
 Divisors and Sandpiles:
An Introduction to Chip-Firing

This is a preliminary version of the book Divisors and Sandpiles published by the American Mathematical Society
(AMS). This preliminary version is made available with the permission of the AMS and may not be changed,
edited, or reposted at any other website without explicit written permission from the author and the AMS.

Scott Corry
David Perkinson

https://bookstore.ams.org/mbk-114/

Divisors and Sandpiles

Scott Corry

David Perkinson

Department of Mathematics, Lawrence University, Appleton, Wis-
consin 54911

E-mail address: corrys@lawrence.edu

Department of Mathematics, Reed College, Portland, OR 97202

E-mail address: davidp@reed.edu

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

2010 Mathematics Subject Classification. Primary 05C25

Abstract.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

To Madera and Diane

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Contents

Preface 1

Part 1. Divisors

Chapter 1. The dollar game 7

1.1. An initial game 7

1.2. Formal definitions 9

1.3. The Picard and Jacobian groups 14

Notes 16

Problems for Chapter 1 17

Chapter 2. The Laplacian 19

2.1. The discrete Laplacian 19

2.2. Configurations and the reduced Laplacian 24

2.3. Complete linear systems and convex polytopes 28

2.4. Structure of the Picard group 31

Notes 39

Problems for Chapter 2 40

Chapter 3. Algorithms for winning 43

3.1. Greed 43

3.2. q-reduced divisors 46

3.3. Superstable configurations 50

3.4. Dhar’s algorithm and efficient implementation 50

3.5. The Abel-Jacobi map 54

Notes 58

Problems for Chapter 3 59

vii

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

viii Contents

Chapter 4. Acyclic orientations 61

4.1. Orientations and maximal unwinnables 61

4.2. Dhar’s algorithm revisited 63

Notes 67

Problems for Chapter 4 68

Chapter 5. Riemann-Roch 69

5.1. The rank function 69

5.2. Riemann-Roch for graphs 71

5.3. The analogy with Riemann surfaces 74

5.4. Alive divisors and stability 82

Notes 84

Problems for Chapter 5 86

Part 2. Sandpiles

Chapter 6. The sandpile group 91

6.1. A first example 91

6.2. Directed graphs 96

6.3. Sandpile graphs 97

6.4. The reduced Laplacian 101

6.5. Recurrent sandpiles 104

6.6. Images of sandpiles on grid graphs 108

Notes 113

Problems for Chapter 6 114

Chapter 7. Burning and duality 119

7.1. Burning sandpiles 120

7.2. Existence and uniqueness 121

7.3. Superstables and recurrents 123

7.4. Forbidden subconfigurations 126

7.5. Dhar’s burning algorithm for recurrents. 127

Notes 128

Problems for Chapter 7 129

Chapter 8. Threshold density 131

8.1. Markov Chains 132

8.2. The fixed-energy sandpile 141

8.3. The threshold density theorem 151

Notes 159

Problems for Chapter 8 160

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Contents ix

Part 3. Topics

Chapter 9. Trees 165

9.1. The matrix-tree theorem 166

9.2. Consequences of the matrix-tree theorem 172

9.3. Tree bijections 175

Notes 190

Problems for Chapter 9 191

Chapter 10. Harmonic morphisms 195

10.1. Morphisms between graphs 195

10.2. Branched coverings of Riemann surfaces 204

10.3. Household-solutions to the dollar game 206

Notes 211

Problems for Chapter 10 212

Chapter 11. Divisors on complete graphs 215

11.1. Parking functions 215

11.2. Computing ranks on complete graphs 218

Problems for Chapter 11 227

Chapter 12. More about sandpiles 229

12.1. Changing the sink 229

12.2. Minimal number of generators for S(G) 232

12.3. M -matrices 238

12.4. Self-organized criticality 240

Problems for Chapter 12 243

Chapter 13. Cycles and cuts 245

13.1. Cycles, cuts, and the sandpile group 245

13.2. Planar duality 250

Problems for Chapter 13 255

Chapter 14. Matroids and the Tutte polynomial 257

14.1. Matroids 257

14.2. The Tutte polynomial 259

14.3. 2-isomorphisms 262

14.4. Merino’s Theorem 263

14.5. The Tutte polynomials of complete graphs 266

14.6. The h-vector conjecture 269

Notes 273

Problems for Chapter 14 274

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

x Contents

Chapter 15. Higher dimensions 279

15.1. Simplicial homology 279

15.2. Higher-dimensional critical groups 287

15.3. Simplicial spanning trees 288

15.4. Firing rules for faces 292

Notes 296

Problems for Chapter 15 297

Appendix

Appendix A. 303

A.1. Undirected multigraphs 303

A.2. Directed multigraphs 307

Appendix B. 311

B.1. Monoids, groups, rings, and fields 311

B.2. Modules 312

Glossary of Symbols 317

Bibliography 321

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Preface

This book discusses the combinatorial theory of chip-firing on finite graphs, a sub-
ject that has its main sources in algebraic and arithmetic geometry on the one
hand and statistical physics and probabilistic models for dispersion on the other.
We have structured the text to reflect these two different motivations, with Part 1
devoted to the divisor theory of graphs (a discrete version of the algebraic geome-
try of Riemann surfaces) and Part 2 devoted to the abelian sandpile model (a toy
model of a slowly-driven dissipative physical system). The fact that these seemingly
different stories are in some sense two sides of the same coin is one of the beautiful
features of the subject.

To provide maximal coherence, each of the first two parts focuses on a central
result: Part 1 presents a quick, elegant, and self-contained route to M. Baker and
S. Norine’s Riemann-Roch theorem for graphs, while Part 2 does the same for
L. Levine’s threshold density theorem concerning the fixed-energy sandpile Markov
chain. In the exposition of these theorems there are many tempting tangents, and
we have collected our favorite tangential topics in Part 3. For instructors, the
ability to include these topics should provide flexibility in designing a course, and
the reader should feel free to pursue them at any time. As an example, a reader
wanting an introduction to simplicial homology or matroids could turn to those
chapters immediately. Of course, the choice of topics included in Part 3 certainly
reflects the biases and expertise of the authors, and we have not attempted to be
encyclopedic in our coverage. In particular, we have omitted a thorough discussion
of self-organized criticality and statistical physics, the relationship to arithmetic
geometry, pattern formation in the abelian sandpile model, and connections to
tropical curves.

The audience we had in mind while writing this book was advanced undergrad-
uate mathematics majors. Indeed, both authors teach at undergraduate liberal arts
colleges in the US and have used this material multiple times for courses. In addi-
tion, the second author has used this subject matter in courses at the African In-
stitute for Mathematical Sciences (AIMS) in South Africa, Ghana, and Cameroon.

1

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

2 Preface

The only prerequisites for reading the text are first courses in linear and abstract
algebra, although Chapter 8 assumes rudimentary knowledge of discrete probability
theory, as can be easily obtained online or through a standard text such as [82].
In fact, one of the charms of this subject is that much of it can be meaningfully
and entertainingly presented even to middle school students! On the other hand,
this text is also suitable for graduate students and researchers wanting an intro-
duction to sandpiles or the divisor theory of graphs. We encourage all readers to
supplement their reading with computer experimentation. A good option is the
free open-source mathematics software system SageMath ([33], [77]), which has
extensive built-in support for divisors and sandpiles.

In addition to presenting the combinatorial theory of chip-firing, we have the
ulterior motive of introducing some generally useful mathematics that sits just at
the edge of the standard undergraduate curriculum. For instance, most undergrad-
uate mathematics majors encounter the structure theorem for finitely generated
abelian groups in their abstract algebra course, but it is rare for them to work
with the Smith normal form, which arises naturally in the computation of sandpile
groups. In a similar way, the following topics all have connections to chip-firing, and
the reader can find an introduction to them in the text: the matrix-tree theorem;
Markov chains; simplicial homology; M -matrices; cycle and cut spaces for graphs;
matroid theory; the Tutte polynomial. Further, for students intending to study al-
gebraic geometry, learning the divisor theory of graphs is a fantastic stepping stone
toward the theory of algebraic curves. In fact, some of the proofs of the corre-
sponding results are the same in both the combinatorial and the algebro-geometric
setting (e.g., Clifford’s theorem).

We now provide a more detailed description of the text. A reader wanting to
start with sandpile theory instead of divisors should be able to begin with Part 2,
looking back to Part 1 when needed for vocabulary.

Part 1:

• Chapter 1 introduces the dollar game in which vertices of a finite graph trade
dollars across the edges in an effort to eliminate debt. This simple game provides
a concrete and tactile setting for the subject of divisors on graphs, and the chapter
ends with a list of motivating questions.

• Chapter 2 introduces the Laplacian operator, which is really our central object of
study. We reinterpret the dollar game in terms of the Laplacian, and introduce
Smith normal form as a computational tool.

• Chapter 3 discusses algorithms for winning the dollar game or certifying un-
winnability. The first section presents a greedy algorithm for winnability, while
later sections describe the more sophisticated Dhar’s algorithm along with the
attendant concepts of q-reduced divisors and superstable configurations.

• Chapter 4 continues the study of Dhar’s algorithm, using it to establish a cru-
cial bijection between acyclic orientations of the graph and maximal unwinnable
divisors.

• Chapter 5 draws on all of the previous chapters to establish the Riemann-Roch
theorem for graphs. Section 5.3 lays out the striking analogy of the divisor theory
of graphs with the corresponding theory for Riemann surfaces.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Preface 3

Part 2:

• In Chapter 6 we begin anew by imagining grains of sand stacked on the vertices
of a graph, with new grains arriving slowly at random locations. When too
many grains accumulate at a vertex, the vertex becomes unstable and topples,
sending grains along edges to neighboring vertices. An avalanche may ensue as
new vertices become unstable due to the toppling of other vertices. One vertex
is designated as the sink, having the capacity to absorb an unlimited amount of
sand—this ensures that every avalanche eventually comes to an end. As in Part 1,
the Laplacian operator plays the central role in this story, but now our attention
turns to the recurrent sandpiles: those configurations of sand on non-sink vertices
that occur over and over again as we drop sand on the graph.

• Chapter 7 presents the burning algorithm for determining whether a sandpile
is recurrent. As a consequence, we establish a duality between recurrent sand-
piles and superstable configurations, thereby revealing one of many connections
between the sandpile theory of Part 2 and the divisor theory of Part 1.

• Chapter 8 provides a brief introduction to Markov chains and then presents the
threshold density theorem for the fixed-energy sandpile. In this model there is no
sink vertex, so an avalanche might continue forever. Starting with a highly stable
state, we imagine dropping additional grains of sand on the graph just as before,
allowing time for the avalanches to occur in between successive grains. How much
sand will be on the graph when it first passes the critical threshold where the
avalanche never ends? The threshold density theorem provides a precise answer
to this question in the limit where the starting state becomes “infinitely stable.”

