
The Structure of the Jacobian Group of a Graph

A Thesis

Presented to

The Division of Mathematics and Natural Sciences

Reed College

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Arts

Tessa Hoppenfeld

May 2014





Approved for the Division
(Mathematics)

David Perkinson





Acknowledgements

I’d like to thank my parents, Bobby, and my uncle Jeff for all their support. My
advisor, Dave Perkinson, for showing me a glimpse of the beauty of math. To Maggie,
Allie, Emily, Heather, Karen, Natalie, the lovely ladies who made my house a home,
and all of my other friends and family: you’ve pushed me to be my best and helped
me grow to who I’ve become. I love you all.





Table of Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.1 Divisors on graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.2 The structure of a finite abelian group. . . . . . . . . . . . . . . . . . 4

Chapter 1: First Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2: Lorenzini’s Theorem and Applications . . . . . . . . . . . . 11

2.1 New Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21





List of Figures

1 Example of a Labeled Graph . . . . . . . . . . . . . . . . . . . . . . . 1

2 Distribution of Wealth on a Graph . . . . . . . . . . . . . . . . . . . 1

3 Example Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Invariant Factors for All Connected Subgraphs of K5. . . . . . . . . . 17

2.2 C6 and C5 Connected By a Sink Vertex and an Edge . . . . . . . . . 18





Abstract

This thesis explores the structure of the Jacobian group of a graph. We begin by
defining the structure of finite abelian groups in terms of invariant factors and follow
with simple examples of Jacobian groups. We then focus on how the number of
invariant factors can change when removing edges. In Lorenzini [2008], it is shown
that the number of invariant factors changes by at most 1 when an edge is removed
from a graph and that if a path graph of n − 3 edges is removed from the complete
graph on n vertices, the resulting graph has cyclic Jacobian group. We determine
the size of that cyclic group in terms of Chebyshev polynomials of the second kind.
Removing edges tends to decrease the number of invariant factors of the corresponding
Jacobian groups. We present a family of graphs such that removal of an edge results
in a graph for which the number of invariant factors increases.
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Introduction

To understand the question we wish to answer in this thesis, we first need some
intuition on the subject. Let us introduce the dollar game.

Let G = (V,E) be a graph with vertex set V and a multiset of edges, E. Consider
the graph G, where there are four vertices, labeled v1 to v4:

V1

V2

V3

V4

Figure 1: Example of a Labeled Graph

Let each vertex on G represent a person playing the dollar game. Some people have
stronger relationships than others. Some people will be wealthier than others, and
some will be in debt. We can represent the wealth of each person by assigning numbers
to each vertex.

1

3

-2

4

Figure 2: Distribution of Wealth on a Graph

Each person can lend or borrow a dollar along each edge. If someone lends a dollar,
they must lend a dollar on each edge to an adjacent person.
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Let us play a game as an example:

1

4

-2

2

2

1

-1

3

2

0

1

2
V    lends2 V    borrows3

Figure 3: Example Game

Now, everyone is out of debt. If a game can be played such that a sequence of lending
and borrowing moves takes everyone out of debt, then the game is said to be winnable.
We can also play a game where there are multiple edges between players. We show
the strength of the relationship by the number of edges between vertices. The rules
regarding lending along edges remain the same.

0.1 Divisors on graphs.

We will now discuss the theory behind our game more formally. The distribution of
wealth among vertices is called the divisor on G. We will use Baker and Norine [2007]
as a guide for this section.

Definition 0.1.1. A divisor, D, is an element of the free abelian group on the vertices:

Div(G) =

{∑
v∈V

avv : v ∈ V

}
.

The degree of D ∈ Div(G) is deg(D) =
∑

v∈V D(v). We say two divisos D,D′ ∈
Div(G) are linearly equivalent, denoted D ∼ D′, if D′ may be obtained from D by a
sequence of lending and borrowing moves.

