 0 and C̃ is odd.

Now we will show that C̃ passes through V . C̃ is satisfied by V \ {pi}, hence it
vanishes on −pi. But since C̃ is odd, C̃(pi) = −C̃(−pi) = 0. Thus C meets C̃ at 10
points, and two cubics can meet at no more than 9 points or they share a common
component, again by Bézout’s Theorem (see [1]). Therefore, since C is irreducible,
C = C̃.
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The following is an example of a 10-point set constructed as above: for the choice
of parameters (b, c, d, e) = (2, 5, 10, 6), we find that the resulting lattice set is

V = {(0, 0), (1, 0), (0, 1), (2, 1), (4, 6), (5, 9), (5, 10), (4, 10), (3, 9), (1, 4)}.

This lattice set is pictured in Figure 3.4, along with the unique cubic vanishing on
it.

Figure 3.4: V and the unique cubic vanishing on V
(b, c, d, e) = (2, 5, 10, 6)
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Using the ideas outlined above, one should be able to show that the following
2-parameter set of 10 lattice point sets gives rise to smooth, smoothly embedded,
self-dual varieties:

(b, c, d, e) = (2, j, 1 + (j − 2)k, (j − 3)k),

though we have not checked the details thoroughly yet.
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