Part 3:

• Chapter 9 contains two proofs of the matrix-tree theorem, which computes the
number of spanning trees of a graph as the determinant of the reduced Laplacian
matrix. This tree-number is also the number of recurrent sandpiles on the graph.
The second section contains several corollaries, while the final two sections discuss
tree-bijections and the remarkable rotor-router algorithm, providing an action of
the sandpile group on the set of spanning trees.

• Chapter 10 returns to the setting of Part 1 and studies harmonic morphisms
between graphs. These are discrete analogues of holomorphic mappings be-
tween Riemann surfaces, and we prove a graph-theoretic version of the classical
Riemann-Hurwitz formula at the end of the first section, explaining the original
result for surfaces in Section 10.2. In the final section, we interpret harmonic
morphisms as generalized solutions to the dollar game in which individuals pool
their money by forming households.

• Chapter 11 presents two related topics concerning the divisor theory of com-
plete graphs. In the first section, the superstable configurations on a complete
graph are shown to be essentially the same as parking functions—certain inte-
ger sequences arising frequently in combinatorics, introduced here via a simple
story about parking cars. In the second section, we present the Cori-Le Borgne
algorithm for computing ranks of divisors on complete graphs, exploiting the
connection with parking functions in an appealing way.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

4 Preface

• Chapter 12 addresses several additional topics related to sandpiles: the depen-
dence of the sandpile group S(G, s) on the choice of sink vertex s; the minimal
number of generators for S(G, s); and a generalization of the sandpile dynamics
in which the reduced Laplacian is replaced by a non-singular M -matrix. The
chapter concludes with a brief discussion of the concept of self-organized critical-
ity.

• Chapter 13 introduces the algebraic theory of cycles and cuts, and discusses the
connection to the sandpile group. As an application, we prove that the sandpile
group of a plane graph is isomorphic to the sandpile group of its planar dual.

• Chapter 14 provides a brief introduction to matroids and their Tutte polyno-
mials. As applications, we show that the sandpile group of a graph G depends
only on the cycle matroid of G; prove Merino’s Theorem identifying the num-
ber of superstables of each degree with the coefficients of the Tutte polynomial;
state Stanley’s conjecture concerning h-vectors of matroid complexes; and finally
present Merino’s proof of Stanley’s conjecture in the case of cographic matroids.

• Chapter 15 provides a brief introduction to higher-dimensional versions of many
of our topics. We begin by introducing the relevant setting of simplicial complexes
and their associated homology theory. We then define higher-dimensional critical
groups, generalizing the Jacobian of a graph. We define simplicial spanning trees
and present a generalized matrix-tree theorem due to A. Duval, C. Klivans, and
J. Martin. We conclude with some brief comments about higher-dimensional
versions of the dollar game and the sandpile model.

Acknowledgments. We would like to thank: Matt Baker, Lionel Levine, Spencer
Backman, Maddie Brant, Melody Chan, Art Duval, Laura Florescu, Munyo Frey-
Edwards, Luis David Garćıa Puente, Rebecca Garcia, Darij Grinberg, Sam Hop-
kins, Tessa Hoppenfeld, Caroline Klivans, Jeremy Martin, Ina Metta, Dani Morar,
Wesley Pegden, Jacob Perlman, Jamie Pommersheim, Jim Propp, Vic Reiner, Tom
Roby, Farbod Shokrieh, Avi Steiner, Irena Swanson, Riley Thornton, John Wilmes,
Qiao-yu Yang, Kuai Yu, and the many students with whom we have shared this
subject at Lawrence University, Reed College, and the African Institute for Math-
ematics in South Africa, Ghana, and Cameroon.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Part 1

Divisors

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Chapter 1

The dollar game

1.1. An initial game

Consider the graph pictured in Figure 1. As suggested by the labels, we think
of the vertices V as individuals, the edges E as relationships between individuals,
and the entire graph G = (V,E) as a community. The number of edges between
two vertices indicates the strength of the relationship between the corresponding
individuals, with zero edges indicating no relationship at all. For instance, Willa
knows Yoshi twice as well as Xenia; she and Zelda are strangers.

Willa4

Xenia

−2

Yoshi

−1

Zelda 3

Figure 1. A distribution of wealth in a community.

As in most communities, the individuals represented in G are not equally
wealthy. To record their varying degrees of prosperity, we place an integer rep-
resenting a number of dollars next to each vertex, interpreting negative values as
debt1. We represent such a distribution of dollars as a formal sum of vertices. For
example, the distribution of wealth D in Figure 1 is given by D = 4W−2X−Y +3Z,

1Debt is owed to an outside entity not represented in the graph—perhaps a credit card company.

7

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

8 1. The dollar game

using first initials to label vertices. So Willa has $4, Xenia owes $2, etc., and the
net wealth is 4− 2− 1 + 3 = 4 dollars.

To redistribute wealth, each individual v may choose to lend a dollar along
each edge incident to v (possibly going into debt), or else borrow a dollar along
each edge (possibly forcing someone else into debt). Note that v never lends along
some edges while borrowing along others: she is either in a philanthropic mood (in
which case she lends to all vertices in proportion to the strength of their bond) or
she is feeling needy (in which case she similarly borrows from all vertices). Figure 2
shows a lending move by Willa.

W4

X

−2

Y

−1

Z 3
Willa

W1

X

−1

Y

1

Z 3

Figure 2. Willa lends to her friends.

The goal of the community is simple: find a sequence of lending/borrowing
moves so that everyone is debt-free. This is called the dollar game on G starting
from D, and if such a sequence exists, the game is said to be winnable. After Willa
makes the lending move shown in Figure 2, only Xenia is in debt. If Xenia then
borrows, the dollar game is won (Figure 3). Note there may be multiple paths to
victory in the dollar game and multiple winning states. Can you see this in our
running example?

Important: before proceeding, play the dollar games in Exercise 1.1. In each
case, you are given an initial distribution of wealth. If possible, win by finding a
sequence of lending and borrowing moves resulting in a state in which no vertex
has debt.

W1

X

−1

Y

1

Z 3

−Xenia

W0

X

2

Y

0

Z 2

Figure 3. Xenia borrows, and the dollar game is won.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

1.2. Formal definitions 9

Exercise 1.1. Can you win the dollar game?

(a) v12 v2 −1

v3

−1

(b) v11 v2 1

v3

−2

(c) v1
v2

v3
v4

v5

5
−4

7
0

−9

(d) v1
v2

v3
v4

v5

−1

2

2
−2

4

(e) v1v2

v3

v4 v5

v6

02

0

0 −2

0

(f) v1v2

v3

v4 v5

v6

20

0

0 −2

0

(g) v1

−2

v2

3

v3

1

v4

1

v5

0

v6

2

v7

−4

v8

−1

1.2. Formal definitions

We now formalize the ideas presented in the previous section. See Appendix A for
a brief review of definitions and terminology from graph theory.

Definition 1.2. A multigraph G = (V,E) is a pair consisting of a set of vertices V
and a multiset of edges E comprised of unordered2 pairs {v, w} of vertices. The
prefix “multi-” means that a pair {v, w} may occur multiple times in E. For ease
of notation, we generally write vw for the edge {v, w}. A multigraph G is finite
if both V and E are finite, and it is connected if any two vertices are joined by a
sequence of edges.

In Part 1 of this book, we will simply use the term graph to mean a finite,
connected, undirected multigraph without loop edges.

Definition 1.3. A divisor on a graph G is an element of the free abelian group on
the vertices:

Div(G) = ZV =
{∑

v∈V D(v) v : D(v) ∈ Z
}
.

2Here we are defining an undirected multigraph, which provides the setting for Part 1 of this book;
in Part 2 we will also consider directed multigraphs, where the edge multiset consists of ordered pairs
of vertices.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

10 1. The dollar game

Divisors represent distributions of wealth on G: if D =
∑
v∈V D(v) v ∈ Div(G),

then each vertex/person v has D(v) dollars, interpretating a negative value for D(v)
as debt. The net amount of money determined by D is called the degree of the
divisor.

Definition 1.4. The degree of D =
∑
v∈V D(v) v ∈ Div(G) is the integer

deg(D) =
∑
v∈V

D(v).

The collection of divisors of degree k is denoted Divk(G),and the collection of
divisors of nonnegative degree is denoted Div+(G).

For v ∈ V , the word “degree” has two meanings. If we think of v as a divisor,
then its degree is 1. However, as a vertex in the graph, its degree is its number of
incident edges. To avoid ambiguity, we use degG(v) to denote the latter.

Definition 1.5. Let D,D′ ∈ Div(G) and v ∈ V . Then D′ is obtained from

D ∈ Div(G) by a lending move at v, denoted D
v−→ D′, if

D′ = D −
∑
vw∈E

(v − w) = D − degG(v) v +
∑
vw∈E

w.

Similarly, D′ is obtained from D by a borrowing move at v, denoted D
−v−−→ D′, if

D′ = D +
∑
vw∈E

(v − w) = D + degG(v) v −
∑
vw∈E

w.

(Note that in the above sums, an edge vw will occur more than once if there are
multiple edges between v and w.)

1.2.1. The abelian property and set-lendings. As is easily verified from Def-
inition 1.5, the order of lending and borrowing moves does not matter: if Willa
lends and then Xenia lends, the result is the same as if Xenia lent first, then Willa.
This is known as the abelian property of the dollar game. To state the property
formally, let D ∈ Div(G) and v, w ∈ V . Then we have a commutative diagram:

D

D′ D′′

D′′′

v w

w v

By “commutative” we mean that following the lending moves down either the left
or the right side of this diagram leads to the same final divisor, D′′′.

In fact, not only may lendings and borrowings be made in any order without
affecting the outcome, they may be made simultaneously. Again, this follows easily
from Definition 1.5.

Definition 1.6. Let D,D′ ∈ Div(G) and suppose that D′ is obtained from D by
lending from all of the vertices in W ⊆ V . Then D′ is the result of a set-lending or

set-firing by W , denoted D
W−→ D′.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

1.2. Formal definitions 11

In Figure 4, we lend from the circled set of vertices. Vertices within the circle
trade dollars; only vertices incident to an edge that crosses the circle feel a net
effect.

v0

−2

v1 1

v2

0

v32
{v1, v2, v3}

v0

0

v1 0

v2

0

v31

Figure 4. Set-lending on the diamond graph.

It is usually best to think in terms of set-lendings when playing the dollar game.
Armed with this new set-lending technology, the reader is encouraged to replay the
games in Exercise 1.1.

Exercise 1.7. Referring to Figure 1, verify that if Xenia, Yoshi, and Zelda all
perform lending moves, the result is the same as if Willa had performed a single
borrowing move. In general,

Borrowing from v ∈ V is the same as set-lending by V \ {v}, and a
set-lending by V has no net effect.

Thus, from now on we will feel free to use the phrase lending moves instead
of lending and borrowing moves.