Example 0.1.1. For instance, in Figure 3, the starting distribution of wealth is
D = v1 + 4 v2 − 2 v3 + 2 v4. The ending distribution of wealth is D′ = 2 v1 + v3 + 2 v4
Note that D ∼ D′, and that deg(D) = deg(D′) = 5.

In general, all divisors in an equivalence class will have the same degree.

Definition 0.1.2. The divisor class for D ∈ Div(G) is

[D] := {D′ ∈ Div(G) : D′ ∼ D}

and the collection of divisors is called the Picard group:

Pic(G) := Div(G)/∼ = {[D] : D ∈ Div(G)} .
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We have associated an abelian group, Pic(G), to every graph:

Graphs → Abelian groups
G 7→ Pic(G).

The goal of this thesis is to explore the relationship between the structure of G and
its group Pic(G).

Define Div◦(G) to be the set of divisors on G of degree 0. Since the sum of divisors
of degree 0 has degree 0, it follows that Div0(G) is a subgroup of Div(G).

Definition 0.1.3. The Jacobian of G is

Jac(G) := Div◦(G)/∼ .

The Jac(G) is well-defined because linearly equivalent divisors have the same degree.

Fix q ∈ V . Then there exists an isomorphism

Pic(G)→ Z× Jac(G)

D 7→ (deg(D), D − deg(D)).

Then, to study Pic(G), it suffices to study Jac(G).

From now on, assume the vertices of G are ordered v1, . . . , vn. In that case, we make
the identification

Div(G) ≈ Zn

n∑
i=1

aivi 7→ (a1, . . . , an).

Let the vertices of G be v1, . . . , vn. The adjacency matrix of G is the n× n matrix A
where

Aij =

{
1 if {vi, vj} ∈ E
0 otherwise.

The degree of a vertex, denoted deg(N), is the number of edges that are connected
to that vertex.

Definition 0.1.4. Let G be a graph with vertices v1, . . . , vn. The Laplacian matrix
∆ = ∆(G) of G, is the n× n matrix defined as

∆ = D − A,

where D := diag(deg(vi) : i = 1, . . . , n) is the diagonal matrix of vertex degrees,
and A is the adjacency matrix of G.

The reduced Laplacian matrix with respect to a vertex q is the (n−1)×(n−1) matrix
formed from the Laplacian matrix by removing the row and column corresponding
to q. It is denoted ∆̃ = ∆̃(G).
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We have the following well-known theorem:

Theorem 0.1.5.

Pic(G) ≈ Zn/im(∆)
n∑

i=1

aivi 7→ (a1, . . . , an)

and

Jac(G) ≈ Zn−1/im(∆̃)
n−1∑
i=1

aivi 7→ (a1, . . . , an−1).

By the matrix-tree theorem, we have the following corollary:

Corollary 0.1.6. | Jac(G)| = the number of spanning trees of G.

A consequence of this corollary is that the Jacobian group is finite.

0.2 The structure of a finite abelian group.

This section is based on notes by Perkinson [2014]. What is meant by the “structure”
of an abelian group and how is it calculated?

Definition 0.2.1 (Finitely Generated Abelian Groups). An abelian group A is finitely
generated if there exists a1, . . . , an ∈ A such that for all a ∈ A, there exists k1, . . . , kn ∈
Z such that a =

n∑
i=1

kiai.

Theorem 0.2.2 (Structure Theorem for Finitely Generated Abelian Groups). Let A
be a finitely generated abelian group. Then there exists a nonnegative integer r and
positive integers d1, d2, . . . , dn such that

A ≈ Zr × Zd1 × · · · × Zdn .

The number r is called the rank of A. The di are unique if we require di to divide di+1

for all i. In that case, the di are called the invariant factors of A.

The “structure” of a finitely generated group is given by its rank and its invariant
factors. We will now sketch a proof of the structure theorem:

Sketch of proof. Say A is an abelian group generated by a1, a2, . . . , an ∈ A. Then
there is a surjective homomorphism
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Φ : Zn � A
li → ai.

