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Abstract

The theory of divisors on graphs is a subject that has been discovered independently
through a variety of mathematical models. It closely resembles the theory of divisors
on algebraic curves in the field of algebraic geometry and can be thought of as being a
discrete version of algebraic curve divisors; many results from the algebraic geometry
theory of divisors have an analog in the graph-theoretic version. A higher-dimensional
generalization of divisor theory also exists, in which graphs are replaced by simplicial
complexes, though not as much is known about this generalization. This thesis will
begin with an overview of the theory of divisors on graphs, including definitions and
proofs of a variety of important results. This thesis will then introduce the theory of
divisors on simplicial complexes and prove a few new results for this theory, analogous
to the results on graphs.





Introduction

The dollar game is a simply stated but structurally complex game played on the
vertices and edges of a graph. It is one of many equivalent or related mathematical
models on a graph that have been discovered independently in various fields such
as statistical physics, probability theory, and graph theory. The dollar game and
its equivalent formulations are particularly interesting because they can be used to
develop a theory of divisors on graphs that closely mirrors the theory of divisors on
algebraic curves in the field of algebraic geometry. The parallel between algebraic ge-
ometry and graph theory goes so far as to include a graph-theoretic analog, proven by
Baker and Norine [1] in 2006, of the cornerstone Riemann-Roch theorem of algebraic
geometry. In 2011, [3] introduced a generalization of the theory of divisors on graphs
to a theory of divisors on simplicial complexes. Much less is known about the theory
of divisors on simplicial complexes than about the theory of divisors on graphs and
the aim of this thesis will be to reduce that gap.

Chapter 1 of this thesis will introduce the theory of divisors on graphs through the
dollar game model and then provide an overview of definitions and a variety of results
about divisors on graphs. Chapter 2 will introduce Duval, Klivans, and Martin’s [3]
generalization to a theory of divisors on simplicial complexes and prove a variety of
new results in this theory.





Chapter 1

Divisors on Graphs

1.1 The Dollar Game

To introduce the subject of divisors, we will begin with a simple game played on a
graph, called the dollar game. To describe it, we must first define what a graph is:

Definition 1.1. A graph G consists of a set V of vertices and a set E of edges,
where an edge is a pair of distinct vertices. A graph is connected if for every pair of
vertices v, v′ there is a sequence of vertices starting with v and ending with v′ such
that any two adjacent vertices in the sequence share an edge.

This definition precludes the possibility of multiple edges between two vertices, and an
edge from a vertex to itself, so this is more accurately an undirected graph without
multiple edges or loops. For the rest of this paper we will take graph to mean a
connected, undirected graph without multiple edges or loops.

The dollar game on a graph G then proceeds as follows. Initially, every vertex of G
has some number of dollars, possibly negative. We can make the following moves:

1. A single vertex of G can simultaneously receive one dollar from each neighboring
vertex (vertex it shares an edge with). This is called a borrowing move at a
vertex v.

2. A single vertex of G can simultaneously give one dollar to each neighboring
vertex. This is called a lending move at a vertex v.

The goal of the game is to end with every vertex having a nonnegative amount of
dollars.
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Example 1.1. As an example, lets consider the dollar game
played on the graph to the right, which we will call the dia-
mond graph. It has vertices V = {1, 2, 3, 4} and edges E =
{{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}}.

Suppose we start with −$1 on vertex 1, −$2 on vertex 2, $3 on
vertex 3, and $1 on vertex 4.

Can this game be won? It turns out the answer is yes; If we
borrow at vertex 1 and then borrow at vertex 2, every vertex
then has a nonnegative amount of dollars:

1

2 3

4

-$1

-$2 $3

$1

borrowing move at 1

$1

-$3 $2

$1

borrowing move at 2

$0

$0 $1

$0

The central question the first chapter of this paper will be concerned with is, in the
language of the dollar game: For which initial configurations of dollars on the vertices
of a graph is the dollar game able to be won?

To answer this question, we will first begin by formalizing the dollar game with the
language of divisors.

1.2 Definitions

Definition 1.2. Let G = (V,E) be a graph. A divisor of G is a formal sum of the
vertices of G with integer coefficients, i.e., anything of the form

D =
∑
v∈V

D(v)v

where each D(v) is an integer. The set of all divisors of G is thus equivalent to ZV ,
the free abelian group on the vertices of G.

If we fix an ordering of the vertices, V = {v1, v2, . . . , vn}, we can use it to construct
an isomorphism between the set of all divisors of G and Zn, where

∑
v∈V avv 7→
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(av1 , av2 , . . . , avn). For ease of notation, we will often refer to a divisor by its image
under this isomorphism, e.g., 2v1 + 3v3 = (2, 0, 3) in a graph with 3 vertices.

A divisor can be thought of as a formalization of assigning some number of dollars to
each vertex of a graph. The coefficient D(v) records the number of dollars at vertex
v for a divisor D.

Definition 1.3. Let G = (V,E) be a graph. A divisor D of G is effective if D(v) ≥ 0
for every vertex v ∈ V .

Effective divisors can be though of as winning states of the dollar game; every vertex
has a nonnegative amount of dollars.

Definition 1.4. Let G be a graph and D a divisor of G. The degree of D is the
sum of D(v) over all vertices:

deg D =
∑
v∈V

D(v).

The degree of a divisor is analogous to the total amount of wealth in an instance of
the dollar game.

Definition 1.5. Let G = (V,E) be a graph with |V | = n. The Laplacian L of G is
a linear function from Zn → Zn given by multiplication by the matrix also denoted
L where:

Lij =


deg(vi) i = j

−1 i 6= j, vivj ∈ E
0 i 6= j, vivj 6∈ E

Example 1.2. For the diamond graph, the Laplacian matrix is
as follows: 

2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2


1

2 3

4

Definition 1.6. Let G = (V,E) be a graph. A principal divisor is a divisor in the
image of the Laplacian of G.

