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Abstract

This thesis will mainly focus on a conjecture raised by Hopkins (2020a). He con-
jectures that if two posets have the same comparability graph, then there exists an
bijection between their P-partition orbits under piecewise-linear rowmotion action
which preserves orbit length and total down-degree. Chapter 1 introduces the back-
ground of posets, comparability graphs, and piecewise rowmotion. Chapter 2 contains
a new proof of Hopkins’ conjecture of P-partitions at height 1. Hopkins has proved
this case earlier in terms of order ideals. Chapter 2 also provides a proof of the
conjecture under the special case when the two posets are dual to each other. Then
we construct a bijection between P-partitions of any pair of posets with the same
comparability graph. The bijection does not commute with rowmotion, but it leads
to a proof of the conjecture in cases more general than those above.






Introduction

A partially ordered set (or poset) P is a set equipped with a binary relation <
that is reflexive, antisymmetric and transitive. An order ideal of a poset P is a
subset I C P such that for all z € [ and y € P, if y < x, then y € I. The set of
all order ideals is called J(P). Rowmotion is an invertible operator acting on order
ideals, defined as row(/) = {y € P : y < x for some minimal elements x in P\ I}.
This operator has been studied for many decades due to its nice behavior. See Hopkins
(2020b) for references.

A weakly order-preserving map f : P — {0,---,/¢} is called a P-partition of
height ¢, and PP‘(P) is the set of all P-partitions. The idea of P-partitions gener-
alizes the concept of order ideals, which is given by the special case of P-partitions
when ¢ = 1. See Gessel (2016) for some history of P-partitions. Rowmotion over
order ideals is also generalized to P-partitions by Einstein & Propp (2021). The
(piecewise-linear) rowmotion over a poset P is defined as the composition of
(picewise-linear) toggles at its posets element, defined as 7, : PPY(P) — PP*(P),

(D) = 7@ if p # x,
g min{f(y) : y > p} + max{f(y) :p >y} — f(p) fp=uz,

where min(@) = ¢ and max(@) = 0.

Down-degree of a P-partition is the sum over ¢ over the maximal elements of
the preimage f~({0,---,i}). The comparability graph com(P) of a poset P is
an undirected graph where x,y € P are connected with an edge if and only if x
and y are comparable. Certainly the comparability graph cannot decide a poset,
however, posets that share the same comparability graphs also share some interesting
properties. Hopkins (2020a) raised the following conjecture:

Conjecture 2.0.1. [Hopkins (2020a) Conjecture 4.38] Let P and ) be posets such
that com(P) ~ com(Q). Then there exists a bijection ¢ between the row orbits of
PP*(P) and the row orbits of PP*(Q) such that for all O C PP*(P), we have

L [0 = |¢(O)].
2. ddeg(O) = ddeg(¢(0)).

where ddeg(O) is the sum of the down-degree of all P-partitions in O.
Chapter 1 begins with an induction about posets, P-partitions and their down-
degree. Then we look into posets with the same comparability graph, understanding
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that if com(P) ~ com(Q), then Q must be obtained from P by dualizing a sequence
of autonomous subsets. Finally we learn about the piecewise-linear rowmotion acting
on P-partitions and how this rowmotion action relates to the down-degree of the
P-partitions. We also see that P-partition of height 1 can be viewed as order ideals.

Chapter 2 mainly focuses on the Conjecture 2.0.1 raised by Sam Hopkins. It has
already been proved by Hopkins for order ideals J(P). Chapter 2 starts with Theorem
2.1.1, which rephrases Hopkins’ proof in the language of P-partitions of height 1, as
a special case inside Conjecture 2.0.1. Then we construct a complement map between
P-partitions, which inversely commutes with the rowmotion operator, and prove The-
orem 2.2.1, which establishes the conjecture under another special case when the two
posets are dual to each other. Finally we extend the constructed complement map to
arbitrary posets P and (), where () is obtained from P by dualizing some autonomous
subset A, and P contains no incomparable element with A. The new complement
map does not commute with the rowmotion operator, but we conjecture (Conjecture
2.2.4) that it behaves nicely on preserving the size and the total down-degree of the
rowmotion orbit generated by the corresponding P-partitions. This conjecture holds
under our earlier Theorems 2.1.1 and 2.2.1. We then use Hall Marriage Theorem to
prove Theorem 2.2.6, which is Hopkins’ conjecture under the conditions of Conjecture
2.2.4.



Chapter 1

Poset, Comparability Graph and
Rowmotion

1.1 Posets, P-partition and Down Degree

Definition 1.1.1. A partially ordered set (or poset) is a set P equipped with a
binary relation <, which satisfies the following axioms:

1. Reflexivity: for all a € P, a < a.
2. Antisymmetry: for all a,b € P, if a < b and b < a, then a = b.

3. Transitivity: for all a,b,c € P, if a < b and b < ¢, then a < c.

Let P be a poset, and we review some basic concepts. For a,b € P, if a < b or
b < a, then we say a and b are comparable, otherwise incomparable.