Therefore, there is an isomorphism

Zn/ ker Φ
≈−→ A.

It turns out that the kernel of Φ must be finitely generated.

Say that g1, g2, . . . , gm ∈ Zn are generators. Let M be the m × n matrix whose
columns are g1, g2, . . . , gm. Then Zn/image(M)

≈−→ A. We determine the invariant
factors of A by computing the Smith Normal Form of M .

Definition 0.2.3. An m × n integer matrix is in Smith Normal Form if it has the
form:


d1

d2 0
0

. . .

dn


with d1 | d2 | . . . , i.e., di evenly divides di+1 for all i.

Definition 0.2.4. An integer row (resp. column) operation or an integer matrix is
one of the following:

(1) Swapping two rows (resp. columns)

(2) negating a row (resp. column)

(3) adding one row (resp. column) to another.

Write M ∼ N for integer matrices M and N if one can be obtained from the other via
a sequence of integer row and column operations. Then ∼ is an equivalence operation.

Theorem 0.2.5. Each equivalence class of m × n matrices under ∼ has a unique
matrix in Smith Normal Form.

Proof. We first show existence by describing an algorithm. Let M = (mij), an m×n
matrix. If M = 0, we are done. Otherwise:

(1) By permuting rows and columns, we may assume that m11 is the smallest nonzero
entry in absolute value. By adding multiples of the first row to other rows or the first
column to other columns, attempt to make all entries in the first column and first
row except the (1, 1)-entry equal to zero.

If during the process, a nonzero matrix entry appears with smaller absolute value
than m11, you may permute the rows and columns in order to bring that entry to the
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(1, 1)-position. Since the (1, 1)-entry is nonzero and descending in magnitude, the
process eventually terminates with a matrix of the form:


δ11 0 . . . 0
0

M ′...
0

 ,
where M ′ is a (m− 1)× (n− 1) matrix.

(2) If there is any entry of M ′ that is not divisible by (1,1)-entry, then add the
column of that entry to column 1 and go back to step (1). Again, since the (1, 1)-
entry decreases in magnitude, this new process stops, delivering a matrix of form M ′

such that all the entries of M ′ are divisible by (1,1)-entry.

(3) Apply steps (1) and (2) now to M ′ and thus, by recursion, we get a matrix
equivalent to M but in Smith Normal Form. If necessary, multiply by -1 to make the
diagonal entries nonnegative.

Note: Let S = Im and T = In be identity matrices, consider the sequence of el-
ementary row operations leading from M to its Smith Normal Form. Whenever a
row operation is made, perform the same operation on S and whenever a column
operation is performed, perform the same operation on T . In this way, S and T
are transformed into matrices U and V , respectively, such that UMV is the Smith
Normal Form for M .

Now that we have discussed the structure of finite abelian groups, we can restate the
goal of this thesis more carefully. We begin by presenting some simple examples of
the Jacobian group for a graph in Chapter 1. In the next chapter, we focus on the
invariant factors of the Jacobian and how the number of nontrivial invariant factors
can change. We use Lorenzini [2008] in Theorem 2.0.9 of Chapter 2 to show that
the number of invariant factors changes by at most 1 when an edge is removed. We
then find in Theorem 2.0.10 that the size of the cyclic Jacobian group is nUn−3(

n−2
2

)
when a path graph of n− 3 edges are removed from Kn, where Un is the Chebyshev
polynomial of the second kind. In the second section of Chapter 2, we present new
properties of the graphs of interest. We have mapped out all subgraphs of K5 to show
instances where an edge is removed and the number of nontrivial invariant factors
increases. Lastly, in Theorem 2.1.1 we present a family of graphs such that removal
of an edge increases the number of invariant factors.



Chapter 1

First Examples

This chapter will present two examples as a warm-up.

The complete graph Kn is the graph with n vertices and such that every pair of vertices
forms an edge.