Definition 1.7. Let G = (V,E) be a graph, and D1, D2 divisors on G. Then D1 is
linearly equivalent to D2 if D1 − D2 is a principal divisor. When D1 is linearly
equivalent to D2 we write D1 ∼ D2.
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The definition of linear equivalence captures the idea of being able to transform
one divisor to another through borrowing and lending moves. Notice that the ith

column of the Laplacian encodes a borrowing move at vertex vi. Therefore, a principal
divisor can be thought of as possible changes that could be made to a divisor after
some number of borrowing and lending moves, and linearly equivalent divisors are
those that can be changed into each other through borrowing and lending moves. To
highlight this correspondence, we will call L(ei), where ei is the ith standard basis
vector, a borrowing move at vi, and L(−ei) a lending move at vi. In this way, the
input to the Laplacian can be thought of as describing a script for a list of moves to
make in the dollar game; the ith component determines how many times to fire at
vertex vi. We will call an input of the Laplacian a firing script for G.

Example 1.3. Reinterpreting our dollar game example in this context, we started
with −1 dollars on vertex 1, −2 dollars on vertex 2, 3 dollars on vertex 3, and 1 dollar
on vertex 4, which corresponds to the divisor (−1,−2, 3, 1).

We then had vertices 1 and 2 each perform a borrowing move, corresponding to
adding L(1, 1, 0, 0) = (1, 2,−2,−1) to our divisor. This resulted in the effective
divisor (0, 0, 1, 0), demonstrating that our starting divisor was winnable.

Proposition 1.1. The degree of any principal divisor is 0.

Proof. This is clear through the dollar game analogy, a borrowing move does not
change the total amount of dollars present, so no sum of borrowing moves will.

Corollary 1.1. If D ∼ D′, then deg D = deg D′.

Proof. Since D ∼ D′, it follows that D = D′ + P for some principal divisor P . Then
deg D = deg D′ + deg P = deg D′, since deg is easily seen to be a linear function on
divisors.

Definition 1.8. Let G = (V,E) be a graph. A divisor on D on G is called winnable
if there exists an effective divisor D′ such that D ∼ D′. A firing script σ that realizes
this equivalence, i.e., D + L(σ) = D′, is called a winning firing script.

This final definition captures the idea of winning the dollar game, and when a divisor
is winnable will be our main focus from now on.

1.3 The Greedy Algorithm

We want to know how to determine when a divisor is winnable. One way to do this
is an algorithmic method called the Greedy Algorithm. It works as follows:
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Theorem 1.1. Let G = (V,E) be a graph and D a divisor. The following algorithm
computes whether D is winnable:

1. If D(v) ≥ 0 for every vertex v, then D is effective and therefore winnable.

2. Otherwise, choose a vertex v such that D(v) < 0 such that not all vertices other
than v have previously been chosen. If this is impossible, D is not winnable.

3. Perform a borrowing move at v, i.e., add the column of L corresponding to v to
D to create a divisor D′.

4. Repeat this algorithm with D′ instead of D, retaining the information about
which vertices have been chosen for a borrowing move.

For example, if we were to run the greedy algorithm on our dollar game example, it
would produce the same sequence of moves we used and demonstrate winnability. An
example where the greedy algorithm gives a negative answer is as follows:

Example 1.4. Consider the divisor (1,−2, 1,−1) on the dia-
mond graph. The greedy algorithm could proceed as follows:

1. Borrow at vertex 2, resulting in the divisor (0, 1, 0,−2).

2. Borrow at vertex 4, resulting in the divisor (0, 0,−1, 0).

3. Borrow at vertex 3, resulting in the divisor (−1,−1, 2,−1).

4. Borrow at vertex 2, resulting in the divisor (−2, 2, 1,−2).

5. Borrow at vertex 4, resulting in the divisor (−2, 1, 0, 0).

Now we have borrowed at every vertex except 1 already, so the
greedy algorithm will determine this divisor to be unwinnable.

1, $1

2, -$2 3, $1

4, -$1

To prove that this algorithm works, we use the following proposition:

Proposition 1.2. Let G be a graph and L its Laplacian. Then the kernel of L is the
span of σ = (1, 1, . . . , 1). Equivalently, the only way to leave a divisor unchanged is
to perform the same number of borrowing or same number of lending moves at each
of the vertices.

Proof. Consider a divisor D and a single vertex v of G. After borrowing at every
vertex, we will have increased D(v) by 1 for each edge containing v when we borrow
at v, and decreased D(v) by 1 for each edge vw when we borrow at w, for net 0 effect.
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Therefore L(1, 1, . . . , 1) = 0. To see that nothing else lies in the kernel, consider
σ ∈ kerL. Let v be a vertex for which σ(v) is maximal, and let k be its maximum
value. Then

0 = L(σ)(v) = k deg(v)−
∑
vw∈E

σ(w).

Now each σ(w) ≤ k, so the only way to achieve this equality is for σ(w) = k for each
w neighboring v. Since G is connected, iterating this argument for all w neighboring
v gives that σ = (k, k, . . . , k).

Proof of Theorem 1.1. Firstly, it is clear that if the algorithm finds D to be winnable,
it does so by producing a winning firing script, so D is winnable. It remains to show
that the algorithm always terminates and determines every winnable divisor to be
winnable.

If D is winnable, then there exists some winning firing script σ. By adding the
correct multiple of (1, 1, . . . , 1) we can construct σ′ = σ + n(1, 1, . . . , 1) such that σ′

is nonnegative in each component and 0 in some component. By Proposition 1.2,
D + L(σ′) = D + L(σ) is effective, so σ′ is a winning firing script for D. Now if
σ′i = 0, then D(vi) cannot be negative, as the only way to increase D(vi) using only
borrowing moves is to borrow at vi. Therefore, after we borrow at vertex vi as in the
greedy algorithm, to transform D into D′, σ′−ei is now a winning firing script for D′,
and retains the property that each component is nonnegative. Eventually we must
reach the point where the winning firing script is 0, and we thus have an effective
divisor.

If D is not winnable, consider the set of all divisors S that the algorithm iterates
through. For each D′ ∈ S, and each vertex v ∈ V , we have

D′(v) ≤ max(D(v), deg(v)− 1).

