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Abstract

Permuting the coordinates of the point (1, 2, ..., n) gives n! points in Cn. The
convex hull of these points gives a well-known polytope called the permutahedron.
The main result of thesis is a generating function for the Hilbert function of the
vertices of the permutahedron, or, equivalently, the number of conditions placed on
a generic polynomial of degree k in n variables by requiring that the above n!
points are zeroes. In addition, we explicitly compute, and produce a Gröbner basis
for, the ideal of polynomials that are satisfied by these points.



Chapter 1

Introduction

This document is concerned with the Hilbert function of the permutahedron. In
chapter 1, we present the Hilbert function and the permutahedron and introduce
the problems addressed in later chapters. In chapter 2 we present the necessary
machinery to crack these problems. Finally, in chapter 3 we present the results of
this thesis.

1.1 The Hilbert function

Let R be a quotient of S := C[x1, x2, . . . , xn] by an ideal, and let Sk denote those
polynomials of S of degree less than or equal to k. Let Rk be the image of Sk
under the natural map S −→ R sending a polynomial to its coset. Note that Rk is
a vector space over C.

Let P ⊂ Cn be a finite set of points. Define the ideal I ⊂ S to be the set of
polynomials that are satisfied by all elements of P :

I := {f ∈ S : f(P ) = 0}.

Define the (affine) Hilbert function of S/I:

HS/I(k) := dimC((S/I)k).

We will commonly refer to the Hilbert series of S/I, by which we mean simply
HS/I(0), HS/I(1), HS/I(2), . . .
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It is well known that dim(Sk) =
(
n+k
k

)
, so knowing the value of HS/I(k) =

dim(Sk)− dim(Ik) is equivalent to knowing the dimension of Ik.

In order to calculate the Hilbert function, we may write out the generic degree k
polynomial and plug in the various points of P to get linear equations in the
coefficients. HS/I(k) is the rank of the corresponding matrix; the kernel is Ik.
Therefore, we may interpret the value of HS/I(k) as the number of restrictions that
P puts on the generic degree k polynomial.

For a proof of the following claim, see [4, pages 50–51]

Claim 1.1.1 There exists a positive integer K such that HS/I(k) = |P | ∀ k > K.

Example. Let P := {(0, 0), (1, 0), (2, 1), (2, 2), (1, 2), (0, 1)} ⊂ C2. By the method
sketched above, we can compute the Hilbert series:

• •
• • HS/I(k) = 1, 3, 5, 6, 6, . . .
• •

As we would expect, P puts 1 condition on the generic constant polynomial and 3
conditions on the generic linear polynomial in two variables. However, HS/I(2) = 5,
i.e., the six points put only five conditions on the generic degree 2 polynomial, so
there is a one-dimensional space of degree 2 polynomials that are zero on P .

1.2 The permutahedron

Definition. The permutahedron is the polytope which is the convex hull of the
orbit of the point (1, 2, . . . , n) ∈ Cn under the permutation representation of the
symmetric group, Sn.

The combinatorial structure of the permutahedron is well known. A good reference
is [1].

Example. For n = 3, the permutahedron is the convex hull of the set of points:

{(1, 2, 3), (2, 1, 3), (3, 1, 2), (1, 3, 2), (2, 3, 1), (3, 2, 1)}
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Note that the permutahedron always sits in the hyperplane
∑n

i=1 xi =
∑n

i=1 i. In
C3, the permutahedron sits in a plane and is, up to a change of coordinates, the
hexagon seen in the previous section. In C4, it is a truncated octahedron.