If a < band a # b, then we write a < b and we say that a is strictly less than
b. Assume a < b and there is no element ¢ € P such that a < ¢ < b, then we say a is
covered by b, denoted as b > a.

A chain is a totally ordered subset of P, under which every pair of elements are
comparable. An antichain is a subset of P such that any pair of elements in the
subset is incomparable.

A poset can have an infinite number of elements. However in this thesis, we are
only looking at finite posets.

Definition 1.1.2. A linear extension of a poset is an ordering of all the elements
p1,- - ,Pn € P such that p; < p; implies 7 < j.

Example 1.1.3. The following picture is the Hasse diagram of the partially ordered
set P ={a,b,c,d,e} with covering relations a > b, a > ¢, b >d. and b > e.
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The permutations (e, d, ¢, b,a) and (e, d, b, c,a) are two possible linear extensions.

@
@ ©
@ ®

Definition 1.1.4. Let P be a finite poset and ¢ be a positive integer. Let f: P —
{0,---, ¢} be a function such that for all a,b € P, a < b implies f(a) < f(b). Then
f is weakly order-preserving, and is called a P-partition of height /.

We let PP*(P) denote the set of all P-partitions of height .

Example 1.1.5. Consider the P-partition of poset P in Example 1.1.3 of height 1.
Then PP'(P) consist of the following elements:

where the nodes of the Hasse diagrams are numbered by the values assigned by a
P-partition. In this case, |[PP(P)| = 11.

Definition 1.1.6. An order ideal of a poset P is a subset I C P such that for all
rxelandye P, if y <z, then y € I.
We let J(P) denote the set of all order ideals of P.

Observation 1.1.7. Let P be an arbitary poset, then there exists a bijection

a: J(P)— PPY(P)
Il—>f]

where

0 ifzxel
ﬁ@ﬂ:{1 ifrdl

The fact that « is a bijection can be easily checked since P-partitions are weakly
order-preserving. For instance, the P-partition defined in Example 1.1.3 has 11 order
ideals corresponding to the 11 P-partitions listed in Example 1.1.5.



1.2. Comparability graph )

Definition 1.1.8. Let P be a poset, then the down-degree of P is the number of
maximal elements of P, denoted as ddeg(P). We define the down-degree of the
P-partition f € PP‘(P) as

/—1
ddeg(f) = >_ ddeg(f7{0, -+, 4}).

Example 1.1.9. Consider the poset P in previous example and let f € PP?(P) with
the following diagram

(2)
1 ©
L ©

Then we know that ddeg(f) = ddeg(f~'{0})+ddeg(f~'{0,1}) by definition of down-
degree.

Considering the two sub-posets separately, we see that f~'{0} and f~'{0,1} are
sub-posets shown below:

© ) ©

®© @ ©
f={0} 70,1}

For f~'{0}, we may see that ¢ and e are both maximal elements, since none of them
are covered by any elements. So ddeg(f~'{0}) = 2. Similarly for f~'{0,1}, the
maximal elements are b and c¢. The figure gives us that ddeg(f~1{0,1}) = 2 as well.
Therefore, ddeg(f) =2+ 2 = 4.

Remark 1.1.10. Suppose ¢/ = 1 and I € J(P). Let a be the bijection given in
Observation 1.1.7, then ddeg(/) = ddeg(«({)).

1.2 Comparability graph

Definition 1.2.1. Let P be a poset. The comparability graph of a poset is an
undirected simple graph whose vertices are the elements of P. Let py,ps € P, then
p1, p2 are joined by an edge in the comparability graph if and only if p; and py are
comparable. We denote the comparability graph of P as com(P).

Example 1.2.2. Keep considering the poset P in Example 1.1.3. Then the compa-
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rability graph of P is

d
P Comparability graph of P

Comparing with the Hasse diagram of the original poset, we see that two extra edges
are added to the graph since a,d and a, e are comparable elements in the poset.

Since the comparability graph is undirected and simple, it is impossible for us to
determine any poset within it. However, we can characterize posets sharing the same
comparability graph.

Definition 1.2.3. Let P, @ be posets with the same comparability graph. Then we
write com(P) ~ com(Q).

Definition 1.2.4. Let P be a poset. Let A C P be a subset of P satisfying the
following properties:

1. For all ay,as € A and for all b € P\ A, we have a; < b if and only if as < b.
2. For all aj,as € A and for all b € P\ A, we have a; > b if and only if ay > b.

Then all the elements in A have the same order relations with all elements in P\ A,
and we say A is autonomous.

A poset @) is said to be obtained from P by dualizing A if () has the following
properties:

1. P and @ are the same as sets.
2. For z,y € Q \ A, we have x <g y if and only if z <p y.
3. For z,y € A, we have z <g y if and only if y <p z.

4 Forr e Aandy € Q\ A4, x <g y if and only if x <p y and y <g x if and only
if y <pux.

Example 1.2.5. Consider the following two posets P and Q).