This is because the only way to increase D′(v) is to borrow at v, which only occurs
when the divisor is negative at v. Additionally, since the degree of all divisors in
S is constant, there is a minimum value of D′(v) at each v. Therefore S is a finite
set. Consequently, if the algorithm does not terminate, it repeats some divisor twice.
But by Proposition 1.2, this can only happen by performing the same number of
borrowing moves at each vertex, which contradicts the behavior of the algorithm.

1.4 Degree, Rank, and Riemann-Roch

While the greedy algorithm will determine if a divisor is winnable, it is useful to have
non-algorithmic methods of determining whether a divisor is winnable. One such way
is to look at the degree of the divisor. For example, the degree of the divisor can
sometimes immediately show that a divisor is not winnable:
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Proposition 1.3. Let G be a graph and D a divisor on G with deg(D) < 0. Then
D is not winnable.

Proof. Let D′ be an effective divisor. Then deg(D′) =
∑

v∈V D
′(v) ≥ 0, so deg(D) 6=

deg(D′) and therefore D is not linearly equivalent to D′.

More surprising is the fact that the degree of the divisor can also sometimes immedi-
ately show that a divisor is winnable. Intuitively, the idea is that if the total amount
of dollars in the graph is large enough, it should always be possible to win the dollar
game. Formally, this is stated:

Theorem 1.2. Let G be a graph. Then there exists an integer w such that every
divisor D with deg(D) ≥ w is winnable.

This is particular case of Theorem 2.3, and the proof will be deferred until then.
While I will not prove it here, w is actually quite easy to compute for a given graph
G = (V,E). It turns out that w = |E| − |V | + 1, a source for this fact can be found
in [2]. In particular, if G is a tree, w = 0, meaning that for a tree, the degree of a
divisor completely determines if it is winnable.

This theorem motivates the following definition, which can be thought of as a sort of
measure of how winnable a divisor D is:

Definition 1.9. Let G be a graph, D a divisor on G. The rank of D, r(D) is either
−1 if D is unwinnable, or if D is winnable, it is the largest integer r such that for
any effective divisor λ of degree r, D − λ is winnable.

Theorem 1.2 tells us that there exist divisors with arbitrarily large rank. This def-
inition serves to reinforce the analogy between divisors on graphs and divisors of
algebraic curves, as rank is an important part of the algebraic geometry theory of
divisors. The rank of a divisor is a central part of one of the cornerstone theorems
of algebraic geometry, the Riemann-Roch theorem. Somewhat miraculously, there
exists a combinatorial analog to this theorem, proven by Baker and Norine in [1]:

Theorem 1.3 (Riemann-Roch for Graphs). Let G be a graph, D a divisor on G, and
let K denote the divisor with K(v) = deg(v)− 2 for each vertex v in G. Then

r(D)− r(K −D) = deg(D)− w + 1

where w = |E| − |V |+ 1 as in Theorem 1.2.

Proof. See Baker and Norine [1] for proof.





Chapter 2

Divisors on Simplicial Complexes

The theory of divisors on graphs can be though of as a discrete analog of the the-
ory of divisors on algebraic curves, which has a generalization to divisors of higher-
dimensional algebraic varieties. It is natural to then ask if the theory of divisors on
graphs can be generalized to higher dimensions as well. Duval, Klivans, and Martin
[3] introduced such a generalization with their theory of divisors on simplicial com-
plexes. This chapter will introduce the theory of divisors on simplicial complexes
and prove some new results about simplicial divisors analogous to the results from
Chapter 1.

2.1 Definitions

Definition 2.1. A simplicial complex C is a finite collection of finite sets that is
closed under taking subsets, i.e., if B ∈ C and A ⊂ B, then A ∈ C.

The elements of C are called the faces of the simplicial complex. The dimension
of a face f is |f | − 1 , and the 0-dimensional faces of a simplicial complex are its
vertices. Any face of C that is not a subset of any other face of C is called a facet
of C, and we will often refer to a complex simply by its facets, as the rest of the faces
are determined by them.
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Example 2.1. We can turn the
diamond graph into the diamond
simplicial complex by adding two
2-dimensional faces {1, 2, 3} and
{2, 3, 4}.
The faces of this simplicial complex are

(−1)-d : ∅
0-d : {1}, {2}, {3}, {4}
1-d : {1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}
2-d : {1, 2, 3}, {2, 3, 4}.

The facets are {1, 2, 3}, {2, 3, 4}.

1

2 3

4

12 13

24 34

23

123

234

For our purposes, we also require a total order relation on the vertices of C. For
ease of notation, we will refer to a vertex by its position in the total order with a bar,
e.g., 3, and a face by the vertices it contains, in order, e.g., 135.

Note that if a simplicial complex has only 0-dimensional and 1-dimensional faces, it
contains the same information as a graph. In this way, simplicial complexes can be
thought of as higher-dimensional generalizations of graphs. This idea motivates the
following definition:

Definition 2.2. The 1-skeleton or underlying graph of a simplicial complex C
is the graph G = (V,E) where V is the set of vertices of C and E is the set of
1-dimensional faces of C.

Example 2.2. The diamond simplicial complex from Example 2.1 has the diamond
graph as its underlying graph.

Definition 2.3. An i-dimensional divisor D of a simplicial complex C is an element
of the free abelian group on the i-dimensional faces of C, i.e. ,

D =
∑

f an i-dimensional face of C

D(f)f.

The set of all i-dimensional divisors of a simplicial complex C is denoted by Ci.

As before, for ease of notation we will identify Ci with Zn, where n is the number of i-
dimensional faces of C. We will write D = (D(f1), . . . D(fn)), where the i-dimensional
faces are ordered in lexicographic order with respect to the vertex ordering.
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This definition of a divisor on a simplicial complex generalizes the definition for a
divisor on a graph, since a 0-dimensional divisor of a simplicial complex is the same
as a divisor on its underlying graph.

We also want a generalization of linear equivalence to higher-dimensional divisors,
which the next few definitions will provide.