1.2.2. Linear equivalence. After a lending move, the distribution of wealth
may change, but in some sense, the game has not. We develop language to make
this notion precise.

Definition 1.8. Let D,D′ ∈ Div(G). Then D is linearly equivalent to D′ if D′

may be obtained from D by a sequence of lending moves. In that case, we write
D ∼ D′.

Exercise 1.9. Verify the following equivalence of divisors on the diamond graph:

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

12 1. The dollar game

v0

3

v1 2

v2

1

v3−2 ∼

3v0 + 2v1 + v2 − 2v3 2v0 + 2v2.

v0

2

v1 0

v2

2

v30

Exercise 1.10. Check that ∼ is an equivalence relation: that is, for all divisors
D,D′, D′′ on G, the following properties hold:

(1) reflexivity: D ∼ D,

(2) symmetry: if D ∼ D′, then D′ ∼ D,

(3) transitivity: if D ∼ D′ and D′ ∼ D′′, then D ∼ D′′.

Definition 1.11. The divisor class determined by D ∈ Div(G) is

[D] = {D′ ∈ Div(G) : D′ ∼ D}.

A divisor class may be thought of as a (closed) economy. We start with an initial
distribution of wealth D. Through lending and borrowing we arrive at another
distribution D′. The collection of all distributions obtainable from D is the divisor
class [D]. Of course, since lending and borrowing are reversible, we could have just
as well started at D′. In other words,

D ∼ D′ ⇐⇒ [D] = [D′].

Example 1.12. Consider the divisor D = 3v1− v2 on the segment graph S below:

v13 v2 −1
.

By lending from v1 twice, we see that D ∼ v1 +v2. The whole divisor class for D is

[D] = {av1 + bv2 : a, b ∈ Z, a+ b = 2} = {D′ ∈ Div(S) : deg(D′) = 2}.

Any two divisors of degree 2 on S are linearly equivalent.

To win the dollar game, we seek a distribution in which every vertex is debt-free.
To state this in the language of divisors, first define

D ≥ D′

for D,D′ ∈ Div(G), if D(v) ≥ D′(v) for all v ∈ V . In particular, we write D ≥ 0 if
D(v) ≥ 0 for all v ∈ V .

Definition 1.13. A divisor D on G is effective if D ≥ 0. The set of effective
divisors on G is denoted Div+(G); it is not a subgroup of Div(G) because it lacks
inverses. Such an algebraic structure is called a commutative monoid.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

1.2. Formal definitions 13

We may restate our game as follows:

The dollar game: Is a given divisor linearly equivalent to an effective divisor?

Accordingly, we make the following definition.

Definition 1.14. The divisor D ∈ Div(G) is winnable if D is linearly equivalent
to an effective divisor; otherwise, D is unwinnable.

Earlier, you probably noticed that the game in part (c) of Example 1.1 is
unwinnable for the following reason.

Proposition 1.15. Let D,D′ ∈ Div(G). If D ∼ D′, then deg(D) = deg(D′).

Proof. Each lending move preserves the total number of dollars on the graph. �

Corollary 1.16. If deg(D) < 0, then D is unwinnable.

Exercise 1.17. Give an example showing that the converse to Corollary 1.16 is
not generally true.

Example 1.18. Consider the divisor D = 2v1 + v2− 2v3 on the triangle graph C3:

v1 2

v2

1

v3−2

−v3

v1 1

v2

0

v30 .

Borrowing by v3 reveals that D ∼ v1. So D is winnable and v1 ∈ [D]. One might
suspect that the divisor class [D] consists of all divisors of degree 1, but that is not
the case. For instance, v1 6∼ v2. To see this, note that by Exercise 1.7, any divisor
linearly equivalent to v1 may be obtained through a sequence of moves by the
vertices v1 and v2 only. Suppose that D′ ∼ v1 is obtained through such a sequence,
and that D′(v3) = 0. Then in our sequence of moves, every lending move by v1

must be balanced by a borrowing move by v2, and vice-versa. In particular, D′

results from either (i) lending k times from v1 and borrowing k times from v2, or
(ii) borrowing k times from v1 and lending k times from v2. But

v1
v1−→ −v1 + v2 + v3

−v2−−→ −2v1 + 3v2 = v1 − (3v1 − 3v2)

and

v1
−v1−−→ 3v1 − v2 − v3

v2−→ 4v1 − 3v2 = v1 + (3v1 − 3v2).

Iterating either of these procedures k times shows that

D′ = v1 ± (3kv1 − 3kv2) 6= v2 for any k.

Hence, v1 6∼ v2 as claimed. Similarly, v1 6∼ v3. Moreover, we have determined part
of the divisor class [D]:

{D′ ∈ [D] : D′(v3) = 0} = {(1 + 3k)v1 − 3kv2 : k ∈ Z}.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

14 1. The dollar game

More generally, a similar argument (cf. Problem 1.1) starting with the assumption
that D′(v3) = m shows that

[D] = {(1 + 3k +m)v1 − (3k + 2m)v2 +mv3 : k,m ∈ Z}.

The argument in the previous example was somewhat cumbersome, despite the
extreme simplicity of the triangle graph. It would be helpful to develop algebraic
tools to clarify the computations and allow for work with more complicated graphs.
In the next section, we begin this task by defining an abelian group that is closely
related to the dollar game.

1.3. The Picard and Jacobian groups

The sum of D,F ∈ Div(G) is defined vertex-wise:

D + F =
∑
v∈V

(D(v) + F (v)) v.

Moreover, this sum respects linear equivalence. That is, if D ∼ D′ and F ∼ F ′,
then

D + F ∼ D′ + F ′.

To see this, combine a lending sequence leading from D to D′ with one leading
from F to F ′. This allows us to turn the set of divisor classes into a group.

Definition 1.19. The Picard group of G is the set of linear equivalence classes of
divisors

Pic(G) = Div(G)/∼

with addition

[D] + [F] = [D + F].

The Jacobian group is the subgroup of Pic(G) consisting of divisor classes of de-
gree 0:

Jac(G) = Div0(G)/∼ .

Note that the Jacobian group is well-defined since linearly equivalent divisors
have the same degree, and in general,

deg(D + F) = deg(D) + deg(F).

In particular, if two divisors have degree 0, so does their sum.

The following proposition is the first step in analyzing the structure of Pic(G).

Proposition 1.20. Fix q ∈ V . There is an isomorphism of groups,

Pic(G)→ Z× Jac(G)

[D] 7→ (deg(D), [D − deg(D) q]).

Proof. Problem 1.4. �

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

1.3. The Picard and Jacobian groups 15

Example 1.21. Consider the triangle graph C3 from Example 1.18. Set q = v3

to get the isomorphism Pic(C3) → Z × Jac(C3) from Proposition 1.20. We have
seen that v1, v2, and v3 are linearly inequivalent divisors on C3, which implies that
v1− v3 and v2− v3 are also linearly inequivalent. Hence, [v1− v3] and [v2− v3] are
distinct, non-identity elements of Jac(G). On the other hand, an arbitrary divisor
of degree zero on C3 looks like av1 + bv2− (a+ b)v3 = a(v1− v3) + b(v2− v3), which
shows that [v1 − v3] and [v2 − v3] together generate Jac(G). Finally,

2(v1 − v3)
v1−→ v2 − v3,

and

3(v1 − v3)
v1−→ v1 + v2 − 2v3

−v3−−→ 0

so 2[v1 − v3] = [v2 − v3] and 3[v1 − v3] = 0 in Jac(G). It follows that Jac(G) ' Z3

via the map [v1− v3] 7→ 1 mod 3. The inverse of the isomorphism Pic(G)→ Z×Z3

is given by

(d, a mod 3) 7→ [a(v1 − v3) + dv3] = [av1 + (d− a)v3].

(Problem 1.2 asks for a generalization of this argument to the cycle graph Cn.)

So far, we have been asking if a game is winnable. A more refined question is:
How many different winning debt-free redistributions of wealth are there?

Definition 1.22. The complete linear system of D ∈ Div(G) is

|D| = {E ∈ Div(G) : E ∼ D and E ≥ 0}.

Thus, |D| consists of all the winning states associated with the dollar game
for D. In particular, D is winnable if and only if |D| is nonempty, so we have yet
another restatement of our game:

The dollar game: Is the complete linear system of a given divisor nonempty?

There are three divisors in the complete linear system for the divisor on the
segment graph S in Example 1.12:

{2v1, v1 + v2, 2v2},
while the whole class for the divisor is infinite. For the triangle graph C3 in Exam-
ple 1.18, the complete linear system of the divisor D = 2v1+v2−2v3 is the singleton
|D| = {v1}. Indeed, v1, v2, and v3 are the only effective divisors of degree 1, and
we have seen that v1 ∼ D is not linearly equivalent to either v2 or v3.

1.3.1. Some initial questions. As a preview of the upcoming chapters, we list
here some initial questions about the dollar game:

(1) Are there efficient algorithms for deciding whether a divisor D ∈ Div(G) is
winnable, and if so, for finding a winning sequence of lending moves? (Chap-
ter 3)

(2) Our intuition suggests that if there is enough money in the distribution D, then
it should be possible to share the wealth and win the dollar game. But how
much is enough? In particular, does there exist a number W (G) (depending in

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

16 1. The dollar game

a simple way on the graph G), such that every divisor D with deg(D) ≥W (G)
is winnable? (Chapter 4)

(3) If D is winnable, how many different debt-free winning distributions are there?
More precisely, how can we compute the complete linear system |D|? Are
there better ways of measuring the “size” of this linear system than simply
determining its cardinality? (Chapters 2, 5)

(4) What exactly is the relationship between the dollar game on G and the abelian
groups Pic(G) and Jac(G)? (Chapters 2, 3, 4, and 5)

Notes

The dollar game described in this chapter is one of many different “chip-firing
games” that have been explored by various authors in the literature. In particular,
N. Biggs studied a somewhat different dollar game in [14], while our game is that
described by M. Baker and S. Norine in their seminal paper [6].

The algebro-geometric language of divisors and the Jacobian group appears in
the context of finite graphs in [2], although our Jacobian group is there referred to
as the Picard group. We have adopted the language of divisors, linear systems, and
Jacobian/Picard groups as set out systematically in [6].

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 1

1.1. Generalize the argument in Example 1.18 to show that if D = 2v1 + v2 − 2v3

on the triangle graph C3, then

[D] = {(1 + 3k +m)v1 − (3k + 2m)v2 +mv3 : k,m ∈ Z}.

1.2. Let Cn denote the cycle graph with vertices v0, . . . , vn−1 arranged consecutively.
Define divisors D0 = 0 and Di = vi − v0 for i = 1, . . . , n− 1.

(a) Directly from set-lendings, show by induction that k [D1] = [Dk] for k =
0, 1, . . . , n−1 and that n [D1] = 0. Thus, if we take indices modulo n, we have
k [D1] = [Dk] for all k ∈ Z.