G a"‘e
@ ol

P
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Then A = {¢,d,e} is an autonomous poset of P, and @ is obtained from P by
dualizing A, i.e., () is obtained from P by simply reversing the order of the elements
in A.

Their shared comparability graph is

a b

Theorem 1.2.6 (Hopkins (2020a) Remark 4.19). Let P, @ be posets, then com(P) ~
com(Q) if and only if there is a sequence of posets

P:P07P17”'7P/€:Q

such that P; is obtained by dualizing an autonomous subset from P;_; forall 1 <i < k.

1.3 Piecewise rowmotion

Definition 1.3.1. Let P be a poset, and let P be a new poset obtained from P
by adding a minimal element 0 and a maximal element 1. Let f € PPYP) be a
P-partition. Then we view f as an element in PP‘(P) as well, with f(0) = 0 and
f(i) = (. Then for all p € P, a piecewise-linear toggle at p is the function
7, : PPY(P) — PP*(P) defined by

f(z) if p £ x,
min{f(y) : y > p} + max{f(y) : p >y} — f(p) fp=uz,

() (x) = {

where we are minimizing and maximizing over y € p.
Let p1,- -+, p, be an linear extension of P. Then (piecewise-linear) rowmotion
is the function row: PPY(P) — PP*(P) where

TOW = Tp, O+ =0Ty, .
See Example 1.3.5 for an explicit piecewise-linear rowmotion.

In order to show that the composition does not depend on the choice of linear
extension, we need the following lemma:

Lemma 1.3.2. Let a,b € P. If there is no covering relation between a and b, then
Ta OTp = Tp O Tg.
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Proof. 1t a = b, the result is trivial. So assume a # b and there is no covering relation
between a and b,

o (£ () — 4 o) @) ifz#a
(Ta 0 1)(/)(2) {min{rb(f)(y) cy > al +max{n(f)(y):a >y} —n(f)a) ifxr=a
:{nuxm itr£a
min{f(y) :y > a} + max{f(y) :a >y} — f(a) fz=a
f(x) if x %2a,b

=qmin{f(y) : y > b} + max{f(y) : b>y} — f(b) ifz=0b
min{f(y) : y > a} + max{f(y) :a >y} — f(a) fz=a
=(m07a)(f)(2)
by symmetry of a and b in the penultimate line. O]

Proposition 1.3.3. Piecewise-linear rowmotion is independent of choice of linear
extension.

Proof. Let py,--- ,p, be an arbitrary linear extension of poset P and assume p; is a
minimal element. Since p; < p; implies ¢ < j be definition of linear extension, we
know that for all k such that k < i, p; is incomparable with p;. Then by lemma, we
can swap all minimal elements of the poset P such that

oW = Tp, © -+ O Tp, = || Tp; © || Tp;

pi€min(P) pi¢min(P)

and since all minimal elements are incomparable, we know [] Ty, can be set

i Emin(P
in arbitrary order, while Hpi ¢min(p) Tp; Must inherit the originaf orde(r 3from the linear
extension. Therefore, we know for a piecewise-linear rowmotion, we can always toggle
all the minimal elements at the end.

Next, apply this same argument to the elements of P that are minimal in P\
min(P). Continue in this way, we show by induction that piecewise-linear rowmotion

is well-defined independent of the choice of linear extension. n

Definition 1.3.4. Let P be a poset and f € PP*(P). An (rowmotion) orbit of f
is the set {row*(f): k € Z}.

One can easily check that PP*(P) is the disjoint union of its set of orbits. We
may look at some examples to see how the piecewise rowmotion is acting on the
P-partitions.

Example 1.3.5. Consider the P-partition f € PP?(P) in Example 1.1.3.

@ (2)
b)  © 20 O
@ © L @

P f e PPXP)
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Then (e, d, b, c,a) is a linear extension of P. and row = 1,o1507,07.07,. Compute
that

@ @) @ @ @ ®
@ D@D D@ D@D LD D5@ D
O O®©O O D O O O O®

and moreover, we see the following P-partitions form an orbit under the rowmotion

action. 3 3 D @
2 O— A O—0 O— @O @
O O © © © © O O

In fact, we may compute that PP?(P) has 3 orbits of length 2, 3 orbits of length
7, 1 orbit of length 4, and 1 orbit of length 22.

Example 1.3.6. When ¢ = 1, we know PP'(P) = J(P) via the mapping o : I — f;
of Observation 1.1.7, and we may view every P-partition in PP!(P) as an order ideal.
This allows us to characterize row motion on PP!(P) in terms of order ideals of P.
Let I be an arbitrary order ideal and py,--- , p, be a linear extension of P, then the
rowmotion over order ideals can be defined as

row™: J(P) — J(P)
I — o (row(a(I)))

SO (v 0 TOW™ = TOW oQ.
Then we want to compute how this rowmotion over order ideals works explicitly.
Given f € PPY(P),let Sy ={z € P: f(z) =1 and f(y) =0 for all z > y}. Then

0 if x < s for some s € Sy,

row(f)(x) = {

1 otherwise.
Hence by definition of a;, we know that

0 if x <y for some y € min(P \ I)

row(a(1)) = row(fr)(x) = {

1  otherwise

where min(P \ I) is the set of minimal elements of the sub-poset P\ I. Therefore,
we know the rowmotion over order ideals is

row*(I) = a” ' (row(f7))

= row(fr) " ({0})
={z € P:x <y for some y € min(P\ I)}.
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What is exactly then the inverse of a piecewise-rowmotion?