Theorem 1.0.6. Jac(Kn) ≈ (Zn)n−2.

Proof. To show Jac(Kn) ≈ (Zn)n−2, we must compute the Smith Normal Form of
the reduced Laplacian for Kn, thus obtaining the invariant factors for Jac(G). The
reducedLaplacian matrix is for K is the (n− 1)× (n− 1) matrix:

∆̃ =


n− 1 −1 . . . −1
−1 n− 1 . . . −1
...

...
. . .

...
−1 −1 . . . n− 1

 .
The Smith Normal form can be obtained by the following process:

Add columns 2 through n− 1 to column 1:


1 −1 . . . −1
1 n− 1 . . . −1
...

...
. . .

...
1 −1 . . . n− 1

 .
Next, add column 1 to columns 2 through n− 1:


1 0 . . . 0
1 n . . . 0
...

...
. . .

...
1 0 . . . n

 .
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Lastly, subtract row 1 from all other rows.

∆̃ =


1 0 . . . 0
0 n . . . 0
...

...
. . .

...
0 0 . . . n

 .
We have now obtained the invariant factors, and the result follows.

Let K∗n be the complete graph Kn with one edge removed; by symmetry it does not
matter which edge is removed.

Theorem 1.0.7. Jac(K∗n) ≈ Z(n−4)
n × Zn(n−2).

Proof. The n× n Laplacian matrix for K∗n is as follows:

∆ =


n− 1 −1 −1 . . . −1
−1 n− 1 −1 . . . −1
...

...
. . . . . .

...
−1 −1 . . . n− 2 0
−1 −1 . . . 0 n− 2

 .

So,

∆̃ =


n− 1 −1 −1 . . . −1
−1 n− 1 −1 . . . −1
...

...
. . . . . .

...
−1 −1 . . . n− 2 0
−1 −1 . . . 0 n− 2

 ,

where ∆̃ is of size (n− 1)× (n− 1). The Smith Normal form can be obtained by the
same process as above. After some reduction, we arrive at the matrix:



1 0 0 0 · · · 0
0 n 0 0 . . . 0
0 0 n 0 . . . 0
...

...
...

. . . . . .
...

0 0 0 . . . n− 1 1
0 0 0 . . . 1 n− 1


.

Let us examine the bottom right 2× 2 corner of this matrix:
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[
n− 1 1

1 n− 1

]
.

By integer row and column operations, this reduces to:

[
0 1− (n− 1)2

1 0

]
.

Which further reduces to:

[
1 0
0 n(n− 2)

]
.

Hence, Jac(K∗n) ≈ Z(n−4)
n × Zn(n−2).





Chapter 2

Lorenzini’s Theorem and
Applications

In this chapter we will discuss the minimal number of edges we must remove from Kn

so that the resulting graph has cyclic Jacobian group. These concepts are discussed
in Lorenzini’s paper, Smith normal form and Laplacians, Lorenzini [2008].

To use Lorenzini’s method, we need the following theorem (cf. Jacobson [1985]):

Theorem 2.0.8. Let A be an m× n integer matrix of rank r. For each i ≤ r, let Ai

be the GCD of the i-minors of A. Then the invariant factors for A are

d1 = A1, d2 = A2/A1, . . . , dr = Ar/Ar−1.

Example 2.0.1. We will show that the Jacobian group of a cycle graph is cyclic.

Proof. Let Cn be the cycle graph with n vertices. Then the reduced laplacian is

∆̃ =



2 −1 0
−1 2 −1

−1 2
. . .

. . . . . . −1

0 −1 2


.

We remove the first row and the last column, which gives us
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

−1 2 −1 0
−1 2

. . .

−1
. . . −1
. . . 2

0 −1


.

Clearly, the determinant of this matrix is ±1 because the matrix is upper triangular
and has −1s on the diagonal. Hence, the GCD of the (n− 2)-minors is 1. Therefore,
the group is cyclic. By the Matrix-Tree theorem, the order of the group is the number
of spanning trees, which is clearly n. Hence, the group is Zn.