(b) Consider the homomorphism ψ : Zn → Jac(Cn) given by k 7→ k [D1] (which
is well-defined by part (a)). First show that ψ is surjective. Then show that
Jac(Cn) is isomorphic to Zn by showing that ψ is also injective: if Dk ∼ 0,
then k ≡ 0 mod n.

(c) Find, without proof, the complete linear system of the divisor D = −2v0 +
v1 + 2v2 + v3 on C4.

1.3. Let Pn be the path graph on n vertices consisting of n− 1 edges connected to
form a line as in Figure 5.

v1 v2 vn−1 vn

Figure 5. The path graph of length n− 1.

(a) Given a divisor D =
∑n
i=1 aivi ∈ Div(Pn), describe a sequence of set-lendings

(and borrowings) which show D ∼ deg(D)vn.

(b) Prove Pic(Pn) ' Z.

(c) For more of challenge, show that the Picard group of every tree is isomorphic
to Z. (A tree is a connected graph without any cycles.)

1.4. Prove Proposition 1.20.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Chapter 2

The Laplacian

A central tenet of the dollar game is that vertices share equitably: a lending move
sends one dollar along each incident edge. There is an operator called the Laplacian,
ubiquitous in the natural sciences, which measures the equitability or evenness of
a diffusive process. It appears in equations modeling heat and fluid flow, chemi-
cal diffusion, properties of electrostatic and gravitational potentials, and quantum
processes.

In this chapter, we associate to each graph a discrete version of the Laplacian
and use it to reinterpret everything we have done so far. From this new perspective,
the Laplacian is our central object of study, while the dollar game and later, in
Part 2, the abelian sandpile model are convenient devices for studying its properties.
The Laplacian connects our subject with the larger mathematical landscape.

The final section of the chapter discusses the structure theorem for finitely gen-
erated abelian groups and concludes with a practical method of computing Picard
and Jacobian groups using the Smith normal form of the Laplacian.

2.1. The discrete Laplacian

Consider the space ZV := {f : V → Z} of Z-valued functions on the vertices of G.

Definition 2.1. The (discrete) Laplacian operator on G is the linear mapping
L : ZV → ZV defined by

L(f)(v) :=
∑
vw∈E

(f(v)− f(w)).

We now spend some time showing the relevance of the Laplacian to the dollar game.

In the previous chapter, we introduced the operation of set-lending, in which
every vertex in a subset W ⊆ V makes a lending move. Of course, we could also
allow some vertices in W to lend multiple times, or to borrow instead of lend.
In all of these scenarios, the essential information may be encoded in a function
σ : V → Z, where the value of σ at v ∈ V is the number of times that v lends,

19

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

20 2. The Laplacian

with negative values interpreted as borrowing. This idea motivates the following
definition. In it, we also replace the word lending with firing. The justification
for this shift of language is that in Part 2 we will use these same concepts in the
context of sandpiles, and we would like to have a general terminology to account
for either interpretation: lending dollars or toppling sand.

Definition 2.2. A firing script is a function σ : V → Z, and the collection of all
firing scripts forms an abelian group, denoted M(G).

Thus, M(G) is just another notation for ZV , but writing σ ∈ M(G) emphasizes
the specific interpretation of σ as a firing script.

The set-lending (or set-firing) by a subset W ⊆ V corresponds to the charac-
teristic function χW ∈M(G) defined by

χW (v) =

{
1 v ∈W
0 v 6∈W.

(In the sequel, we write χv for χ{v}.) Given any firing script σ, the result of applying
the corresponding collection of lending moves to a divisor D will be the divisor D′

given by

D′ = D −
∑
v∈V

σ(v)

(
degG(v) v −

∑
vw∈E

w

)
= D −

∑
v∈V

σ(v)
∑
vw∈E

(v − w)

= D −
∑
v∈V

∑
vw∈E

(σ(v)− σ(w)) v

= D −
∑
v∈V

(
degG(v)σ(v)−

∑
vw∈E

σ(w)

)
v.

Definition 2.3. If σ : V → Z is a firing script, then the divisor of σ is

div(σ) :=
∑
v∈V

(
degG(v)σ(v)−

∑
vw∈E

σ(w)

)
v.

In terms of this definition, we see that the effect of implementing a firing script σ
is to replace a divisor D by the linearly equivalent divisor D′ = D − div(σ). We

denote this process by D
σ−→ D′, and refer to it as a script-firing.

Exercise 2.4. Show that div : M(G)→ Div(G) is a group homomorphism. More-
over, show that deg(div(σ)) = 0 for all firing scripts σ.

Divisors of the form div(σ) are called principal. By the previous exercise, the set
of principal divisors forms a subgroup Prin(G) < Div0(G). Moreover, the divisors
obtainable from D by a sequence of borrowing and lending moves are exactly those
divisors D′ such that D − D′ ∈ Prin(G). This means that the linear equivalence
class of a divisor D is the coset of Prin(G) represented by D:

[D] = D + Prin(G).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

2.1. The discrete Laplacian 21

Hence, we can express the Picard and Jacobian groups as quotients:

Pic(G) = Div(G)/Prin(G), Jac(G) = Div0(G)/Prin(G).

We now explain the sense in which div : M(G) → Div(G) and L : ZV → ZV
are essentially the same. First note that the mapping v 7→ χv determines an
isomorphism of Div(G) with ZV which fits into the following commutative diagram:

M(G) Div(G)

ZV ZV .

div

'

L

Exercise 2.5. Prove commutativity by showing that div(χu) corresponds with L(χu)
for each u ∈ V under our isomorphism of Div(G) with ZV .

Thus, we will feel free to blur the distinction between the two mappings, some-
times calling div “the Laplacian” of G. Nevertheless, these mappings are not really
the same: their codomains, while isomorphic, are not equal. The divisor homo-
morphism div arises via the connection we are developing between the theory of
Riemann surfaces and the dollar game (cf. Section 5.3) while the Laplacian opera-
tor L plays its traditional role as an operator taking functions to functions.

To realize these mappings as a single matrix, fix an ordering v1, . . . , vn of the
vertices of G, providing an ordered basis for the free abelian group Div(G) and a
corresponding isomorphism with Zn. Writing χj := χvj , it follows that {χ1, . . . , χn}
is the dual basis of the free abelian group M(G) = ZV given by

χj(vi) =

{
1 i = j
0 i 6= j.

The firing script χj corresponds to vertex vj making a single lending move.

Definition 2.6. The Laplacian matrix, which we also denote L, is the matrix rep-
resentation of the Laplacian operator L : ZV → ZV with respect to the basis {χj}.
It is also the matrix representation of div : M(G) → Div(G) with respect to the
dual bases {χj} and {vi}.

Explicitly, L is the n× n integer matrix with ij-entry

Lij = L(χj)(vi) =

{
degG(vi) i = j

−(# of edges between vj and vi) i 6= j.

Defining Deg(G) to be the diagonal matrix listing the vertex-degrees of G, we see
that1

L = Deg(G)−At

where A is the adjacency matrix of the graph G, defined as

Aij = # of edges between vi and vj .

The matrix L encodes all of the lending moves for G, because a lending move
by vertex vj corresponds to subtracting the jth column of L from a divisor. See
Figure 1 for an example.

1For undirected multigraphs, the adjacency matrix is symmetric, so the transpose is unnecessary.
But for directed multigraphs (which we will study in Part 2), the transpose is essential.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

22 2. The Laplacian

W

X

Y

Z


3 −1 −2 0
−1 3 −1 −1
−2 −1 4 −1

0 −1 −1 2


W X Y Z

Figure 1. The Laplacian encodes firing rules.

The following commutative diagram has exact rows, meaning that the kernel
of each horizontal arrow is the image of the previous arrow. (See Appendix B for
more about exact sequences.) The vertical arrows are the isomorphisms resulting
from the choice of bases {χj} and {vi}.

M(G)
div−−−−→ Div(G) −−−−→ Pic(G) −−−−→ 0

{χj}
y {vi}

y y
Zn L−−−−→ Zn −−−−→ Zn/im(L) −−−−→ 0

From the diagram, we see that the Picard group may be computed as the
cokernel of the Laplacian matrix:

Pic(G) ' cok(L) := Zn/im(L).

Exercise 2.7. Explicitly, the isomorphism above works as follows: starting with
an equivalence class [D] ∈ Pic(G), choose a representative divisor D ∈ Div(G),
which may be written as D =

∑n
i=1D(vi) vi. Use the coefficients to form a vector

(D(v1), . . . , D(vn)) ∈ Zn, and then compute the coset (D(v1), . . . , D(vn))+im(L) in
the quotient group Zn/ im(L). Show that this recipe does not depend on the choice
of representative divisor D and defines an isomorphism of Pic(G) with Zn/ im(L).

In concrete terms, this means that the Picard group is given by the free abelian
group Zn modulo the subgroup generated by the columns of the Laplacian matrix.
This description yields another restatement of the dollar game:

The dollar game: Given a divisor D (identified with an integer vector) does
there exist a Z-linear combination l of columns of the Laplacian matrix such
that D + l ≥ 0?

Recall from Example 1.7 that a set-lending by V has no net effect. In terms of
the divisor homomorphism, this is the same as saying that

div(χ1 + χ2 + · · ·+ χn) = 0.

In terms of the Laplacian matrix, this is just the statement that the all 1’s vector ~1
is in the kernel of L. In fact, since G is connected, this element generates the kernel,
as shown in the next proposition. In Theorem 9.14, we will generalize this result
to the case of certain directed multigraphs called sandpile graphs.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

2.1. The discrete Laplacian 23

Proposition 2.8. If G = (V,E) is an undirected, connected multigraph, then the

kernel of its Laplacian matrix L is generated by the all 1’s vector ~1 ∈ Zn. Equiv-
alently, the kernel of the divisor homomorphism div (equal to the kernel of the
Laplacian operator) consists of the constant functions c : V → Z.

Proof. We will prove that the kernel of div consists of the constant functions. So
suppose that σ : V → Z satisfies div(σ) = 0. Choose a vertex v ∈ V where σ attains
its maximum, k ∈ Z. Since the divisor of σ is zero, we must have

degG(v) k =
∑
vw∈E

σ(w).

But since σ(w) ≤ k for all vertices w, the equality above will only obtain if σ(w) = k
for all w adjacent to v. Since G is connected, it follows that σ must take the value k
at every vertex of G, so that σ = k is a constant function. �

The argument in the previous proof shows more generally that the kernel of div
(for a possibly disconnected multigraph) consists of functions that are constant on
connected components. This result is a first indication of an interplay between
graph-theoretic properties of G (like connectivity) and algebraic structures related
to the abelian group Pic(G) (such as the kernel of the Laplacian matrix). As we
will see in later chapters, this interplay extends to the edge-connectivity of the
graph, defined as the minimal number of edges that must be removed in order to
disconnect the graph. For example, trees are 1-edge connected, cycles are 2-edge
connected, and the complete graph K4 is 3-edge connected.