Lemma 1.3.7. Let P be a poset and py, - - - p, be a linear extension. Then

_1_
IOW ~ = Tp, O+ 0Tp.

Proof. Firstly we claim that Tﬁi = id for all p;. For all x # p;, we know that

o (f)(x) = 7, (f) (@) = f(z), so we only need to consider the case that z = p;.

Then we may compute
TZ?Z(f)(pl) = Tp; (sz(f)<p1))
= min{7,, (f)(z) : @ > pi} + max{7,,(f)(2) : pi > 2} — 7,,(f)(p2)
=min{f(z) : z > p;} + max{f(x) : p; > x}
— (min{ f(z) : > p;} + max{f(z) : p; > x} — f(p:))

= f(pi)-
Therefore,
Tpno"'onon o...OTpn :Tp1 o...OTpnOTpno...oTpl :1(:17
and it follows that row™' =7, o 07, . ]

Definition 1.3.8. Let P be a poset, and let O C PP*(P) be an orbit under the
rowmotion action. Then the down-degree of the orbit O is

ddeg(0) = Z ddeg(f).

feo

We now state a result that allows us to easily calculate the sum of the down-degrees
of elements in a rowmotion-orbit.

Lemma 1.3.9 (Hopkins (2020a), page 38, 39). Let P be a poset and f € PPY(P).
Define

T:PPYP)—Z
fe Z(f(x) — max{f(a) : z covers a € P})

zeP
Then ddeg(f) = (T o row™!)(f).

Remark 1.3.10. By Lemma 1.3.9, we are provided a useful formula

ddeg(0) = > (Torow ')(f) = T(f).

feo feo
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Rowmotion Bijections

In this chapter, we will focus on the following conjecture raised by Sam Hopkins:

Conjecture 2.0.1. [Hopkins (2020a) Conjecture 4.38]: Let P and @ be posets such
that com(P) ~ com(Q). Then there exists a bijection ¢ between the row orbits of
PP*(P) and the row orbits of PP*(Q), such that for all O C PP*(P), we have

1 O] = [¢(O)].
2. ddeg(O) = ddeg(p(0O)).

The case ¢ = 1 of the conjecture is known to be true (Hopkins (2020a)). In this
chapter, we will (i) reformulate the proof for the case ¢ = 1, (ii) prove the conjecture
for all ¢ in the special case that @ is the dual of P, (obtained by reversing all relations
in P), and (iii) conjecture a method of proof in another special case.

2.1 Rowmotion on order ideals

We start with a reformulation of the proof of the conjecture for the case £ = 1. !

Theorem 2.1.1 (Hopkins (2020a) Proposition 4.10). Let P and @ be posets such
that com(P) ~ com(Q). Then there exists a bijection ¢ between the row orbits of
PP'(P) and the row orbits of PP(Q), such that for all O C PP'(P), we have

L O] = [¢(O)].
2. ddeg(O) = ddeg(p(0O)).

Proof. Let rowp be the rowmotion acting on P and rowg be the rowmotion acting
on (.

By Theorem 1.2.6, we can assume without loss of generality that P is obtained
from @) by dualizing a single autonomous subset A C P. Also, define the following
subsets

U={ueP:u>aforallaec A}

In Hopkins (2020), the result is framed in terms of order ideals. We state it here in terms of
P-partitions, as explained in Example 1.3.5.
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L={leP:l<aforallac A}
N ={n € P:n and a are incomparable for all a € A},

Let AP be the poset obtained from A by dualizing A. Then we know P = UUAUNUL
and Q =UUAP UNUL.
Define the complement map over the autonomous subset A as

c: PPY(A) — PP'(AP)
Fl#) > 1 fo).
For each f € PP'(A), define the following subsets

Sp={re€eA: f(x)=1and f(y) =0 for all y < z}

U={zeA: fz)=1landz & Sr}=f"({1})\ S,
Li={xeA: f(x) =0and z <y for some y € S}
(

Cy—{rc A f(x)=0and o & Ly} = f({O)\ Ly
where we know A = Sy UU;UCy U Ly. Then as in Example 1.3.6,

)
)
)

rowa(f)(z) =

0 if x <s for some s € Sy,
1 otherwise.