Theorem 2.0.9 (Lorenzini [2008]). Let G be a graph, and let G′ be the graph obtained
by removing one edge from G. Suppose that G and G′ are connected. Then the number
of invariant factors 6= 1 of the reduced Laplacian for G and that for G′ differ by ±1,
if at all.

Proof. After removing a sink vertex from G, order the vertices v1, · · · , vn. Assume
the removed edge is between v1 and v2. Clearly, the reduced Laplacians ∆̃ := ∆̃(G)
and ∆̃′ := ∆̃(G′) are related because they have many minors in common:

∆̃ =


`11 `12 `13 . . .
`21 `22 `23 . . .
`31 `32 `33 . . .
...

...
...

. . .

 , ∆̃′ =


`11 − 1 `12 + 1 `13 . . .
`21 + 1 `22 − 1 `23 . . .
`31 `32 `33 . . .
...

...
...

. . .

 .
Let r1, · · · , rn be the rows of ∆̃. Thus,

r′1 = r1 − e1 + e2,

r′2 = r2 + e1 − e2,
r′i = ri, for i > 2,

are the rows of ∆̃′.

To find the k-minors of ∆̃′, for each choice of k rows, ri1 , · · · , rik , we compute ri1 ∧
· · · ∧ rik ∈

∧
Rn in terms of the standard basis {ej1 ∧ · · · ∧ ejk}1≤j1<···<jk≤n for

∧k Rn.
The coefficient in front of ej1 ∧ · · · ∧ ejk is the k-minor formed from the rows i1, . . . , ik
and columns j1, . . . , jk. We claim that

SpanZ{k-minors of ∆̃′} ⊆ SpanZ{(k − 1)-minors of ∆̃},

hence ∆̃k−1|∆̃′k.
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For instance, consider the case i1 = 1, i2 = 2, and 3 ≤ i3 < · · · < ik ≤ n. Let
ω = r′3 ∧ · · · ∧ r′k = r3 ∧ · · · ∧ rk. Then

r′1 ∧ r′2 ∧ ω = (r1 − e1 + e2) ∧ (r2 + e1 − e2) ∧ ω
= r1 ∧ r2 ∧ ω − e1 ∧ r1 ∧ ω + e2 ∧ r1 ∧ ω
− e1 ∧ r2 ∧ ω + e1 ∧ e2 ∧ ω + e2 ∧ r2 ∧ ω + e2 ∧ e1 ∧ ω.

The coefficients of r1 ∧ r2 ∧ω are k-minors of ∆̃, and hence are contained in the span
of the (k − 1)-minors of ∆̃. The nonzero coefficients of

e1 ∧ r1 ∧ ω, e2 ∧ r1 ∧ ω, e1 ∧ r2 ∧ ω, e2 ∧ r2 ∧ ω

are (k − 1)-minors of ∆̃. Finally, since e1 ∧ e2 ∧ ω + e2 ∧ e1 ∧ ω = 0, we do not need
to consider (k− 2)-minors. This handles the case of the k-minors that involve r′1 and
r′2. The cases that do not involve both r′1 and r′2 have a similar arguments.

Writing the ris in terms of r′is, and repeating the argument shows that

SpanZ{k-minors of ∆̃} ⊆ SpanZ{(k − 1)-minors of ∆̃′},

hence ∆̃′k−1|∆̃k. Suppose ∆̃k = 1. Then since ∆̃′k−1|∆̃k, we have ∆̃′k−1 = 1, which

implies ∆̃′i = 1 for i ≤ k − 1. Similarly, ∆̃′k = 1 implies ∆̃i = 1 for i ≤ k − 1. The
result follows.

Recall the definition of the Chebyshev polynomial of the second kind:

Un(x) = det


2x 1
1 2x 1 0

1 2x
. . .