2.1.1. Relation to the continuous Laplacian. Recall the differential operator
∇ = (∂/∂x1, . . . , ∂/∂xn). If φ : Rn → R is a differentiable function, then the
gradient of φ is the vector field

∇φ =

(
∂φ

∂x1
, . . . ,

∂φ

∂xn

)
.

At each point p, the vector ∇φ(p) points in the direction of quickest increase of
φ, and its magnitude is the rate of increase in that direction. The function φ (or
sometimes its negative) is called a potential for the vector field ∇φ. Going the other
direction, for a given vector field on Rn, the potential (if it exists) is determined
up to an additive constant.

If F = (F1, . . . , Fn) : Rn → Rn is a vector field, then the divergence of F is

∇ · F =
∂F1

∂x1
+ · · ·+ ∂Fn

∂xn
.

Imagine a sphere of radius r centered at a point p. The flux of F through this sphere
is the surface integral of the component of F in the direction of the outward-pointing
normal to the sphere. Thinking of F as defining a flow, the flux measures the rate
at which the flowing substance leaves the sphere. By Gauss’ theorem, ∇ · F is the
limit of the ratio of this flux to the volume enclosed by the sphere as r → 0; it
measures flux density and hence the “divergence” of F at the point p.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

24 2. The Laplacian

The traditional Laplacian is the differential operator

∆ := ∇2 = ∇ · ∇ :=
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

.

Thus, the Laplacian of φ : Rn → R is

∆φ = ∇2φ = ∇ · (∇φ) =
∂2φ

∂x2
1

+ · · ·+ ∂2φ

∂x2
n

.

So ∆φ(p) is a scalar representing the tendency of a vector field with potential φ to
diverge from the point p. Roughly, it will be zero if the value φ(p) is the average
of the values of φ at points on a tiny sphere surrounding p.

Now let f : V → Z, and apply the discrete Laplacian at a vertex v:

L(f)(v) :=
∑
vw∈E

(f(v)− f(w)) = degG(v)f(v)−
∑
vw∈E

f(w).

Dividing by the degree gives

1

degG(v)
L(f)(v) = f(v)− 1

degG(v)

∑
vw∈E

f(w),

showing that the discrete Laplacian measures how much the value of f at v deviates
from its average among the neighbors of v. In this way, L is a discrete analogue of
the continuous Laplacian. Note in particular that L(f)(v) = 0 if and only if the
value of f at v is the average of its values at the neighbors of v—in this case f is
said to be harmonic at v. We will return to the subject of harmonic functions in
Section 3.5 and Chapter 10.

Even if you were only interested in the continuous Laplacian, the discrete Lapla-
cian would arise naturally from the application of numerical methods. To do cal-
culations with the Laplacian on a computer, one first discretizes by replacing Rn
with a grid, which up to scaling, we can think of as Zn. For instance, let’s first
consider the case n = 1. So f : R→ R, and ∆f = d2f/dx2. The discrete derivative
of f at i ∈ Z is f(i)− f(i− 1), and hence, the second discrete derivative is

(f(i+ 1)− f(i))− (f(i)− f(i− 1)) = −2f(i) + f(i+ 1) + f(i− 1).

Thus, ∆f(i) is approximated by −L(f)(i) where L is the discrete Laplacian of the
infinite path graph (which would of course be finite in practice) and f is restricted
to this graph. In two dimensions, we replace R2 with Z2, and to approximate
∆f = ∂2f/∂x2

1 + ∂2f/∂x2
2 at the grid point (i, j), we similarly compute

∂2f/∂x2
1 ≈ −2f(i, j) + f(i+ 1, j) + f(i− 1, j)

∂2f/∂x2
2 ≈ −2f(i, j) + f(i, j + 1) + f(i, j − 1).

Adding these gives−Lf(i, j) where L is the discrete Laplacian of a large 2-dimensional
grid.

2.2. Configurations and the reduced Laplacian

We have seen that the Picard group can be computed as the cokernel of the Lapla-
cian matrix. But what about the Jacobian group? To establish the relationship

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

2.2. Configurations and the reduced Laplacian 25

between the Jacobian and the Laplacian, we first introduce the notion of a config-
uration on G.

Definition 2.9. Fix a vertex q ∈ V , and set Ṽ = V \ {q}. Then a configuration
on G (with respect to q) is an element of the subgroup

Config(G, q) := Config(G) := ZṼ ⊂ ZV = Div(G).

As with divisors, we write c ≥ c′ for c, c′ ∈ Config(G) if c(v) ≥ c′(v) for all

v ∈ Ṽ , and write c ≥ 0 if c(v) ≥ 0 for all v ∈ Ṽ . In the latter case, c is said to be
nonnegative. The degree of c is deg(c) :=

∑
v∈Ṽ c(v).

Given a configuration c ∈ Config(G, q), we may perform lending and borrowing

moves at any vertex v ∈ Ṽ as if c were a divisor, except we do not record how much
money is on q.

Example 2.10. The picture below shows a lending move by the vertex v2, starting
with the configuration c = v1 + 2v2 + v3.

v31

v2

2

q

v1 1

v2

v32

v2

−1

q

v1 2

Figure 2. Effect of a lending move by v2 on a configuration.

Just as with divisors, we will say two configurations are equivalent if they
may be obtained from each other via lending and borrowing moves. For example,
Figure 2 shows that c = v1 + 2v2 + v3 is linearly equivalent to c′ = 2v1 − v2 + 2v3,
which we indicate by writing c ∼ c′. We make these notions precise in the following
definition.

Definition 2.11. If D ∈ Div(G), denote by D|Ṽ the configuration obtained by

ignoring the vertex q. Let M̃(G) ⊂ M(G) denote the subgroup of firing scripts

with support contained in Ṽ :

M̃(G) := {σ : V → Z | σ(q) = 0},
and define the homomorphism

d̃iv : M̃(G)→ Config(G)

σ 7→ div(σ)|Ṽ .

Say two configurations c, c′ ∈ Config(G) are equivalent, denoted c ∼ c′ if c =

c′ + d̃iv(σ) for some firing script σ, i.e., if c = c′ modulo the image of d̃iv, in

which case we write c
σ−→ c′. Using characteristic functions, we get the special

cases of vertex-firings, where σ = χv for v ∈ Ṽ , and set-firings, where σ = χW for

W ⊆ Ṽ . In these cases, we sometime abuse notation and write c
v−→ c′ and c

W−→ c′,
respectively.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

26 2. The Laplacian

We now wish to show that Jac(G) is isomorphic to the group of configurations
modulo equivalence. To see this, consider the group homomorphism

ϕ : Config(G)→ Jac(G)

c 7→ [c− deg(c) q].

This map ϕ is surjective, since if D is an arbitrary divisor of degree zero, then

D = D̃ − deg(D̃) q for the configuration D̃ := D|Ṽ . To emphasize this point: a
divisor D of degree 0 is determined by its corresponding configuration, D|Ṽ .

To determine the kernel of ϕ, first note that by Proposition 2.8 the addition of
a constant function to any firing script does not affect the corresponding principal

divisor, so every principal divisor may be obtained from a script in M̃(G). With
this in mind, we see that

ϕ(c) = 0 ⇐⇒ c− deg(c) q is principal

⇐⇒ c− deg(c) q = div(σ) for some σ ∈ M̃(G)

⇐⇒ c = d̃iv(σ).

Thus, we see that ker(ϕ) = im(d̃iv). Therefore, ϕ induces the following isomor-
phism, where we use the notation [c] for the equivalence class of a configuration.

Proposition 2.12. There is an isomorphism of groups

Config(G)/ im(d̃iv) ' Jac(G)

[c] 7→ [c− deg(c) q]

[D|Ṽ]←[[D].

2.2.1. The reduced Laplacian. Fixing an ordering v1, v2, . . . , vn for the ver-
tices of G identifies configurations with integer vectors, just as for divisors. Of
course, we must remove the vertex q and its corresponding firing script χq, which
has the effect of removing the q-row and χq-column from the Laplacian matrix, L.

Definition 2.13. The reduced Laplacian matrix, L̃, is the matrix representation of

d̃iv : M̃(G)→ Config(G) with respect to the dual bases {χj} \ {χq} and {vi} \ {q}.
Explicitly, L̃ is the (n − 1) × (n − 1) integer matrix obtained by removing the
row corresponding to q and the column corresponding to χq from the Laplacian
matrix L.

The following commutative diagram summarizes the setup:

M̃(G)
d̃iv−−−−→ Config(G)

ϕ−−−−→ Jac(G) −−−−→ 0y y y
Zn−1 L̃−−−−→ Zn−1 −−−−→ Zn−1/im(L̃) −−−−→ 0.

As before, the rows are exact, while the vertical arrows are the isomorphisms defined
by the choice of vertex-ordering. Just as the Picard group is the cokernel of the
full Laplacian matrix, the Jacobian group may be computed as the cokernel of the
reduced Laplacian:

(2.1) Jac(G) ' cok(L̃) := Zn−1/im(L̃).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

2.2. Configurations and the reduced Laplacian 27

Remark 2.14. Note that Jac(G) does not depend on a choice of vertex q. There-
fore, the isomophism in (2.1) shows that even though the reduced Laplacian depends

on a choice of vertex, its cokernel cok(L̃) := Zn−1/ im(L̃) does not (cf. Problem 2.1).
In Chapter 12 we will extend the notions of the Jacobian group and the reduced
Laplacian to directed graphs. In that case, the isomorphism of (2.1) and the inde-

pendence of cok(L̃) from the choice of excluded vertex no longer hold in general.
See Section 12.1 for details.

We have the following corollary to Proposition 2.8, which says that the reduced
Laplacian is always invertible over the rational numbers.

Corollary 2.15. If G = (V,E) is an undirected, connected multigraph, then the

kernel of its reduced Laplacian matrix L̃ is zero. Consequently, L̃ is invertible as a
linear operator on Qn−1.

Proof. By Proposition 2.8, the kernel of the full Laplacian L is generated by the
all ones vector ~1 ∈ Zn. This implies that the final column of L is the negative of
the sum of the first n− 1 columns. Since L is symmetric, this means that the final
row of L is the negative of the sum of the first n− 1 rows. In particular, any vector
orthogonal to the first n− 1 rows of L is automatically orthogonal to the last row

of L. Now suppose that ã ∈ Zn−1 is in the kernel of the reduced Laplacian L̃,
obtained from L by removing the last row and column. Then the vector (ã, 0) ∈ Zn
has the property that its dot product with the first n− 1 rows of L is zero. By the
previous comments, this implies that the dot product of (ã, 0) with the last row
of L is also zero, so (ã, 0) ∈ ker(L). By Proposition 2.8, it follows that ã = 0, so

that the kernel of L̃ is zero. Viewed as a linear operator on Qn−1, the injectivity

of L̃ implies its invertibility, so L̃ is invertible over the rational numbers. �

Remark 2.16. In Chapter 8, we will discover an interesting interpretation of the

rational entries of the matrix L̃−1 (Theorem 8.29).