. 0 IESfULf,
N 1 I‘GUfUCf

and hence

1 $€SfULf,
0 Z'EUfUCf

c(rowa(f))(x) = {

then we can compute that

Serowar) = {x € AP c(rowa(f))(x) = 1 and c(row(f))(y) = 0 for all z >4 y}
={x € A:c(rowa(f))(x) =1 and c(rowa(f))(y) =0 for all y >, =}

We claim that Serow,(py) = S If @ € Sf, then c(rowa(f))(x) = 1. Let y € A
be an arbitrary element that covers x, then y € Uy, and hence c(rowa(f))(y) = 0.
This gives us the fact that Sy C Sirow,(p). Conversely, if 2 € Sciowa(s)), then
c(rowa(f))(x) = 1, so x € SpU Ly. Assume z € Ly, then there must be some
a € Sy such that @ > z. However, a € Sy gives us that c(rows(f))(a) = 1 as
well, so c(rowa(f))(y) = 1 for all @ > y > x. This contradicts the condition that
c(rowa(f))(y) =0 for all y > x. So x € Ly, and it follows that z € S;.

Therefore, Serow,(f)) = S, and

0 if 2 <,p s for some s € Sy,

row 4o (c(row4(f)))(x) = {

1 otherwise.
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otherwise.

0 ifx >4 s for some s € Sy,
1
c(f)

given that f~'({1}) = {# € A: 2z >, s for some s € S¢}. Therefore, we have c o
Towy = row;}, o ¢ and the following commutative diagram:

TOW 4 row 4

— s rowa(f) ——2 s row (f) 2t ...
(&

> f
I | I I
i rowan (e ) el )t rowRh (el ) s row A (e(f)) i -

TOW 4 D TOW 4 D TOW 4 D TOW 4 D TOW 4 D

A row ()

Looking into the diagram, we discover that the upper row and the lower row
form two rowmotion orbits of the same size in PP'(A) and PP*(AP), respectively.
Let fs be the P-partition mapping all poset elements to 1 and fi4 = fap be the
P-partition mapping all poset elements to 0. Then we can construct a bijection
: PPY(A) — PPY(AP) as follows:

1. Let ¢(fz) = fz. Then, for all integer k, let ¥ (row" (fz)) = row", (fz).

2. Pick arbitrary f € PP'(A) that has not been mapped by ¢ yet. Let ¥(f) = c(f)
and ¢ (row” (f)) = row” , (c(f)) for all integers k.

3. Repeat step 2 until every element has been mapped.

Then we obtain a bijection satisfying that

1. For all f € PP'(A), we have 1(rowa(f)) = row 40 (¢(f)).

2. For all f € PPY(A), ¥(f) and ¢(f) are in the same rowmotion orbit.

3. ¥(fe) = fo and ¥(fa) = fa.

since ¢ is an invertible function, and row(fz) = fa.
Then we extend the bijection 1 to the following bijection:

Y: PPY(P) — PPY(Q)

o @ eea
f()H{f(:c) it d Al

For all f € PP'(P), let f(A) be the image of f restricted the autonomous subset A.
Since A is autonomous,

1. If f(A) ={0,1}, then f(U) = {1} and f(L) = {0}.
2. 1t f(A) = {0} or f(A) = {1}, then G(f) = /.
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It follows that ¢(f) € PP'(Q). It’s a bijection since the construction of ¢) makes it
an obvious injection, and PP'(P) and PP(Q) are having the same size.

Then we claim that 1; o rowp = Towg oqﬂ holds for the extended bijection as
well. Note that if f(A) = {0} or f(A) = {1}, then ¢(f) = f and ¥ (rowp(f)) =
rowg(¥(f)). Therefore, we only need to consider the situation that f(A) = {0,1}.
Note that

b(row . Y(rowp(f))(x) ifre A
D(rowp(f))(x) {W TR
_ {rowmw))(x) ifreA
rowg(f)(z)  ifad A

= rowq({(f)) (),

and hence the bijection indeed commutes with rowmotion. Define

P(O)={d(f): f € O}

where O is an arbitrary rowmotion orbit in PP!(P). Then ¢ is a bijection between
row-orbits and indeed |O| = |¢(O)|.

Next we want to show ddeg(Q) = ddeg(p(O)). We know by the definition of
down-degree that ddeg(f) = ddeg(f~'{0}) = |max(f~*{0})| = |L;|. Also, we know

ddeg(rowp(f)) =T(f) = Zf(m) — max{f(a) : z covers a € P} = |S}|

reP

Note that if we looking at the autonomous part of the rowmotion orbit O of
any f € PP'(P), it happens to be three cases: f(A) = {0}, f(A) = {1} and

f(A) ={0,1}. So
ddeg(0) = > ddeg()

feo

= Y ddeg()+ Y. ddeg(H+ Y. ddeg(f)

feo, f(A)={1} feo, f(A)={0} feo, f(A)={1,0}

Assume f(A) = {0} or f(A) = {1}, then U(f) = f as we defined above. Then
certainly we would have ddeg(f) = ddeg(u)(f)). So inside the rowmotion orbit, we
only need to show that

> ddeg(f) = > ddeg(f)

fe0, f(A)={1,0} Fep(0), f(A)={1,0}

If f(A) = {0,1} for some f € O, then we know f(U) = {1} and f(L) = {0}.
This forces the entire row,4 orbit must be contained inside O when restricting to
the autonomous subset A, while the corresponding orbit must be contained in ¢(O).
Define the following function as