1.3 The task at hand

The main problem solved in this thesis is the calculation of the Hilbert function of
the permutahedron, or, more accurately, the set of its vertices: the n! points
obtained by permuting the coordinates of (1, 2, . . . , n). This problem arose from
the work of former Reed students Oliver Gugenheim [3] and John Mulliken [5] and
of David Perkinson [6]. Briefly, let f : Rn −→ Rm be a monomial mapping, that
is, let each coordinate function of f have the form xa11 x

a2
2 · · · xann for some natural

numbers a1, a2, . . . , an. We can think of the vector of exponents, (a1, a2, . . . , an), as
a lattice point in Rn. The function f is determined by m such points. Gugenheim,
Mulliken and Perkinson have related the inflectional behavior of f with the Hilbert
function of its set of exponents. In that context, the permutahedron naturally
arises as the exponent set of a function with interesting inflectional behavior.

Furthermore, the problem of the Hilbert function of various orbitopes, i.e.
polytopes whose vertices are the orbit of an initial point, is an inherently
interesting one. Though it is beyond the scope of this document, we are interested
also in the Hilbert functions of orbitopes other than the permutahedron. For
further readings on orbitopes, consult [7].
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Chapter 2

Machinery

Before approaching the problem directly, we need to build up a little machinery,
specifically, that of symmetric polynomials and Gröbner bases.

2.1 Symmetric polynomials

As previously, let S := C[x1, x2, . . . , xn].

Definition. A polynomial f ∈ S is called symmetric if it is invariant under any
permutation of the variables x1, x2, . . . , xn.

Consider the expansion

n∏
i=1

(z − xi) = zn − σ1xn−1 + · · ·+ (−1)nσn.

With respect to x1, . . . , xn, the σi are symmetric:

σ1 = x1 + · · ·+ xn

σ2 = x1x2 + x1x3 + · · ·+ x1xn + x2x3 + x2x4 + · · ·+ xn−1xn
...

σn = x1x2 · · ·xn.

We will refer to σi as the i’th elementary symmetric polynomial in S.
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2.2 Gröbner bases

2.2.1 Monomial orderings

A polynomial f ∈ S is simply a sum of terms, each term consisting of a complex
coefficient and a monomial; we require a way to sort these terms. We will do so by
imposing an ordering on the monomials.

Definition. A monomial ordering on S is a total order � on the monomials of S
such that for monomials m,m′,m′′ ∈ S, m 6= 1,

m′ � m′′ ⇒ mm′ � mm′′ � m′′.

Example. Let m = xa11 x
a2
2 · · · xann and p = xb11 x

b2
2 · · ·xbnn be monomials in S.

Degree lexicographic order is defined by: m � p if deg(m) > deg(p) or if
deg(m) = deg(p) and ai > bi for the first i with ai 6= bi. For example,

x1 � x2 x2x3 � x1

Example. Pure lexicographic order is defined by: m � p if ai > bi for the first i
with ai 6= bi. For example,

x1 � x2 x1 � x2x3

Definition. The initial monomial of a non-zero polynomial f ∈ S, init(f), is the
largest monomial with respect to a monomial ordering, �, that occurs with
non-zero coefficient in f .

Now let I ⊂ S be an ideal. By init(I), we mean the ideal generated by
{init(f) : f ∈ I}. For a proof of the next theorem, see [2, page 325].

Theorem 2.2.1 (Macaulay) HS/I(k) = HS/init(I)(k).
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2.2.2 Gröbner bases

Let G be an ideal in S and let � be a monomial ordering on S.

Definition. We say that {g1, . . . , gl} ⊂ G is a Gröbner basis for G with respect to
� iff (init(g1), . . . , init(gn)) = init(G).

For a proof of the following theorem, see [8, pages 10-11].

Theorem 2.2.2 If {g1, . . . , gl} is a Gröbner basis for G, then (g1, . . . , gl) = G.
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Chapter 3

Results

We have two things in mind for this chapter. One is to identify precisely the ideal
of polynomials, I, that are zero on the permutahedron, the other, to find a
generating function for the Hilbert function of the permutahedron.

3.1 The ideal.

Using the notation of the previous chapter, we begin by defining a set of functions,
the σ̃i’s (1 ≤ i ≤ n):

σ̃i := σi − σi(1, 2, . . . , n).