Definition 2.4. The ith boundary map of a simplicial complex C, denoted by
∂i : Ci → Ci−1, is defined on faces as follows:

∂i(v0v1 · · · vi) =
i∑

k=0

(−1)kv0v1 · · · v̂k · · · vi

and extended linearly to Ci.

For example, in the diamond simplicial complex, ∂2(234) = 34− 24 + 23.

The Ci and ∂i form a sequence called the chain complex of C:

Ci Ci−1 · · · C1 C0 C−1 0
∂i ∂i−1 ∂2 ∂1 ∂0

It is called a chain complex because ∂i−1∂i = 0:

∂i−1(∂i(v0v1 · · · vi)) =
∑

j,k∈{0,...,i}, j 6=k

{
(−1)k(−1)jv0v1 · · · v̂j · · · v̂k · · · vi if j < k

(−1)k(−1)j−1v0v1 · · · v̂k · · · v̂j · · · vi if j > k
.

This is zero since the j = a, k = b term is the negative of the j = b, k = a term.

Definition 2.5. Let C be a simplicial complex. The ith Laplacian Li : Ci → Ci of
C is the map ∂i+1∂

t
i+1.
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Example 2.3. Consider the diamond
simplicial complex again. The map-
ping ∂2 is given by the following ma-
trix, with bases of faces in lexicograph-
ical order:

∂2 =


1 0
−1 0
1 1
0 −1
0 1



So L1 =


1 0
−1 0
1 1
0 −1
0 1


[
1 −1 1 0 0
0 0 1 −1 1

]

=


1 −1 1 0 0
−1 1 −1 0 0
1 −1 2 −1 1
0 0 −1 1 −1
0 0 1 −1 1


1

2 3

4

12 13

24 34

23

123

234

Thus, for example, L1(23) = 12−13+
2 · 23− 24 + 34.

It is not hard to verify that the 0th Laplacian L0 of a simplicial complex C coincides
with the Laplacian of the underlying graph of C, so this is a reasonable generalization
of the Laplacian to higher dimensions.

With higher-dimensional Laplacian operators defined, we can define linear equivalence
and winnability analogously to the 0-dimensional case:

Definition 2.6. Let C be a simplicial complex, and D an i-dimensional divisor of C.
Then D is effective if D(f) ≥ 0 for every i-dimensional face f of C.

Definition 2.7. Let C be a simplicial complex, and D an i-dimensional divisor of C.
Then D is a principal divisor if D = Li(σ) for some σ ∈ Ci.

Definition 2.8. Let C be a simplicial complex, andD,D′ be an i-dimensional divisors
of C. Then D and D′ are linearly equivalent if D −D′ is a principal divisor. As
before, we denote linear equivalence by D ∼ D′.

Definition 2.9. Let C be a simplicial complex, and D an i-dimensional divisor of C.
Then D is winnable if there exists an i-dimensional divisor D′ on C such that D′ is
effective and D ∼ D′.

The goal of the following sections will be to reexamine the question of when a divisor
is winnable, for higher order divisors.
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2.2 The Positive Kernel

This section discusses a set that will be necessary to understand for the following
sections: the positive kernel of a simplicial complex.

Definition 2.10. Let C be a simplicial complex. The ith positive kernel is the set

{(x1, . . . , xn) ∈ Zn | Li(x1, . . . , xn) = 0, xk ≥ 0 for k = 1, . . . , n}.

The significance of this set will become apparent later, but first we will prove some
results about the positive kernel. To do so, we must first discuss rational convex
cones.

Definition 2.11. A convex cone is a set Q ⊂ Rn that is closed under linear com-
binations with nonnegative coefficients. That is, if x, y ∈ Q and α, β ≥ 0, then
αx+ βy ∈ Q

Definition 2.12. A set of points X = {x1, . . . , xk} finitely generates a cone Q if

Q = {α1x1 + · · ·+ αnxn | αi ≥ 0}.

A cone is called rational and polyhedral if there exists a set of integer valued points
that finitely generates it.

Though our cones live in Rn, we will be concerned with the set of integer valued
points in a cone. Relevant to this set is the concept of a Hilbert basis of a cone:

Definition 2.13. Let Q be a rational polyhedral cone. A finite set {x1, . . . , xk} ⊂ Zn

is a Hilbert basis for Q if every integer-valued point in Q can be written as a linear
combination of x1, . . . , xk with nonnegative integer coefficients.

Theorem 2.1 (Uniqueness and Existence of Hilbert bases). Let Q be a rational
polyhedral cone that is pointed, meaning that Q \ {0} is contained within some open
half-space of Rn. Then there exists a unique minimal Hilbert basis of Q (minimal
relative to taking subsets).

Proof. Existence: Let {x1, . . . , xk} be a finite set of integral generators of Q. Then
let y1, . . . , yt be the set of all integral points in

{λ1x1 + · · ·+ λkxk | 0 ≤ λi ≤ 1, i = 1, . . . , k}.

We know that there are finitely many yi because the above set is bounded. Then
{y1, . . . , yt} forms a Hilbert basis for Q. To see this, consider an arbitrary integral
point

x = α1x1 + · · ·+ αkxk ∈ Q
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with αi ≥ 0. Then

x = bα1cx1 + · · ·+ bαkcxk + (α1 − bα1c)x1 + · · ·+ (αk − bαkc)xk.

Now each of x1, . . . , xk and (α1 − bα1c)x1 + · · ·+ (αk − bαkc)xk is in {y1, . . . , yt}, so
x is a nonnegative linear combination of yi.

Uniqueness: Consider the set

H = {x ∈ Q | x 6= 0, x ∈ Zn, x is not a sum of two nonzero integral points in Q}.

Clearly this set is contained in any Hilbert basis of Q, so if it itself is a Hilbert basis,
then it is the unique minimal Hilbert basis. Since Q \ {0} is contained in some open
half-space of Rn, there must be a vector b such that b ·x > 0 for all x ∈ Q, x 6= 0. Now
suppose there is an integral point a ∈ Q that is not a nonnegative linear combination
of points in H, and suppose b · a is minimal over all such points. Since a 6∈ H,
a = a1 + a2 for some a1, a2 ∈ Q. But then b · a1 = b · a − b · a2 < b · a so a1 is a
nonnegative linear combination of points in H by minimality of a. Similarly a2 is a
nonnegative linear combination of points in H, so a must also be. Therefore H is the
unique minimal Hilbert basis for Q.