)\fiP—>{0,1}
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1 ifpel
P np .f
0 otherwise,

then we can also describe the down-degree of f € PP'(P) as 3 _p Af(p). Thus when
f(A) ={0,1}, we may compute that

ddeg(f) =Y As(p)

peP

=> M)+ A

pEN pEA

=" As(p) + ddeg(f4)

peEN

where the first part is equal by the construction of ¢». We know for all f € PP'(A),
¥(f) and c(f) are in the same rowmotion orbit. Also we know that

ddeg(rowan(c(f))) = |Se(s)| = |Ly| = ddeg(f).

hence, we have that ddeg(O) = ddeg(¢(O)).

Example 2.1.2. Consider the posets P and @ in Example 1.2.5 where A = {c,d, e}
is their autonomous subset. We want to construct the bijection 1.

(@) () (@ ®

e

) (© ©
P Q@

In order to do so, we first construct the orbits of these f € PP'(P) such that
f(A) = {0}. Applying 1, we get the orbits of g € PP'(Q) such that g(AP) = {0}.

© @ rovvp (D I'OWp (D rOWp (D
O : (0) — (D) — (1) —  (0)
© © L ® © © © ©
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and
QO . QO
Os: @ — @
© © © ©
[’ [’
DO OO
w0): @D G
© ©

We may check that ddeg(O;) = ddeg(p(01)) = 5 and ddeg(O;) = ddeg(¢(O;)) = 2.
Then we consider an arbitrary P-partition where f(A) = {0,1}. Then we have

the following orbits matched up:

QO DD
0 0

where the first correspondence is obtained by the complement map ¢, and the left-
overs are matched up to satisfy the relation ¢ o rowp = rowg otp. Since the length of
the orbit is 2, it happened that ¢ = ¢ for all P-partitions. We can also check that

ddeg(O3) = ddeg((03)) = 2.

2.2 Rowmotion on P-partitions

This section will discuss the general case where ¢ is an arbitrary integer. We will start
with the special case that P itself is the autonomous subset.

2.2.1 When P=A

Theorem 2.2.1. Let A be an arbitrary poset. Let A” be the poset obtained from

A by dualizing A. Let ¢ > 1. Then there exists a bijection ¢ between the row orbits
of PP*(A) and the row orbits of PP‘(AP), such that for all O C PP*(A), we have

L 0] = |p(0)].

2. deeg(f)z Z ddeg(f)
)

feo fep(O
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Proof. Define the complement map

c: PPY(A) — PP‘(AP)
flx) = - f(z)

and let p1,---,p, be a linear extension of A. Then we know p,,---,p; is a linear
extension of AP.
Our first task is to show that the following diagram commutes.

PP!{(A) — PP!(A)

| |

PPZ(AD) (W PPZ(AD)

where row = 7, 0--- 07, is the piecewise-rowmotion over A and r6w =7, , 0---07,,
is the piecewise-rowmotion over AP.

Let p be an arbitrary fixed element in A. So for any a € A such that a # p, we
have

(con)(f)a) =L —7(f)(a) = €= fla) = c(f)(a) = (7, 0 ¢)(f)(a),

and when a = p, we have

(con)(f)(p) =€ —7(f)(p)
= (— (min{f(z) : # > p} + max{f(z) : p >x} — f(p))
= —max{f(z):z>p})+ ({ —min{f(z) :p>az})— (L — f(p))
=min{l — f(z) : v > p} + max{( — f(z) : p >z} — ({ = f(p))
= min{c(f)() : © > p} + max{c(f)(z) : p >} — c(f)(p)
= (7o c)(f)(p).

Therefore, co 1, = 7,0c. So

~ _~2 o
TpOCOTp_TpOC_C

since doing a toggle twice is equal to doing nothing. Then it follows that
rO’VWOCOrOW:%pn o---o7~‘p1 0CO0T, 0++0T, =¢C

telling us the diagram above indeed commutes. For all f € PP‘(A), the above
commutative diagram tells us that orbit generated by f € PP‘(A) has the same
length as the orbit generated by c(f) € PP‘(AP). Therefore, as in the proof of
Theorem 2.1.1, we can construct a bijection v : PP‘(A) — PP*(AP) which satisfies

1. For all f € PP*(A), we have 1) o row = 16w o ).

2. For all f € PP*(A), ¢(f) and c(f) are in the same rowmotion orbit.
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In this case, we don’t need to fix ¥(fa) = fa and ¥(fz) = fo. We matched
these up before in the proof of Theorem 2.1.1 in order to extend @ to 1. Define
©(0) ={(f) : f € O}, then indeed |O] = |(O)|.