Clearly, since the σ’s are symmetric, σ̃i ∈ I. In fact, we will find that
(σ̃1, . . . , σ̃n) = I.

To that end, we will construct a Gröbner basis for I, employing purely
lexicographic order. Of course, we will need to know init(I).

Claim 3.1.1 init(I) = (x1, x
2
2, x

3
3, . . . , x

n
n).

Proof. Suppose the contrary: let f ∈ I \ {0} such that xii 6 | init(f) for any
1 ≤ i ≤ n. We will require that f is minimal in the sense that if g ∈ I \ {0} such
that xii 6 | init(g) for 1 ≤ i ≤ n, then init(g) � init(f) or init(g) = init(f). Let k be
the smallest integer such that xk|init(f). Since none of x1, . . . xk−1 divide init(f),
they neither divide any terms of f and we may write
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f =
k−1∑
i=0

xikgi

where gi ∈ C[xk+1, . . . , xn] for i = 0, . . . , k − 1. Let p be the smallest index such
that gp 6= 0; it follows that init(f) = xpk init(gp). Since xk | init(f), we know that
p > 0; hence init(gp) ≺ init(f).

We will now show that each gi ∈ I, contradicting the minimality of f . Let
[a1, . . . , an] be some permutation of 1, . . . , n. Since f ∈ I, it is zero on all
permutations of (1, 2, . . . , n). In particular, using the above expression for f and
permuting a1, a2, . . . , ak, we may write

1 a1 a21 · · · ak−11

1 a2 a22 · · · ak−12
...

...
...

...
1 ak a2k · · · ak−1k




g0(ak+1, . . . , an)
g1(ak+1, . . . , an)

...
gk−1(ak+1, . . . , an)

 =


0
0
...
0

 .

The left-hand matrix is a Vandermonde matrix and therefore invertible. It follows
that gi(ak+1, . . . , an) = 0 for 0 ≤ i ≤ k − 1 and for all distinct ak+1, . . . , an ∈
{1, . . . , n}, i.e. gi ∈ I for 0 ≤ i ≤ k − 1. �

In order to continue, will require some notation. Let

~xkm := (

k−m︷ ︸︸ ︷
0, . . . , 0, xk, xk+1, . . . , xn) (1 ≤ m ≤ k ≤ n),

cm := σm(1, 2, . . . , n),

τ1 :=
∑n

i=1 xi − c1 = σ̃1.

For 1 < m ≤ n, define

τm :=
n∑

i=m

xiτm−1(~x
i
m−1)− cm.

Note that τm only contains the variables xm, xm+1, . . . , xn.

Example.

τ3 =
n∑
i=3

xiτ2(~x
i
2)− c3

= x3τ2(0, x3, . . . , xn) + x4τ2(0, 0, x4, . . . , xn) + · · ·+ xnτ2(0, . . . , 0, xn)− c3
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Lemma 3.1.2

τm(~x km) = τm −
k−1∑
i=m

xiτm−1(~x
i
m−1)

for 1 < m ≤ k ≤ n.

Proof. We’re interested in τm(~x km) = τm(0, . . . , 0, xk, . . . , xn), which is just τm with
all terms containing x1, x2, . . . xk−1 set to zero. We will simply substract from τm
all terms containing these variables:

τm(~x km) =
n∑

i=m

xiτm−1(~x
i
m−1)− cm − (terms with xm, . . . , xk−1)

=
n∑

i=m

xiτm−1(0, . . . , 0, xi, . . . , xn)− cm − (terms with xm, . . . , xk−1)

=
n∑

i=m

xiτm−1(~x
i
m−1)− cm −

k−1∑
i=m

xiτm−1(~x
i
m−1)

= τm −
k−1∑
i=m

xiτm−1(~x
i
m−1).

�

Proposition 3.1.3 {τ1, τ2, . . . , τn} form a Gröbner basis for I.