The relevance of the theory of rational cones to our problem lies in the fact that the
positive kernel is in fact the set of integral points of a pointed polyhedral rational
cone:

Proposition 2.1. Let C be a simpicial complex and Li its ith Laplacian. Let LR
i :

Rn → Rn be the linear extension of Li to Rn. Then Q = kerLR
i ∩O+ is a pointed poly-

hedral rational cone, where O+ denotes the positive orthant: O+ = {(x1, . . . , xn) ∈
Rn | xi ≥ 0, i = 1, . . . , n}.

Furthermore, the set of integral points of Q is exactly the ith positive kernel of C.

Proof. It is clear by the definition of Q and the positive kernel that the positive kernel
is the set of integral points of Q. Now kerLi is a subspace of Rn which has integral
valued generators, so it is a rational polyhedral cone. The set O+ is generated as
a cone by the standard basis vectors, so it is also a rational polyhedral cone. The
intersection of two rational polyhedral cones is again a rational polyhedral cone, so
Q is a rational polyhedral cone. Additionally,

Q \ {0} ⊂ O+ \ {0} ⊂ {x ∈ Rn | x · (1, 1, 1, . . . , 1) > 0},

so Q is pointed.

The theory of rational cones therefore allows us to discuss the unique minimal Hilbert
basis of the ith positive kernel of C, which we will refer to as the ith Hilbert basis
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of C. The remainder of the section will be dedicated to examining the positive kernel
and its Hilbert basis.

To understand the positive kernel it is important to first understand the kernel of the
Laplacian. The kernel of the Laplacian is

kerLi = ker ∂i+1∂
t
i+1 = ker ∂ti+1,

by a standard result in linear algebra.

This is useful because of the chain property of the boundary maps: im ∂ti ⊂ ker ∂ti+1 =
kerLi, and the image of ∂ti is easier to understand in general. In fact, we can give a
combinatorial description of a generating set:

Definition 2.14. The star Sf at an i− 1-dimensional face f = v0v1 · · · vi−1 of C is
defined as ∂ti(f). It takes the following form:

Sf =
∑

v0v1···vkvvk+1···vi−1∈C

(−1)k+1v0v1 · · · vkvvk+1 · · · vi−1

The sum is over all i-dimensional faces of C that contain f , and the sign depends on
where the new vertex lies with regards to the order of vertices of f .

The name star comes from the fact that it is the sum of all divisors radiating from
some face, with varying signs.

Example 2.4. Returning to our ex-
ample complex, the star S2 at vertex
2 is

S2 = 12− 23− 24

and the star S23 at edge 23 is

S23 = 234 + 123.

We can also verify that these are both
in the kernel of their respective Lapla-
cians, since we know L1, and L2 = 0:

L1(S2) = (12− 13 + 23)

− (12− 13 + 2 · 23− 24 + 34)− (−23 + 24− 34)

= 0.
1

2 3

4

12 13

24 34

23

123

234

These stars generate im ∂ti , and all lie in the kernel of the Laplacian. They also allow
us to prove a key fact about the kernel of the Laplacian:
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Proposition 2.2. There exists an element p = (p1, . . . , pn) in kerLi such that pj is
strictly positive for all j.

Proof. Assume for contradiction that no such element exists. Then for every ele-
ment D in kerLi, let m denote the least (in lexicographic ordering) i-dimensional
face such that D(m) ≤ 0.

Let Dmax be an element of the kernel that maximizes m. Let v0 · · · vi be this max-
imal m. Consider the star S = Sv1v2···vi . The coefficient of m in S is 1, and if
m′ is another i-dimensional face such that m′ < m, then m′ begins with a vertex
smaller than v1 meaning one of the two cases occurs: either m′ = v′v1v2 · · · vn, in
which case the coefficient of m′ in S is 1, or m′ does not contain v1v2 · · · vi at all, and
the coefficient of m′ in S is 0. Either way, if m′ < m, the coefficient of m′ in S is
nonnegative.

Now consider D′ = Dmax + (1 − Dmax(m))S. This is an element of the kernel, and
D′(f) > 0 for all faces f ≤ m. But this contradicts the maximality of m, so our
initial assumption must be false.

Corollary 2.1. The Z-span of the positive kernel is kerLi. Consequently, the or-
thogonal complement of the positive kernel is the same as (kerLi)

⊥.

Proof. Let p be as in Proposition 2.2. Then we can extend {p} to a basis for kerLi,
{p, β2, β3, . . . , βk}. For any integer N ,

{p, β2 + pN, β3 + pN, . . . , βk + pN}

is also a basis for kerLi. If N is sufficiently large,

{p, β2 + pN, β3 + pN, . . . , βk + pN}

will be contained within the positive kernel, implying the result.

The stars can also be used to concretely construct elements of the positive kernel, as
shown in the following theorem.

Theorem 2.2. Let C be a simplicial complex, and let f1, f2, . . . , fn be the lexicographic
ordering of its (i− 1)-dimensional faces. Then the following set S of elements all lie
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in the ith positive kernel:

(−1)iSf1

(−1)i(Sf1 + Sf2)

(−1)i(Sf1 + Sf2 + Sf3)

(−1)i(Sf1 + Sf2 + ...+ Sf4)

...

(−1)i(Sf1 + Sf2 + ...+ Sfn)

Furthermore,

1. If H i = ker ∂ti+1/im ∂ti is trivial, kerLi = span (S).

2. If i = 1 and H1 is trivial, then the first n − 1 elements of S form a basis for
kerLi.

3. If i = 1, H1 is trivial, and for each vertex j except 1, (j − 1)j is an edge of C,
then this is the unique minimal Hilbert basis of the positive kernel.

Proof. Since each star lies in kerLi, each sum also lies in kerLi, so we need only to
show each sum has only nonnegative coefficients.