0
. . . . . . 1

1 2x

 ,
where n is the size of the matrix.

Theorem 2.0.10. Let G be a graph formed by removing a path graph with n − 3
edges from Kn. Then Jac(G) is cyclic of size nUn−3(

n−2
2

), where U is the Chebyshev
polynomial of the second kind.

Proof. First, we will prove that this group is cyclic. Consider the Laplacian of G:

∆ =



n− 2 0 −1 −1 −1 −1 −1

0 n− 3 0 −1
...

...
...

−1
. . . . . . . . . −1 −1 −1

...
. . . 0 n− 3 0 −1 −1

−1 . . . −1 0 n− 2 −1 −1
−1 . . . −1 −1 −1 n− 1 −1
−1 . . . −1 −1 −1 −1 n− 1


.
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Subtract the last row from all other rows to get:



n− 1 1 0 0 0 0 −n
1 n− 2 1 0 0 0 −n
0

. . . . . . . . .
...

...
...

...
. . . 1 n− 2 1 0 −n

0 . . . 0 1 n− 1 0 −n
0 . . . 0 0 0 n −n
−1 . . . −1 −1 −1 −1 n− 1


.

Next, subtract the last row from row n− 2:



n− 1 1 0 0 0 0 0
1 n− 2 1 0 0 0 −n
0

. . . . . . . . .
...

...
...

...
. . . 1 n− 2 1 0 −n

1 . . . 1 2 n 1 −2n+ 1
0 . . . 0 0 0 n −n
−1 . . . −1 −1 −1 −1 n− 1


.

Choosing the last vertex as the sink vertex, we can now look at the (n − 2)-minor,
where the last two rows and the first and last columns of ∆ are removed:



1 0 0 0 0 0
n− 2 1 0 0 0 0

1 n− 2 1 0 0 0
...

. . . . . . . . .
...

...
0 · · · 1 n− 2 1 0
1 · · · 1 2 n 1


.

It is clear that the determinant of this matrix is 1. Hence, the GCD of the determi-
nants of the (n− 2)-minors is 1, and thus the group is cyclic.

We compute the size of the cyclic group, following a hint from Lorenzini’s paper.
Let J be the n× n matrix such that all entries are 1. Then the number of spanning
trees of G is det(∆ + J)/n2. (For a proof, see Biggs [1993].) By Corollary 0.1.6, the
number of spanning trees is | Jac(G)|, the order of our cyclic group. Now,
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∆ + J =



n− 1 1
1 n− 2 1 0

1 n− 2 1
. . .

0 1 n− 2 1
1 n− 1 0 0

0 n 0
0 0 n


.

Removing the last two rows and columns, define A as follows:

A =



n− 1 1
1 n− 2 1 0

1 n− 2
. . .

. . . . . . 1

0 1 n− 2 1
1 n− 1


.

It follows that det(A) = det(∆ + J)/n2 = | Jac(G)|.

Note that

Un−2

(
n− 2

2

)
= det



n− 2 1
1 n− 2 1 0

1 n− 2
. . .

. . . . . . 1

0 1 n− 2 1
1 n− 2


.

So, letting ri denote the i-th row of the above matrix,

det(A) = det(e1 + r1, r2, . . . , rn−3, en−2 + rn−2)

= det(e1, r2, . . . , rn−3, en−2) + det(e1, r2, . . . , rn−3, rn−2)

+ det(r1, r2, . . . , rn−3, rn−2) + det(r1, r2, . . . , rn−3, en−2)

= Un−2

(
n− 2

2

)
+ 2Un−3

(
n− 2

2

)
+ Un−4

(
n− 2

2

)
.

It is an easy exercise to show Un(x) = 2 xUn−1(x)−Un−2(x) by expanding the deter-
minant along rows and columns. Using this identity,
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det(A) = Un−2

(
n− 2

2

)
+ 2Un−3

(
n− 2

2

)
+ (n− 2)Un−3

(
n− 2

2

)
− Un−2

(
n− 2

2

)
= nUn−3

(
n− 2

2

)
.