Next we need to show that the bijection preserves the down-degree. In order to
do so, we look into the following commutative diagram:

row () 2 f

L L

row(c(f)) <5 <(f)

row
By the property of linear extensions, we know that p; < p; implies i < j, so

row(f)(pi) =((rr0---0mp_,) 0 (7p, 0+ 07, ))(f)(pi)
=(7p; 0+ 07 ) () (i)
=min{(7,,, 0--- 07, )(f) () - pj > i}
+ max{(7y,,, 0 07, )(/)(ps) : i > 5} — f(pi)
=min{(7y, 007, )(f)(p;) : pj > pi} + max{f(p;) : pi >p;} — f(pi)
=min{row(f)(p;) : p; > pi} +max{f(p;) : pi > p;} — f(p)-
Since p; > p; implies that ¢ +1 < 7 < n and p; > p; implies that 1 < j < 1.
The main idea is that because that when we are toggling 7,, inside of row4, we have

already toggled everything that covers p;, while everything it covers is staying fixed.
Similarly, we know

row ™' (f)(pi) = min{f(p;) : p; > «} + max{row™" f(p;) : p; > p;} — f(p:)-
Then we may check that
T(row () = D vow ' (f)(p:) — max{row ' (f)(p;) : pi >a p;}
Pi€EA

=" min{f(p;) : py >a pi} + max{row; f(p;) : pi >a p;} — f(20)
piezlax{row_l(f )(Ps) : pi >a Dy}

=§4min{f(pj) :p; >a pit — f(ps)

- ZAD min{ f(p;) : pi >a0 p;} — f(pi)

:pZZAD (= f(p;) —max{€ — f(p;) : p; >ap p;}

= T(e(f))

which gives us that

ddeg(f) = T(row'(f)) = T(c(f)) = ddeg(row(c(f)))-
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Moreover, given a correspondence of orbits as in the following diagram, the equality
gives us that the down-degree of dashedly-connected P-partitions must equal

A row rOW_l(f) row z f row N rOW(f) row rOW2(f) row : .
/,//// lc /,/’/// lc /,’/// lc //////// lc //////

st c(row 1 f)) o c(f) o c(row(f)) = c(row?(f)) o -

row row row row row

and hence we know that the down-degree of the entire orbits must equal. O

Example 2.2.2. Let P and @ be the following posets
@ _ () © ) ©
@ © @ © @
P Q

then () is a poset obtained from P by dualizing P. Consider the following P-partitions
f e PP3(P):

We see that the P-partitions forms two orbits that are bijectively related by ¢.
Moreover, we can check the down-degree of each P-partitions are

Ot > Dt > 3 > 4t > 4
I
D < 134 1 4 < 1 4 < )

where for each rectangle, the upper right corner equal to the lower left corner.

2.2.2 When P=UUAUL

We now assume that P has the form U U AU L. Thus, P is arbitrary except that
N = @. To indicate the structure of P, we will sometimes use the notation

U
\
P= A
\
L
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Define ¢(f) = min{f(a) : a € P covers A} and 0(f) = max{f(a) : A covers a € P}.
Let @ be the poset obtained from P by dualizing A, and then set

¢: PPY(P) — PPYQ)

. 0f)Y+0(f)— f(z) ifzeA
f()H{f(x) itz A

This construction makes sure that c(f) is still a P-partition, i.e. a weakly order
preserving map.

Let U C P be the subposet covers A and L C P be the subposet covered by A.
We want that with such complement map, the following diagram commutes:

row ()] o ow(Dly 10w ()l
I row () — s fla — s vow( )4 2 row?(f)]4 ~2Es
row1(f); s ow(Dle 10w’ (£
row()lo flo o (fly 0w 2(f)y
e o (corow ) (Pl fomm ()4 4o (¢ ToW) ()] 4o fe 0 10W2) ()4 s -
row(f)]: s ow (Dl row ()l

Claim: The diagram is commutative if and only if there exists an element f €
PPY(P) in each rowmotion orbit such that

((rowp(f)) = L(rowp"(f)) and  O(rowp(f)) = 0(rowp"(f)) (2.1)

for all integer k.

Proof. (=) Let py,--- ,p, be a linear extension of P, where L = {p;--- ,p;}, A =
{pia e ’p]} and U = {pj+17 e ,pn} Define

TU = Tpjy1 OO Tp,
TA:Tpi+1O"'OTp]-

TL=Tp O 0Ty,

and then rowp = 77, 0 74 o 7y and rowg = 71 © 7';1 o 71y. Assume x is a maximal
element in A, then

c(rowp)(f)(x) = £(
0(

(f)) +0(row(f)) — (b(row(f)) + max{f(y) : y <a 2} — f(x))
(f) —max{f(y) : y <az}+ f(x)

row
row
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and since z is a minimal element of AP, we have

rowq' (e(f)) (@) = (5" 0 Ta 0 7,) (e(f)) (@)
= (o o7, )(e(f)(2)
= min{c(f)(y) : y >ap x} + 0(rowg' (f)) — c(f)(2)
= min{c(f)(y) : y <a x} + 0(rowq' (f)) — e(f)()
= 0(row™"(f)) — max{f(p;) 1 y <a 2} + f()

so we know that if the diagram commutes, then there has to be the condition
0row(f)) = O(row™'(f)).