Example 2.17. Let’s use equation 2.1 to give another computation of the Jacobian
of the triangle graph C3 (compare Example 1.21).

v1

v2

v3 .

The Laplacian matrix of C3 is

L =

 2 −1 −1
−1 2 −1
−1 −1 2

 ,

so the reduced Laplacian is (using q = v3):

L̃ =

(
2 −1
−1 2

)
.

Hence, im(L̃) = span{(2,−1), (−1, 2)} = span{(3, 0), (1, 1)} ⊂ Z2. Now consider
the homomorphism Z2 → Z3 defined by (1, 0) 7→ 1 mod 3 and (1, 1) 7→ 0. Then for

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

28 2. The Laplacian

an arbitrary integer vector (a, b), we have

(a, b) = (b, b) + (a− b, 0) 7→ 0 + (a− b) mod 3,

so (a, b) is in the kernel if and only if a− b = 3k for some k ∈ Z. It follows that the
kernel is spanned by (1, 1) and (3, 0). From equation 2.1

Jac(C3) ' Z2/im(L̃) ' Z3.

Explicitly, the inverse of this isomorphism is defined by

a mod 3 7→ [av1 − av3] ∈ Jac(C3).

Section 2.4 introduces an algorithm for determining the structure of the Picard
and Jacobian groups, in general.

2.3. Complete linear systems and convex polytopes

The problem of finding the complete linear system of a divisor D (i.e., finding
all winning distributions obtainable from D) turns out to be equivalent to finding
lattice points in a polytope determined by D and the Laplacian of the underlying
graph. Before making these ideas precise, we give a first glimpse through a couple
of simple examples.

Example 2.18. Consider the divisor D = 3v1 − v2 on the segment graph S from
Example 1.12:

v13 v2 −1
.

The Laplacian matrix is

L =

(
1 −1
−1 1

)
.

We identify the divisor D with the integer vector (3,−1) ∈ Z2. In order to compute
the complete linear system of D, we are looking for ~x = (x1, x2) ∈ Z2 such that
D − L~x ≥ 0. This yields the pair of inequalities

x1 − x2 ≤ 3

−x1 + x2 ≤ −1,

and we see that our problem is to find the points with integer coordinates contained
in the intersection of two half-spaces in R2; see Figure 3. (Such an intersection of
finitely many half-spaces in Rn is called a convex polyhedron).

Since ~1 = (1, 1) is in the kernel of L, any solution ~x to this system yields

infinitely many other solutions of the form ~x+ k~1 for k ∈ Z, all of which yield the
same effective divisor D−L~x in the complete linear system of D. Hence, we may as
well look for solutions with x2 = 0. Imposing this extra constraint yields the pair
of inequalities 1 ≤ x1 ≤ 3. In terms of the dollar game, this says that the complete
linear system of D may be obtained by lending from vertex v1 once, twice, and
three times. As before, we find that

|D| = {2v1, v1 + v2, 2v2}.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

2.3. Complete linear systems and convex polytopes 29

1 2 3

−1

1

2

x1

x2

Figure 3. The convex polyhedron of winning firing-scripts for D = 3v1 − v2

on the segment graph S.

To compute the Picard group of S, note that the image of L is generated by the
vector (1,−1) ∈ Z2. This vector also generates the kernel of the surjective degree
homomorphism deg : Z2 → Z defined by deg(a, b) = a+ b, so it follows that

Pic(S) ' Z2/im(L) ' Z.
The inverse of this isomorphism is given by d 7→ [dv1]. This generalizes the fact
obtained for degree 2 divisors in Example 1.12: two divisors are linearly equivalent
on S if and only if they have the same degree.

Example 2.19. Consider the divisor D = 2v1 + v2 − 2v3 on the triangle graph C3

from Example 1.18:

v1 2

v2

1

v3−2

The Laplacian matrix of C3 is

L =

 2 −1 −1
−1 2 −1
−1 −1 2

 ,

and we are looking for ~x = (x1, x2, x3) ∈ Z3 such that D − L~x ≥ 0, where we have
identified D with (2, 1,−2) ∈ Z3. Explicitly, we have the system of inequalities

2x1 − x2 − x3 ≤ 2

−x1 + 2x2 − x3 ≤ 1

−x1 − x2 + 2x3 ≤ −2.

Once again, we are looking for the integer lattice points inside a convex polyhedron
defined by the intersection of three half-spaces in R3. By the same argument as

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

30 2. The Laplacian

given in Example 2.18, we may utilize the fact that ~1 ∈ ker(L) to restrict attention
to solutions with x3 = 0. With this constraint, the system becomes

2x1 − x2 ≤ 2

−x1 + 2x2 ≤ 1

−x1 − x2 ≤ −2,

which defines the bounded triangle in R2, pictured in Figure 4. By inspection,
the only integer lattice point in this triangle is (1, 1). This says that the complete
linear system of D may be obtained by set-lending {v1, v2}, yielding |D| = {v1}, as
before.

1 2

1

2

x1

x2

Figure 4. Triangle for Example 2.19.

We are now ready to see how these ideas work out in general. Given a divisor D,
we want to determine the complete linear system of D,

|D| = {E ∈ Div(G) : E ∼ D and E ≥ 0} .

As usual, choosing a vertex-ordering identifies divisors and firing scripts with vectors
in Zn, so finding the complete linear system |D| requires finding the firing scripts
~x ∈ Zn such that D − L~x ≥ 0. If D = a1v1 + · · · + anvn, then we must solve the
system of linear inequalities:

L11x1 + · · ·L1nxn ≤ a1

L21x1 + · · ·L2nxn ≤ a2

...

Ln1x1 + · · ·Lnnxn ≤ an.

Each solution ~x ∈ Zn yields an effective divisor E = D − L~x ∈ |D|, and all such
effective divisors are obtained this way.

Geometrically, each inequality above defines a half-space in Rn, and the inter-
section of the n half-spaces yields a convex polyhedron, P ⊂ Rn. To say that P

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

2.4. Structure of the Picard group 31

is convex just means that if p1 and p2 are any two points in P , then the line seg-
ment between p1 and p2 is entirely contained within P as well. Since half-spaces
are clearly convex, so is the intersection of half-spaces, P . If, in addition, P is a
bounded set, then we say that P is a convex polytope.

The firing scripts we are looking for correspond to Zn ∩ P , the intersection of
the integer lattice with the polyhedron. If this intersection is nonempty, then it
is infinite, since Zn ∩ P is invariant under translation by ~1 ∈ kerL. In particular,
since the firing scripts ~x and ~x+ k~1 determine the same divisor linearly equivalent

to D, it suffices to determine the intersection Zn ∩ P̃ where P̃ is the intersection
of P with the hyperplane defined by setting the final coordinate equal to zero:

P̃ := P ∩ {~x ∈ Rn : xn = 0}.

Proposition 2.20. The set P̃ is a convex polytope, so Zn ∩ P̃ is a finite set.

Proof. The convexity of P̃ follows immediately from the convexity of P , so we just

need to show boundedness. Note that we may think of P̃ as contained in Rn−1,
where it is defined by the following system of inequalities

L̃ x̃ ≤ ã

Ln x̃ ≤ an,

where L̃ is the reduced Laplacian consisting of the first n − 1 columns and rows
of L, the vectors x̃, ã ∈ Zn−1 are obtained by omitting the nth components of ~x
and ~a, and Ln ∈ Zn−1 denotes the nth row of the Laplacian, with its final entry
removed.

Now change coordinates by defining ỹ := −L̃ x̃ + ã, for which the matrix in-

equality becomes simply ỹ ≥ 0. Using x̃ = −L̃−1(ỹ − ã), the final inequality
becomes

−
(
LnL̃

−1
)
ỹ ≤ an −

(
LnL̃

−1
)
ã =: d.

Note that since the sum of the rows of L is zero, we have −Ln = L̃1 + · · ·+ L̃n−1,

the sum of the rows of L̃. It follows that

−LnL̃−1 = (L̃1 + · · ·+ L̃n−1)L̃−1 = (1̃ L̃)L̃−1 = 1̃,

where 1̃ ∈ Zn−1 denotes the all ones row vector. Thus, in the new coordinates, our
system of inequalities becomes

ỹ ≥ 0

1̃ ỹ ≤ d,

where d = an+ 1̃ ã = deg(D) is the degree of the original divisor, D. This is clearly
a bounded simplex in Rn−1. But the original coordinates x̃ are obtained from ỹ by

an affine-linear transformation, so P̃ is also bounded. �

2.4. Structure of the Picard group

For motivation, the reader is encouraged to quickly peruse Example 2.35 near the
end of this section.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

32 2. The Laplacian

2.4.1. Finitely generated abelian groups. A finitely generated abelian group
is an abelian group for which there exists a finite set {a1, . . . , am} of elements
(generators) of A such that each a ∈ A may be written as

a = k1a1 + · · ·+ kmam

for some ki ∈ Z. We write A := 〈a1, . . . , am〉. Some examples follow.

• Every finite abelian group is generated by the finite set consisting of all of its
elements. For instance, Z4 = 〈0, 1, 2, 3〉. Of course, we also have Z4 = 〈1〉 = 〈3〉.
We do not require the set of generators to be minimal (with respect to inclusion).

• A cyclic group is by definition generated by a single element, and every cyclic
group is abelian. Every cyclic group is isomorphic to Zn for some nonnegative
integer n. The case n = 0 yields the infinite cyclic group Z = Z0.

• A finite product of cyclic groups is a finitely generated abelian group. A typical
instance is Z4 × Z6 × Z2. Recall that addition is defined component-wise, e.g.,
(2, 5, 8,−2) + (3, 3, 7, 2) = (1, 2, 15, 0) in this group.

In fact—as will be stated precisely in Theorem 2.23—the last example exhausts all
possibilities: every finitely generated abelian group is a product of a finite number
of cyclic groups, i.e., has the form

∏n
i=1 Zni

for suitable ni. The structure is then
represented by the list of the ni. Different choices for the ni may produce isomorphic
groups, but it turns out that the ambiguity is accounted for by the following well-
known result.

Theorem 2.21 (Chinese remainder theorem). Let m,n ∈ Z. Then

Zmn ' Zm × Zn
if and only if m and n are relatively prime. If gcd(m,n) = 1, then an isomorphism
is provided by a 7→ (a mod m, a mod n).

Thus, Z24 ' Z8 × Z3, but Z4 6' Z2 × Z2.

Exercise 2.22. Find the simplest direct (without using the Chinese remainder
theorem) proof that Z4 6' Z2 × Z2.

A proof of the following is presented after our discussion of the Smith normal
form, below.