Corollary 2.0.11. Let G be a connected graph on n vertices such that Jac(G) is
cyclic. Then the number of edges, |E| ≤

(
n
2

)
− (n − 3) and this inequality is sharp,

meaning there will be cases such that |E| =
(
n
2

)
− (n− 3).
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2.1 New Examples

We expect to see the number of invariant factors go down by 1, if at all, when removing
an edge because as more edges are removed, the graph becomes more trivial. We are
interested in the cases where an edge is removed, but the number of invariant factors
increases.

Figure 2.1 shows every connected subgraph of the complete graph, K5, up to isomor-
phism, with the invariant factors for their Jacobian groups.

{1,1,1,1}{1,1,1,1}

{1,1,1,3}

{1,1,1,1}

{1,1,1,3}

{1,1,1,8}

{1,1,2,10}

{1,1,1,4}

{1,1,1,8}

{1,1,4,4}

{1,1,1,3}

{1,1,3,3}

{1,1,1,5}

{1,1,1,21}

{1,1,1,24}

{1,1,1,40}{1,1,3,15}

{1,1,5,15}

{1,1,1,11}

{1,5,5,5}

{1,1,2,6}

Figure 2.1: Invariant Factors for All Connected Subgraphs of K5.
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The lines between graphs represent graphs that differ by only one edge. Note that
dashed lines between graphs indicate that the number of invariant factors increased
by one, when removing an edge from one of the graphs.

We now present a family of graphs for which the removal of an edge may increase the
number of nontrivial factors.

Theorem 2.1.1. Let Cm be the cycle graph with m vertices, labeled u0, · · · , um−1,
and let Cn be the cycle graph with n vertices, labeled v0, · · · , vn−1. Let H be the graph
formed from Cm and Cn by identifying the vertices u0 and v0 then adding an edge
between um−1 and v1. Then Jac(H) is cyclic of order 3mn−m− n. (See Figure 2.2
for the case m = 6, n = 5.)

v1

v2

v3

v4

u5

u4u3

u2

u1

Figure 2.2: C6 and C5 Connected By a Sink Vertex and an Edge

Proof. If we order the vertices in the same way as in Figure 2.2, then the reduced
laplacian of H will be

∆̃ =



2 −1 0
−1 2 −1

. . .

−1 2 −1
−1 3 −1

−1 3 −1
−1 2 −1

. . .

0 −1 2


.

We remove the first row and the last column, which gives us
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

−1 2 −1 0
. . .

−1 2 −1
−1 3 −1

−1 3 −1
−1 2 −1

. . .

0 −1


.

By the same argument in Example 2.0.1, the group is cyclic. The order of this
group will be the number of spanning trees. To find the number of spanning trees
for H, we break the problem down into cases. If the added edge {um−1, v1} is not
included, then there will be a tree for every edge removed for each cycle. Hence,
there are mn spanning trees. If the added edge is included, one of {u0, um−1} or
{u0, v1} are removed, or both are removed. Removing only one of these edges gives
2(m− 1)(n− 1) spanning trees, because there will be m− 1 possibilities if the edge
from the sink vertex to v1 is removed, likewise there will be n− 1 possibilities if the
edge from the sink vertex to um−1 is removed. If both edges are removed, then clearly
there will be m + n − 2 spanning trees. Hence, the total number of spanning trees
is mn + 2(m − 1)(n − 1) + (m + n − 2) = 3mn − m − n. Therefore, | Jac(G)| =
|Zm × Zn| = 3mn−m− n.

Corollary 2.1.2. Let H be as in the theorem. If m and n are not relatively prime,
then deleting the edge {um−1, v1} gives a graph whose Jacobian group has two non-
trivial invariant factors. Thus, in this case, removing an edge causes the number of
nontrivial invariant factors to increase.
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