Proof. First we’ll show that (τ1, . . . , τn) ⊂ (σ̃1, . . . , σ̃n). Since the latter ideal is a
subset of I, it will follow that (τ1, . . . , τn) ⊂ I. We’ll accomplish this by inductively
showing that τm = fm−1 ± σ̃m for some fm−1 ∈ (τ1, . . . , τm−1). Congruence in the
following is modulo (τ1, . . . , τm−1).

τm =
n∑

i1=m

xi1τm−1(~x
i1
m−1)− cm

=
n∑

i1=m

xi1

(
τm−1 −

i1−1∑
i2=m−1

xi2τm−2(~x
i2
m−2)

)
− cm
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≡ −
n∑

i1=m

i1−1∑
i2=m−1

xi1xi2τm−2(~x
i2
m−2)− cm

≡
n∑

i1=m

i1−1∑
i2=m−1

i2−1∑
i3=m−2

xi1xi2xi3τm−3(~x
i3
m−3)− cm

...

≡ (−1)m
n∑

i1=m

i1−1∑
i2=m−1

· · ·
im−2−1∑
im−1=2

xi1xi2 · · ·xim−1τ1(~x
im−1

1 )− cm

≡ (−1)m+1

n∑
i1=m

i1−1∑
i2=m−1

· · ·
im−1−1∑
im=1

xi1xi2 · · ·xim − cm

= (−1)m+1 σ̃m.

Now we must show that (init(τ1), . . . , init(τn)) = init(I) = (x1, x
2
2, . . . , x

n
n).

Remembering that τk is a function of xk, xk+1, . . . , xn, we will achieve this by
inductively proving the stronger fact that deg(τm) = m and xmk is a monomial of τm
for m ≤ k ≤ n. Suppose this condition holds for τk, where 1 ≤ k < m. As above,

τm =
n∑

i=m

xiτm−1 −
n∑

i=m

i−1∑
j=m−1

xixjτm−2(~x
j
m−2)− cm.

By the induction hypothesis, it’s clear that deg(τm) = m. Furthermore, xmk
(m ≤ k ≤ n) is a term of the first sum, but not of the second since i 6= j,
completing the induction and the proof. �

Corollary 3.1.4 I = (σ̃1, . . . , σ̃n).

Proof. Since {τ1, τ2, . . . , τn} form a Gröbner basis for I, we know that
(τ1, τ2, . . . , τn) = I. But we just showed that (τ1, τ2, . . . , τn) ⊂ (σ̃1, . . . , σ̃n) ⊂ I. �

3.2 The Hilbert function.

To prove our final result, we’ll require the following lemma.
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Lemma 3.2.1 If F (q) =
∑

j≥0 f(j)qj is a generating function for f : N→ Z, and

g(k) =
k∑
i=0

f(i)−
k−a∑
i=0

f(i),

then

G(q) =
(1− qa)F (q)

(1− q)
is a generating function for g.

Proof. Observe that

∑
j≥0

(
j−α∑
i=0

f(i)

)
qj = f(0)qα +

(
f(0) + f(1)

)
qα+1 + · · ·

= qα
(
f(0) + f(1) q + f(2) q2 + · · ·

)
(1 + q + q2 + · · ·)

= qα
F (q)

(1− q)
.

It follows that

G(q) =
F (q)

1− q
− qa F (q)

1− q

=
∑
j≥0

(
j∑
i=0

f(i)

)
qj −

∑
j≥0

(
j−a∑
i=0

f(i)

)
qj

=
∑
j≥0

g(j)qj,

as claimed. �

Theorem 3.2.2 The Hilbert function for the permutahedron in Cn is given by the
generating function ∑

j≥0

HS/I(j)q
j =

∏n
i=1(1− qi)

(1− q)n+1
.
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Proof. By induction on n. We will require some notation. Let

Sn := C[x1, x2, . . . , xn],

Jn := (x1, x
2
2, x

3
3, . . . , x

n
n),

Hn(k) := HSn/Jn(k),

Fn(k) := HSn+1/Jn(k),

Bn(k) := HSn+1/(Jn,xnn+1)
(k).