Consider the coefficient of v0v1 · · · vi in (−1)i(Sf1 + Sf2 + ... + Sft). The stars that
contribute are those that correspond to subfaces of v0v1 · · · vi.

The first subface to appear in the lexicographic ordering is v0v1 · · · vi−1, in which the
coefficient of v0v1 · · · vi is (−1)i. The second subface to appear is v0v1 · · · vi−2vi, in
which the coefficient of v0v1 · · · vi is (−1)i−1. This pattern continues, with the sign
of the coefficient contributed by the star corresponding to the next subface flipping
each time.

Therefore, the coefficient of v0v1 · · · vi in (−1)i(Sf1 + Sf2 + ...+ Sft) is simply

(1− 1 + 1− 1 + 1− · · · ± 1) = 1 or 0

so each (−1)i(Sf1 + Sf2 + ...+ Sft) is in the positive kernel.

If H i is trivial, then im ∂ti = ker ∂ti+1 = kerLi, and S spans im ∂ti , since the stars do,
so S spans kerLi.

If i = 1, then consider any linear combination a1Sf1 + · · ·+ anSfn−1 of the first n− 1
stars. Its boundary is

∂1(a1Sf1 + · · ·+ anSfn−1) = ∂1∂
t
1(a1f1 + · · · an−1fn−1) = L0(a1f1 + · · · an−1fn−1)
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By Proposition 1.1, this is nonzero, and therefore a1Sf1 + · · · + anSfn−1 is nonzero.
Therefore the first n− 1 elements are linearly independent. Additionally, considering
the coefficient of each face, we can see that −(Sf1 + Sf2 + ... + Sfn) = 0. If H1 is
trivial, S also spans kerLi, and the first n− 1 elements of S therefore form a basis of
kerLi.

Now assume H1 is trivial and i = 1, and that for each vertex j except 1, (j − 1)j is
an edge of C.

The coefficient of (j − 1)j in Sj−1 is −1, in Sj is 1, and in all other 1-dimensional

stars is 0. Therefore, the only element of S with nonzero coefficient of (j − 1)j is
−(S1 + S2 + ...+ Sj−1), which has coefficient 1.

Now by previous results, if x is in the positive kernel, x can be written as

x = a1(−S1) + a2(−S1 − S2) + + · · ·+ an−1(−S1 − S2 − · · · − Sn−1).

Then the coefficient of (j − 1)j in x is aj−1, so aj−1 ≥ 0, and therefore we have
actually written x as a nonnegative linear combination in the first n − 1 elements
of S, so the first n − 1 elements of S form a Hilbert basis for the positive kernel.
This Hilbert basis is also minimal, because the first n− 1 elements of S are linearly
independent.

Example 2.5. Our example complex happens
to satisfy all of the hypotheses needed for this
theorem to give a Hilbert basis: 12, 23, 34 all
are edges of the diamond simplicial complex,
and cohomology calculations in topology tell
us that H1 is trivial. Computation gives

−S1 = 12 + 13

−S1 − S2 = 12 + 13− (12− 23− 24)

= 13 + 23 + 24

−S1 − S2 − S3 = 13 + 23 + 24− (13 + 23− 34)

= 24 + 34

Therefore,

12 + 13

13 + 23 + 24

24 + 34

is the minimal Hilbert basis for the 1st positive
kernel of the diamond complex.

1

2 3

4

12 13

24 34

23

123

234



2.3. The Greedy Algorithm 21

2.3 The Greedy Algorithm

One natural question to ask about higher order divisors is whether or not there is a
generalization of the greedy algorithm that works for divisors of higher dimension.
While we could simply apply the greedy algorithm to a higher-dimensional divisor, it
no longer gives accurate results, and may even never terminate.

Example 2.6. Examining the dia-
mond simplicial complex again, we
can look at the 1-dimensional divisor
(−1, 0, 0, 0, 0). If we were to naively
apply the 0-dimensional greedy algo-
rithm to this divisor, it might proceed
as follows:

1. Start with the divisor
(−1, 0, 0, 0, 0).

2. Borrow at edge 12 to obtain the
divisor (0,−1, 1, 0, 0).

3. Borrow at edge 13 to obtain the
divisor (−1, 0, 0, 0, 0).

But now we are back where we started,
and the greedy algorithm will just cy-
cle between these two divisors.

1

2 3

4

12 13

24 34

23

123

234

There were three key facts that the proof of the 0-dimensional greedy algorithm relied
on that are no longer true for higher dimensions:

1. The kernel of L0 is span (1, 1, . . . , 1).

2. The only borrowing move that increases a divisor’s value at vertex v is the
borrowing move at v.

3. The degree of a divisor is invariant under linear equivalence.

The first fact can be resolved through appeal to the Hilbert basis of the positive ker-
nel. Instead of requiring that the greedy algorithm avoids borrowing at all vertices,
we can require that the greedy algorithm avoids borrowing at any combination (with
multiplicity) of vertices that lies in the Hilbert basis. For example, in the previous
example, instead of borrowing at 13, the greedy algorithm would correctly conclude
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(−1, 0, 0, 0, 0) to be unwinnable, since 13 + 23 lies in the Hilbert basis. This will
prevent the greedy algorithm from becoming stuck in a loop as in the previous ex-
ample, since a sequence of borrowing moves that leaves a divisor unchanged lies in
the positive kernel, and some subset of those moves must therefore be in the Hilbert
basis. However, even with this modification, it is still possible for this modified greedy
algorithm to fail:

Example 2.7. Examining the diamond sim-
plicial complex again, this time looking at the
divisor (−2, 2,−4, 2,−2). Our modified greedy
algorithm might proceed as follows:

1. Start with the divisor (−2, 2,−4, 2,−2).

2. Borrow at edge 12 to obtain the divisor
(−1, 1,−3, 2,−2).

3. Borrow at edge 12 to obtain the divisor
(0, 0,−2, 2,−2).

4. Borrow at edge 23 to obtain the divisor
(1,−1, 0, 1,−1).

5. Borrow at edge 34 to obtain the divisor
(1,−1, 1, 0, 0).

6. Since 12 + 13 is in the Hilbert basis, we
cannot borrow at 13, so the greedy al-
gorithm will determine this divisor to be
unwinnable.