Theorem 2.23 (Structure theorem for f.g. abelian groups). A group is a finitely
generated abelian group if and only if it is isomorphic to

Zn1
× · · · × Znk

× Zr

for some list (possibly empty) of integers n1, . . . , nk with ni > 1 for all i and some
integer r ≥ 0. These integers may be required to satisfy either of the following
two conditions, and in either case they are uniquely determined by the isomorphism
class of the group.

condition 1: ni|ni+1 (ni evenly divides ni+1) for all i. In this case, the ni are
the invariant factors of the group.

condition 2: There exist primes p1 ≤ · · · ≤ pk and positive integers mi such that
ni = pmi

i for all i. In this case, the ni are the elementary divisors and the Zni
are

the primary factors of the group.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

2.4. Structure of the Picard group 33

The number r is the rank of the group.

Exercise 2.24. Find the rank, the invariant factors, and the primary factors of
Z4 × Z6 × Z2.

Let A be a finitely generated abelian group. An element a ∈ A is a torsion
element if n · a = 0 for some nonzero integer n.

Exercise 2.25. Show that the collection of torsion elements forms a subgroup of A.

The subgroup of torsion elements is called the torsion part of A and de-

noted Ator. If A '
(∏k

i=1 Zni

)
× Zr, then Ator '

∏k
i=1 Zni

and A/Ator ' Zr.
Hence, the structure theorem guarantees

A ' Ator ×A/Ator.

2.4.2. Smith normal form. How does one go about computing the rank and
invariant factors of a finitely generated abelian group A? Let {a1, . . . , am} be
generators, and define the group homomorphism determined by

Zm π−→ A

ei 7→ ai

where ei is the i-th standard basis vector. Saying that the ai generate A is the
same as saying that π is surjective. Next, by a standard theorem from algebra2,
every subgroup of Zm is finitely generated. In particular, there exists a finite set of
generators {b1, . . . , bn} for the kernel of π. Define

Zn M−→ Zm

where M is the m × n integer matrix with i-th column bi. Combining these two
mappings yields a presentation of A:

Zn Zm AM

Hence, π induces an isomorphism

cok(M) := Zm/im(M) ' A
ei 7→ ai,

where cok(M) denotes the cokernel of M : Zn → Zm. In this way, A is determined
by the single matrix M .

We have just seen that each finitely generated abelian group is the cokernel of
an integer matrix. Conversely, each integer matrix determines a finitely generated
abelian group. However, the correspondence is not bijective. The construction
of M , above, depended on arbitrary choices for generators of A and of the kernel
of π. Making different choices creates a different matrix representing A. This
is especially obvious if we choose a different number of generators for A or kerπ.
However, there can be a difference even if the number of generators is kept constant.

2The key point is that abelian groups are modules over Z, and Z is a Noetherian ring. The reader
wishing to fill in this detail is encouraged to consult Appendix B and/or consult a standard introductory
algebra text.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

34 2. The Laplacian

In that case, changing the choice of generators corresponds to integer changes of
coordinates for the codomain and domain of M , or equivalently, to performing
integer row and column operations on M .

Definition 2.26. The integer row (resp., column) operations on an integer matrix
consist of the following:

(1) swapping two rows (resp., columns);

(2) negating a row (resp., column);

(3) adding one row (resp., column) to a different row (resp., column).

Write M ∼ N for integer matrices M and N if one may be obtained from
the other through a sequence of integer row and column operations. Since the
operations are reversible, ∼ is an equivalence relation.

Suppose M is an m × n integer matrix and M ∼ N . Start with identity
matrices P = Im and Q = In, and consider the sequence of integer row and column
operations transforming M into N . Whenever a row operation is performed in
this sequence, apply the same row operation to P . Similarly, whenever a column
operation is made, apply the same column operation to Q.

Exercise 2.27. Explain why the resulting matrices P and Q are invertible over
the integers and why PMQ = N . The converse of this statement is also true: given
any matrices P and Q, invertible over the integers and such that PMQ = N , it
follows that M ∼ N . However, the proof of this converse requires the existence of
the Smith normal form (Theorem 2.33).

The relation PMQ = N can be expressed in terms of a commutative diagram
with exact rows:

(2.2)

Zn Zm cokM 0

Zn Zm cokN 0.

M

Q−1

≈

≈ P

N

The mapping cok(M)→ cok(N) is induced by P .

Proposition 2.28. Let M and N be m× n integer matrices. Then if M ∼ N , it
follows that cok(M) ' cok(N).

Proof. Since P and Q in the commutative diagram are isomorphisms the mapping
of cokernels induced by P is an isomorphism (Problem 2.3). �

Exercise 2.29. Suppose M ∼ N where N = diag(m1, . . . ,m`), a diagonal integer
matrix with nonnegative entries. Show that

cok(M) '
∏̀
i=1

Zmi
.

(See Example 2.31.)

The previous exercise shows that to determine the structure of cok(M), we
should seek to transform M through integer row and column operations into a
diagonal matrix of a particularly nice form.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

2.4. Structure of the Picard group 35

Definition 2.30. An m × n integer matrix M is in Smith normal form if M =
diag(s1, . . . , sk, 0, . . . , 0), a diagonal matrix, where s1, . . . , sk are positive integers
such that si|si+1 for all i. The si are called the invariant factors of M .

Example 2.31. The matrix

M :=


1 0 0 0
0 2 0 0
0 0 12 0
0 0 0 0
0 0 0 0


is in Smith normal form with invariant factors s1 = 1, s2 = 2, and s3 = 12.

We have

cok(M) := Z5/ im(M) ' Z1 × Z2 × Z12 × Z2 ' Z2 × Z12 × Z2.

So cok(M) has rank r = 2 and its invariant factors are 2 and 12.

Note that 1 is an invariant factor of M but not of cok(M). By definition,
the invariant factors of a finitely generated abelian group are greater than 1; the
invariant factors of M equal to 1 do not affect the isomorphism class of cok(M)
since Z1 is the trivial group.

Definition 2.32. LetM be anm×n integer matrix. For each i = 0, . . . ,min{m,n},
the i-th determinantal divisor of M , denoted di := di(M), is the greatest common
divisor of the i× i minors of M . By definition d0 := 1.

Theorem 2.33. Each equivalence class under ∼ has a unique representative in
Smith normal form: if M is an m × n integer matrix, there exists a unique ma-
trix N in Smith normal form such that M ∼ N . For i = 1, . . . , rk(M), the i-th
determinantal divisor is

di =
i∏

`=1

s`

where s` is the `-th invariant factor of M .

Proof. We prove existence by providing an algorithm that transforms M into
Smith normal form through integer row and column operations. Let M = (mij) be
an m× n integer matrix. If M = 0, we are done. Otherwise, proceed as follows.

Step 1. By permuting rows and columns we may assume that m11 is the smallest
nonzero entry in absolute value. By adding integer multiples of the first row to
other rows or the first column to other columns, attempt to make all entries in
the first row and first column except the (1, 1)-entry equal to 0. If during the
process any nonzero entry in the matrix appears with absolute value less than m11,
permute rows and columns to bring that entry into the (1, 1)-position. In this
way, m11 remains the smallest nonzero entry. Since the succession of values for m11

are nonzero and decreasing in magnitude, the process eventually terminates with a
matrix of the form

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

36 2. The Laplacian


m11 0 0 · · · 0

0
0
...
0

M ′

where M ′ is an (m−1)×(n−1) integer matrix. Negating the first row, if necessary,
we take m11 > 0.

Step 2. If there is an entry of M ′ that is not divisible by m11, say mij , then
add column j to column 1 and go back to Step 1. Again, since the (1, 1)-entry is
nonzero and decreases in magnitude, this new process terminates. Therefore, we
may assume that m11 divides every entry of M ′.

Step 3. Apply Steps 1 and 2 to M ′, and thus, by recursion, we produce an
equivalent matrix in Smith normal form.

Thus, each integer matrix is equivalent to a matrix in Smith normal form. To
prove the statement about determinantal divisors, first note that for each i, elemen-
tary row and column operations do not affect the set of i×i minors, except possibly
for signs. Hence, they do not affect the i-th determinantal divisor. Therefore, we
may assume the matrix is in Smith normal form, in which case the result is clear.

Uniqueness of the Smith normal form follows from the expression of the invari-
ant factors in terms of determinantal divisors. �

Proof. (Structure theorem for finitely generated abelian groups.) The above dis-
cussion provides a proof of the structure theorem, Theorem 2.23. In sum: we have
seen that every finitely generated abelian group A is isomorphic to cok(M) for some
m × n integer matrix M . By making integer row and column operations, we may
assume that M is in Smith normal form. It follows that

A ' Zs1 × · · · × Zsk × Zr

for some list of positive integers s1, . . . , sk with si|si+1 for all i and some integer
r ≥ 0. Since Z1 = 0, we may assume that si > 1 for all i. This takes care of the
existence part of the structure theorem.

For uniqueness, start by letting B := A/Ator ' Zr. Then B/2B ' Zr2 as vector
spaces over the field Z2. Since isomorphic vector spaces have the same dimension,
this defines r intrinsically in terms of A.

Next, replacing A by Ator, we may assume r = 0. Suppose there are also
integers s′1, . . . , s

′
k′ , greater than 1 and with s′i|s′i+1 for all i such that

A ' Zs1 × · · · × Zsk ' Zs′1 × · · · × Zs′k′ .

By induction on k, we show that k = k′ and si = s′i for all i. We have A = {0} if
and only if k = k′ = 0, so the result holds in this case. Suppose k > 0 and, hence,
k′ > 0. Let s be the smallest positive integer such that sa = 0 for all a ∈ A. By

considering the element a ∈ A corresponding to (0, . . . , 0, 1) ∈
∏k
i=1 Zsi under the

isomorphism, we see s = sk. Similarly, s = s′k′ . Replace A by A/aA, and the result
follows by induction.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

2.4. Structure of the Picard group 37

The equivalence of the uniqueness statements in cases 1 and 2 of Theorem 2.23
follows from the Chinese remainder theorem (cf. Problem 2.4). �

Remark 2.34. Suppose that A is an abelian group of rank r with k invariant
factors. Then the corresponding expression for A as a product of cyclic groups
makes it clear A can be generated by k + r elements. In fact, this is the minimal
number of elements required to generate A. To see this, suppose A is generated
by ` elements. From the discussion in Section 2.4.2, we see that A is isomorphic
to the cokernel of a matrix, M , with ` rows. From the Smith normal form of
this matrix and the uniqueness statement in the structure theorem, we see that

A '
(∏k

i=1 Zsi
)
×Zr where the si are the invariant factors of M that are not equal

to 1. If t is the total number of invariant factors of M , then t ≥ k and ` = t + r.
Hence, ` ≥ k + r.

2.4.3. Computing Jac(G) and Pic(G). The following example illustrates the
relevance of the structure theorem and the computation of Smith normal forms to
our subject.