The theorem holds for n = 1, so suppose it holds for a particular n. Consider the
sequence

0 −→
(
Sn+1

Jn

)
k−1

α
·xn+1−→

(
Sn+1

Jn

)
k

β−→
(
Sn

Jn

)
k

−→ 0,

where α is multiplication by xn+1 and β is the map setting xn+1 to zero. It is easy
to see the sequence is exact by using the basic fact that a polynomial is in a given
ideal generated by monomials iff each term of the polynomial is divisible by one of
the generating monomials. For instance, xn+1f ∈ Jn iff each term of xn+1f is
divisible by some xii, where 1 ≤ i ≤ n. But this condition holds iff f is divisible by
some xii, i.e. iff f ∈ Jn. This shows α is injective. By rank-nullity, we find that

dim

(
Sn+1

Jn

)
k

= dim

(
Sn

Jn

)
k

+ dim

(
Sn+1

Jn

)
k−1

⇒ Fn(k) = Hn(k) + Fn(k − 1).

Noting that Fn(0) = Hn(0) = 1, we conclude that

Fn(k) =
k∑
i=0

Hn(i).

Consider next the following exact sequence:

0 −→
(

Sn+1

(Jn, xnn+1)

)
k−1

α
·xn+1−→

(
Sn+1

Jn+1

)
k

β−→
(
Sn

Jn

)
k

−→ 0,

where α and β are as before. It follows that

dim

(
Sn+1

Jn+1

)
k

= dim

(
Sn

Jn

)
k

+ dim

(
Sn+1

(Jn, xnn+1)

)
k−1
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⇒ Hn+1(k) = Hn(k) + Bn(k − 1).

We require one more exact sequence before we carry on with the induction:

0 −→
(
Sn+1

Jn

)
k−n

·xnn+1−→
(
Sn+1

Jn

)
k

−→
(

Sn+1

(Jn, xnn+1)

)
k

−→ 0,

where the penultimate map is the natural one to the quotient. We get that

dim

(
Sn+1

(Jn, xnn+1)

)
k

= dim

(
Sn+1

Jn

)
k

− dim

(
Sn+1

Jn

)
k−n

⇒ Bn(k) = Fn(k)−Fn(k − n).

Combining the previous three results, we find that

Hn+1(k) = Hn(k) + Bn(k − 1)

= Hn(k) + Fn(k − 1)−Fn(k − n− 1)

= Hn(k) +
k−1∑
i=0

Hn(i)−
k−n−1∑
i=0

Hn(i)

=
k∑
i=0

Hn(i)−
k−n−1∑
i=0

Hn(i).

We may now apply the lemma and the induction hypothesis to finish the proof:

Hn+1(k) =
(1− qn+1)

∏n
i=1(1− qi)

(1− q)(1− q)n+1

=

∏n+1
i=1 (1− qi)

(1− q)n+2
.

�

Corollary 3.2.3 The Hilbert function of the permutahedron, HS/I(k), first reaches
its full value at k =

(
n
2

)
and the immediately preceding value is precisely one less,

that is:

HS/I

((
n
2

)
− 1
)

= n!− 1 and HS/I

(
n
2

)
= n!
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Proof. Let N := 1 + 2 + · · ·+ (n− 1) =
(
n
2

)
and compute:

∑
j≥0

HS/I(j)q
j =

∏n
i=1(1− qi)

(1− q)n+1

= (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1)(1 + q + q2 + · · ·)

=

(
N∑
j=0

ajq
j

)
(1 + q + q2 + · · ·)

Where
∑N

j=0 aj = n!, since there are n! terms in the product. For t ≥ N , the

coefficient of qt is
∑N

j=0 aj = n!. The coefficient of qN−1 is
∑N−1

j=0 aj = n!− 1, since
aN = 1. �
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