1

2 3

4

12 13

24 34

23

123

234

But this divisor is winnable, as performing that last borrowing move would show; it
is linearly equivalent to 0. Note that the output of the greedy algorithm depends on
how we chose at which edge to borrow, when we did have a choice. If we had instead
chosen to borrow at 23 twice to begin with, the algorithm would have correctly found
the divisor to be winnable.

The issue now is that second fact about 0-dimensional divisors that fails to hold
in higher dimensions. It is possible to increase the value of a divisor at a face by
borrowing at some other face. By Proposition 2.2, if a divisor is winnable, then, as in
the 0-dimensional case, it can be won by only borrowing moves. Additionally, there
must be a winning sequence of borrowing moves that avoids anything in the Hilbert
basis for the positive kernel. But a borrowing move at any negative vertex is no longer
guaranteed to be a part of this winning sequence of borrowing moves, so we can no
longer be sure that the greedy algorithm will reach this sequence.
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This second fact does not seem to have a simple fix or generalization to divisors of
higher dimension, and because of it, neither does the greedy algorithm.

The third fact, that the degree of a divisor was invariant under linear equivalence, and
which was used in to demonstrate termination of the 0-dimensional greedy algorithm,
does have a nice generalization to higher dimensions. The following section will
explore that generalization.

2.4 Degrees

The naive generalization for the degree of a d-dimensional divisor to be the sum
of the coefficients of the d-dimensional faces is no longer particularly useful, as it
is no longer an invariant of linear equivalence. We instead generalize to a different
invariant, which we will call the degree vector of a divisor:

Definition 2.15. Let H = {h1, ..., hk} be the Hilbert basis for the positive kernel
of Ld. Then the degree vector of a d-dimensional divisor D is

deg(D) = (〈h1, D〉, . . . , 〈hk, D〉)

where the inner product is the usual inner product with respect to the standard basis.

This definition retains many of the properties that the definition of degree had in the
graph case:

Proposition 2.3. The degree vector is invariant under linear equivalence.

Proof. It suffices to show that 〈Ldx, hi〉 = 0 for any x ∈ Cd and any hi. But the
Laplacian is self-adjoint since Lt

d = Ld, so 〈Ldx, hi〉 = 〈x, Ldhi〉 = 〈x, 0〉 = 0.

Corollary 2.2. A divisor is winnable only if its degree vector lies in the positive
orthant.

Proof. A winnable divisor D is linearly equivalent to an effective divisor D′. Then
deg(D) = deg(D′) and the degree vector of an effective divisor is clearly in the positive
orthant.

Most notably, the fact that any 0-dimensional divisor of sufficiently high degree is
winnable also generalizes to higher dimensions. To prove this, we will use the following
lemmas:
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Lemma 2.1. Let M ⊂ Rn be a linear subspace containing an element y = (y1, . . . , yn)
such that yi > 0 for each i = 1, . . . , n. Then the following equality of sets holds:

M⊥ +O+ =
⋂

m∈M∩O+

(m⊥ +O+)

where the sum is a Minkowski sum of sets.

Proof. Since M⊥ and O+ are both convex polyhedra in Rn, so is their sum M⊥+O+.
Therefore, M⊥ + O+ can be expressed as the intersection of some number of half-
spaces:

M⊥ +O+ =
l⋂

i=1

Hi

where each Hi is a half-space with bounding half-plane Pi such that

M⊥ +O+ ⊂ Hi and (M⊥ +O+) ∩ Pi 6= ∅.

Now (M⊥ + O+) ∩ Pi is a non-empty face of M⊥ + O+, so it can be expressed as a
sum of a non-empty face of M⊥ and a non-empty face of O+. Every non-empty face
of both M⊥ and O+ contains 0, so (M⊥ +O+) ∩ Pi also contains 0.

Let x ∈ M⊥. Since Pi contains 0, either x ∈ Pi or x and −x lie on opposite sides
of Pi. But x and −x are both in M⊥ + O+, so they cannot lie on opposite sides of
Pi. Therefore M⊥ ⊂ Pi. Taking the orthogonal complement of both sides reverses
the containment, and we have P⊥i ⊂M .

Let pi = (pi,1, . . . , pi,n) ∈ P⊥i . Assume for contradiction that there exists j, k such
that pi,j > 0 and pi,k < 0. Without loss of generality, j = 1, k = 2. Then there exists
a vector of the form x = (1 +a, 1 + b, 1, 1, . . . , 1) with a, b > 0 such that x · pi = 0 and
x ∈ Pi. But for sufficiently small ε, Both x− εpi and x+ εpi are in O+, contradicting
the fact that O+ lies entirely on one side of Pi. Therefore pi or −pi lies in O+.

Combining these two facts we can write Pi = m⊥i for some mi ∈ M ∩ O+. Since O+

lies entirely on one side of Pi, and span(O+) = Rn, we can then write Hi = m⊥i +O+.

We therefore have:

M⊥ +O+ =
l⋂

i=1

(m⊥i +O+) ⊃
⋂

m∈M∩O+

(m⊥ +O+).

where the containment follows because the left hand side is an intersection of a sub-
collection of the sets in the right hand side intersection.

The reverse containment is clear, since M⊥ ⊂ m⊥ for any m ∈M .
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Taking M = ker Li gives the following corollary:

Corollary 2.3. There exists a finite set P of i-dimensional divisors such that for
every i-dimensional divisor D with an entirely nonnegative degree vector, there exists
some p ∈ P and some effective divisor D′ such that

deg(D) = deg(D′ + p)

Proof. By Proposition 2.2, kerLR
i contains a fully positive element Y , so Lemma 2.1

applies to kerLR
i . We can then intersect with Zn to obtain the following,

((kerLR
i )⊥ +O+) ∩ Zn = (

⋂
m∈kerLR

i ∩O+

(m⊥ +O+)) ∩ Zn.