A similar argument can be applied to any minimal element of A to obtain that
((row(f)) = L(row™L(f)) is also a condition to let the diagram commute. Both
relations can be generalized to all integers as we push through the commutative
diagram.

(«<=) It can be easily checked that if the condition holds, then 7, 0o ¢ = co 7, for
all x € A, and hence

(corowp)(f) = (rowg" oc)(f)

for all integer k. Hence the diagram commutes. O]

Sadly, it is not true that there always exists such element, so we cannot use this
complement map to extend to an bijection that commutes with the complement map.

Example 2.2.3. Let P and @) be the following posets:

Then @ is obtained from P by dualizing A = {f, g, h,i,7}. Consider the following
P-partition orbit O C PP*(P),

and we can see that {((f) : f € O} = {2,2,3,1,1}. There’s no element f € O
satisfying the condition in the claim.
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However, while examining different P-partitions with a computer, we figured out
some special pattern without any counterexamples yet.

Conjecture 2.2.4. Let P =U U AU L where A is an autonomous subset and

U={ueP:u>aforallaec A}
L={leP:l<aforallac A}

Let Q be the poset obtained from P by dualizing A. For all f € PP*(P), let O(f)
be the rowmotion orbit generated by f, then

L0 = [0(c(N)]

2. ddeg(O(f)) = ddeg(O(c(/)))-
for all f € PPY(P).

This might be true because even if the diagram is not commutative, some P-
partition structure is still preserved by the rowmotion and the complement map.
Hence, length of the orbit is going to be the same.

On the other hand, when computing the down-degree of an orbit, we know
ddeg(O) = > ;o T(f). So if certain structure of the P-partition is preserved, the
total down-degree is also going to be preserved.

Theorem 2.2.5 (Hall Marriage Theorem). Let G = XUY be a finite bipartite graph.
An perfect matching is a matching that covers all vertices of the graph with part
X and Y. For W C X, let Ng(W) be the neighborhood of W in G, i.e., the set
of points in Y that are connected to some point in W. Then there exists a perfect
matching if and only if for all subset W C X, |[W| < |Ng(W)|.

Theorem 2.2.6. Assume Conjecture 2.2.4 holds for some P =U U AU L and @ =
UU AP U L, then there exists a bijection ¢ between the row orbits of PP*(P) and
the row orbits of PP‘(Q), such that for all O C PP*(P), we have

L 0] = |¢(0)].
2. ddeg(O) = ddeg(¢(0)).

Proof. Assume Conjecture 2.2.4 holds. Let X and Y be the sets of rowmotion orbits
of PP*(P) and PP*(Q), respectively. Let G be the graph with vertices X UY’, and
with an edge between O € X and O’ € Y if there exists f € O such that ¢(f) € O'.
Let W C X. By the conjecture, we know that |O(f)| = |O(c(f))|- So without loss of
generality, we may assume that |O] = k for all O € W.

Let K = {f € O:0 € W} C PP‘(P), then we know |K| = Y,y |O] = k|W],
and |c(K)| = |K| = k|W/. since c is a bijection. Then

Na(W) = 1{0() : £ € i)} > L) — )

since orbits in Ng(W) must also be of the size k. Hence by Hall Marriage Theorem,
there exists a perfect matching ¢ : PP*(P) — PP*(Q) such that
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L |O(N)] = [#(O()))]-
2. ddeg(O(f)) = ddeg((O(f)))-

2.2.3 Decomposition of P-partitions

Here are some closing thoughts on another possible approach to proving the conjec-
ture. The idea is to decompose each element of PP‘(P) into ¢ elements of PP!(P).
(Recall that. the conjecture has already been proved in the case where ¢ = 1.)

Lemma 2.2.7. Let P be a poset and f € PPY(P). For any 1 < i </, define

f; : PPY(P) = {0,1}
f2) {1 if f(x) >

0 otherwise.

then we have
L f=Yif
2. row(f) = 3o;_, Tow(fi).
3. ddeg(f) = i, ddeg(f;).
where Tow is the rowmotion action over PP(P).
Proof. 1. This comes immediately from the construction of f;.

2. Let  be a maximal element in P, then we know

14 L

S row(fi)(x) = D1+ max{fily)  y < 0} — fi(2))

=1 i=1 e é
=/(+ Zmax{fi(y) ry<xl— Zfz(x)
=+ max{f(y) :y <z} - f(2)
— row(f) (@)

Thus by induction, we know row(f) = Zle Tow (f;).

3. Note that f; € PP!(P) for all i, thus we may obtain the corresponding order
ideal through the mapping « of Observation 1.1.7. By definition of down-degree,
we know that

ddeg(f) = i ddeg(f~{0,--- ,i})
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[l
Conjecture 2.2.8. Let P be a ranked poset, then row(f;) € {row(f); : 1 <i < /(}.

Observation 2.2.9. If 0 € row(f)(P), then ¢ € f(P).
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