Now both (kerLR
i )⊥ and O+ are rational polyhedral cones and can thus be written

as a Minkowski sum of the integral points they contain and some compact set:

(kerLR
i )⊥ = ((kerLR

i )⊥ ∩ Zn) + P1

O+ = (O+ ∩ Zn) + P2

for some compact sets P1 and P2.

Putting these together gives

((kerLR
i )⊥ +O+) ∩ Zn = (((kerLR

i )⊥ ∩ Zn) + (O+ ∩ Zn) + P1 + P2) ∩ Zn

= ((kerLR
i )⊥ ∩ Zn) + (O+ ∩ Zn) + ((P1 + P2) ∩ Zn)

Taking P = ((P1 + P2) ∩ Zn), which is a finite set since P1 + P2 is compact,

((kerLR
i )⊥ ∩ Zn) + (O+ ∩ Zn) + ((P1 + P2) ∩ Zn)

is the set of all divisors that can be written as D0 + D′ + p, where D0 has degree
vector 0, D′ is effective, and p ∈ P . Alternatively, it is the set of all divisors who
have the same degree vector as D′ + p for some effective divisor D′ and p ∈ P .

Considering the right-hand side of our original equation, for each m ∈ kerLR
i ∩ O+,

m⊥ +O+ = {D ∈ Rn | D ·m ≥ 0}

and therefore

(
⋂

m∈kerLR
i ∩O+

(m⊥ +O+)) ∩ Zn =
⋂

m∈kerLR
i ∩O+

{D ∈ Zn | D ·m ≥ 0}

In particular, when m = hi is an element of the Hilbert basis of the positive kernel,
this is the set of divisors whose ith degree is nonnegative. Therefore the right hand side
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contains only divisors whose degrees are all nonnegative. Additionally, if a divisor D
has all nonnegative degrees, then for any m ∈ kerLR

i ∩O+, we can express m in terms
of the Hilbert basis:

m = c1h1 + · · ·+ ckhk

for some nonnegative ci. Therefore

D ·m = c1(D · h1) + · · ·+ ck(D · hk) ≥ 0

Therefore the right-hand side of our original equality is the set of all divisors with
nonnegative degrees, and the conclusion follows.

We also need another lemma:

Lemma 2.2. Let C be a simplicial complex, and Li its ith Laplacian. Then im Li ⊂
(kerLi)

⊥ and (kerLi)
⊥/im Li is a finite group.

Proof. Consider the linear extension of Li to Rn, which we will denote by LR
i : Rn →

Rn. Then (kerLi)
⊥ is the set of all integral points in (kerLR

i )⊥, a lattice in (kerLR
i )⊥.

Additionally, im Li is a lattice in im LR
i .

Now consider LR
i x in the image of LR

i and k ∈ kerLR
i . Then since Lt

i = (∂i+1∂
t
i+1)

t =
∂i+1∂

t
i+1 = Li,

〈LR
i x, k〉 = 〈x, (LR

i )tk〉 = 〈x, LR
i k〉 = 〈x, 0〉 = 0.

So im LR
i ⊂ (kerLR

i )⊥. By rank-nullity, these two spaces have the same dimension,
and are thus equal.

Putting everything together, we find that im Li is a sublattice of (kerLi)
⊥, and the

conclusion follows.

With this corollary and lemma we can now prove the following theorem:

Theorem 2.3. Let C be a simplicial complex. Then there exists a degree vector
w = (w1, . . . , wk) such that every divisor D of C with deg(D)i ≥ wi for all i = 1, . . . , k
is winnable.

Proof. Let P be the finite set of divisors as in Lemma 2.1. Since it is finite, P lies
within some sphere of radius r1 ∈ Z centered around the origin.

By Lemma 2.2, (kerLd)
⊥/(im Ld) is a finite group. Let S then be a finite set of coset

representatives for (kerLd)
⊥/(im Ld) in (kerLd)

⊥. Since it is finite, S is bounded
within some sphere of radius r2 ∈ Z centered around the origin.
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Let D be a divisor whose degrees are greater than deg(r1 + r2, r1 + r2, . . . , r1 + r2).
Then D− (r1 + r2, r1 + r2, . . . , r1 + r2) is a divisor whose degrees are all nonnegative.
By Corollary 2.3, there exists D′ effective and p ∈ P such that deg(D′+p) = deg(D−
(r1 + r2, r1 + r2, . . . , r1 + r2)). By the definition of S, there exists some s ∈ S such
that

D − (r1 + r2, r1 + r2, . . . , r1 + r2) ∼ D′ + p+ s

and therefore
D ∼ D′ + p+ s+ (r1 + r2, r1 + r2, . . . , r1 + r2).

By the definition of r1 and r2, we have that p+ s+ (r1 + r2, r1 + r2, . . . , r1 + r2) is an
effective divisor, so D′+p+s+(r1 + r2, r1 + r2, . . . , r1 + r2) is too, and D is winnable.

2.5 Future Directions

The results discussed in this chapter naturally lead to further questions about sim-
plicial divisors. For example, while we have shown the greedy algorithm and simple
modifications to it to fail for simplicial complexes, is there some other efficient algo-
rithm for determining if a divisor is winnable? Currently, algorithms for determining
if a simplicial divisor is winnable involve determining if integer points exists inside
some polytope which is known to be an NP-hard problem. Is determining if a divisor
of an arbitrary graph is winnable also NP-hard, or is there a more efficient algorithm?

Secondly, while we know that there exists some degree vector w, such that any divisor
with degree vector at least w is winnable, we do not know what w is for an arbitrary
simplicial complex as we do for the analogous statement of a graph. Determining
what the minimal w is and if there even is a unique minimal w (since degree vectors
only have a partial ordering instead of a total ordering), would be an interesting
problem to study in the future. Additionally, we do not currently know when w = 0
suffices for a simplicial divisor to be winnable. Is it the case that w = 0 suffices if
and only if our complex is a simplicial tree, as was the case for graphs? Answering
this question would be another interesting problem for the future.
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