Example 2.35. Consider the complete graph K4 consisting of 4 vertices with each
pair of distinct vertices connected by an edge (Figure 5).

Figure 5. The complete graph K4.

The reduced Laplacian for K4 with respect to any vertex is

L̃ =

 3 −1 −1
−1 3 −1
−1 −1 3

 .

Figure 6 shows the reduction of L̃ to Smith normal form. Row and column op-
erations are recorded in matrices P and Q, invertible over the integers. One may

check that PL̃Q = D where D is the Smith normal form for L̃.

Since Jac(K4) ' cok(L̃), we conclude that the invariant factors of Jac(G) are
s1 = 4 and s2 = 4. From Exercise 2.27 and the commutative diagram in (2.2), we
get the following isomorphism induced by P :

Jac(K4) ' cok(L̃)
P−→ Z1 × Z4 × Z4 → Z4 × Z4

(x, y, z) 7→
 1 0 0

3 1 0
2 1 1

 x
y
z

 7→ (3x+ y, 2x+ y + z).

The final mapping is formed by dropping the first component.

Exercise 2.36. Directly compute the determinantal divisors for the reduced Lapla-
cian of K4 and use them to confirm that Jac(K4) ' Z4 × Z4.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

38 2. The Laplacian

row
ops

:

 1 0 0
0 1 0
0 0 1

 //

 1 0 0
3 1 0
−1 0 1



L̃ :

 3 −1 −1
−1 3 −1
−1 −1 3

 //

 1 3 −1
−3 −1 −1

1 −1 3

 //

 1 0 0
−3 8 −4

1 −4 4

 //

 1 0 0
0 8 −4
0 −4 4



column
ops

:

 1 0 0
0 1 0
0 0 1

 //

 0 1 0
−1 0 0

0 0 1

 //

 0 1 0
−1 3 −1

0 0 1

 //

continued:

row
ops

:

 1 0 0
3 1 0
−1 0 1

 //

 1 0 0
3 1 0
2 1 1

 =: P

L̃ :

 1 0 0
0 8 −4
0 −4 4

 //

 1 0 0
0 4 8
0 −4 −4

 //

 1 0 0
0 4 0
0 −4 4

 //

 1 0 0
0 4 0
0 0 4

 =: D

column
ops

:

 0 1 0
−1 3 −1

0 0 1

 //

 0 0 1
−1 1 3

0 −1 0

 //

 0 0 1
−1 1 1

0 −1 2

 =: Q

Figure 6. Reduction of the reduced Laplacian for K4 to Smith normal form.

To summarize what the previous example helps to illustrate, let G be a graph

and let L̃ be its reduced Laplacian with respect to any vertex. In light of Exer-

cise 2.29 and the fact that Jac(G) ' cok(L̃), it follows that the invariant factors of

Jac(G) are determined by the invariant factors of L̃. Since L̃ is invertible, none of

its invariant factors are 0. So the rank of Jac(G) is 0. The invariant factors of L̃

equal to 1 have no effect on the isomorphism class of cok(L̃). Suppose m1, . . . ,mk

are the invariant factors of L̃ that are greater than 1. The mi are the invariant
factors of Jac(G), and hence,

(2.3) Jac(G) ' Zm1 × · · · × Zmk
.

The structure of Pic(G) is then determined since Pic(G) ' Z × Jac(G): the rank
of Pic(G) is 1, and

Pic(G) ' Zm1
× · · · × Zmk

× Z.

As a final note, we have the following important formula for calculating the
size of Jac(G).

Proposition 2.37. The order of the Jacobian group of G is

| Jac(G)| = |det(L̃)|.

Proof. Since Jac(G) ' cok(L̃), Exercise 2.29 shows that the number of elements

of Jac(G) is the product of the invariant factors of L̃. Integer row and column

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Notes 39

operations do not affect the determinant of a matrix except, possibly, for the sign.

Thus, det(L̃) is also the product of its invariant factors, up to sign (but see the
following remark). �

Remark 2.38. A spanning tree of G is a connected subgraph containing all of the
vertices of G and no cycles. In Chapter 9 we will prove the matrix-tree theorem

which shows that det(L̃) counts something—the number of spanning trees of G!

Hence, det(L̃) is necessarily positive, and

| Jac(G)| = det(L̃).

Notes

The notation div for the Laplacian viewed as the divisor homomorphism first ap-
pears in the paper [7] by Baker and Norine. For more about lattice points in
convex polyhedra and polytopes, see [10]. In a series of papers ([69], [70], [71],
[72]), D. Lorenzini analyzed the Smith normal form of the Laplacian to relate the
structure of a graph to the structure of its Jacobian group. We discuss Lorenzini’s
work further in Section 12.2, where we extend some results from [70] concerning
the minimal number of generators of Jac(G).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 2

2.1. Let L̃ := L̃q and L̃′ := L̃q′ be the reduced Laplacians of a graph G with respect

to vertices q and q′, respectively. Exhibit an explicit isomorphism cok(L̃) ' cok(L̃′)
stemming from Proposition 2.12.

2.2. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs, and pick vertices v1 ∈ V1 and
v2 ∈ V2. Let G be the graph obtained from G1 and G2 by identifying vertices v1

and v2, thus gluing the two graphs together at a vertex.

(a) Prove that Jac(G) ' Jac(G1)× Jac(G2).

(b) Prove that every finite abelian group is the Jacobian of some graph.

(c) Does there exist a simple graph G such that Jac(G) ' Z2? Here, simple means
that there is at most one edge between every pair of vertices.

(d) Use part (a) to show that the Jacobian group of a tree is trivial.

2.3. Provide details for the proof of Proposition 2.28 by showing the dashed mapping
in commutative diagram 2.2 is well-defined and bijective.

2.4. The uniqueness statement of Theorem 2.23 comes in two versions: case 1 and
case 2. Use the Chinese remainder theorem to show the cases are equivalent.

2.5. The house graph H is displayed in Figure 7. Determine the structure of Jac(H)

v1 v2

v3

v4

v5

Figure 7. The house graph.

by computing the Smith normal form for the reduced Laplacian of H.

2.6. Compute the Smith normal form for the reduced Laplacian of the complete
graph, Kn. (Hint: start the computation by adding columns 2 through n − 1 to
column 1.) Conclude that

Jac(Kn) ' Zn−2
n .

2.7. Let Cn denote the cycle graph with n vertices (n vertices placed on a circle).
Use the computation of the Smith normal form of the reduced Laplacian for Cn to
give an explicit isomorphism between Jac(G) and Zn.

2.8. For each graph G described below, find the structure of Jac(G) by computing
the Smith normal form of the reduced Laplacian of G.

(a) Let K−n be the graph obtained by deleting one edge from the complete graph
on n vertices. (See (b) for a generalization.)

(b) Let G(n, k) be the graph obtained by deleting k pairwise-disjoint edges from
the complete graph on n vertices. (Thus, 2k ≤ n.)

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 2 41

(c) Let H(n, k) be the graph obtained by deleting k < n− 1 edges adjacent to the
same vertex in the complete graph on n vertices.

(d) Consider the graph Gn formed by n triangles sharing an edge. Figure 8 illus-
trates G4.

a

b

v1 v2 v3 v4

Figure 8. G4 for Problem 2.8 (d).

(e) Let Pn be the path graph with vertices v1, . . . , vn, as described in Problem 1.3.
Let Tn be the graph formed from Pn be adding a new vertex v0, and edges
{v0, vi} for i = 1, . . . , n. Figure 9 illustrates T5.

v1 v2 v3 v4 v5

v0

Figure 9. T5 for Problem 2.8 (e).

2.9. Let L be the Laplacian matrix of G = (V,E) with vertices V = {1, . . . , n}.
Prove that for all column vectors x ∈ Zn

xtLx =
∑
ij∈E

(xi − xj)2.

Thus, if we think of x as a function V → Z, then xtLx is a measure of how far that
function is from being constant.

2.10. Let Bk denote the banana graph consisting of two vertices v, w connected by
k edges. Fix d ≥ 0 and consider the divisor D = dv. As discussed in Section 2.3,
the set of firing scripts σ such that dv − div(σ) ≥ 0 form the lattice points in a
convex polyhedron P ⊂ R2. Moreover, the set of such firing scripts with σ(w) = 0

form the lattice points in a convex polytope P̃ ⊂ R (in this 1-dimensional case, P̃

is a closed interval). Describe P and P̃ explictly.

2.11. Let Cn denote the cycle graph with vertices v0, . . . , vn−1 arranged counter-
clockwise in a circle. Identify each divisorD on Cn with a vector (D(v0), . . . , D(vn−1))
in Zn, as usual. Let Di = vi − v0 for i ∈ {0, 1, . . . , n− 1} be representatives for the
elements of Jac(G) (Problem 1.2).

(a) Show that two divisors D and D′ on Cn of the same degree are linearly equiv-
alent if and only if there is an equality of dot products

D · (0, 1, . . . , n− 1) = D′ · (0, 1, . . . , n− 1) mod n.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

42 2. The Laplacian

(b) Fix a nonnegative integer d. For each i, show that D ≥ 0 is in the complete
linear system |Di + dv0| if and only if

D · (1, 1, . . . , 1) = d and D · (0, 1, . . . , n− 1) = i mod n.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Chapter 3

Algorithms for winning

3.1. Greed

One way to play the dollar game is for each in-debt vertex to attempt to borrow its
way out of debt. Figure 1 reveals a problem with this strategy, though: borrowing
once from each vertex is the same as not borrowing at all (see Exercise 1.7).

v1−1 v2 0

v3

1

−v1

v11 v2 −1

v3

0

−v2

v10 v2 1

v3

−1

−v3

Figure 1. A greedy cycle.

Although it isn’t obvious, the good news is that this is the only problem with
the strategy. This gives an algorithm for the dollar game: repeatedly choose an
in-debt vertex and make a borrowing move at that vertex until either (i) the game
is won, or (ii) it is impossible to go on without reaching a state in which all of the
vertices have made borrowing moves. For example, in Figure 1, after borrowing
at v1 and v2, only v3 is in debt, and borrowing there would mean that we have
borrowed at every vertex. Hence, this game is unwinnable.

The procedure is formalized as Algorithm 1.

Proof of validity of the algorithm. First suppose thatD ∈ Div(G) is winnable.
Take any effective divisor D′ such that D ∼ D′, and choose a firing script σ ∈M(G)

43

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

44 3. Algorithms for winning

Algorithm 1 Greedy algorithm for the dollar game.

1: input: D ∈ Div(G).
2: output: true if D is winnable; false if not.
3: initialization: M = ∅ ⊂ V , the set of marked vertices.
4: while D not effective do
5: if M 6= V then
6: choose any vertex in debt: v ∈ V such that D(v) < 0
7: modify D by performing a borrowing move at v
8: if v is not in M then
9: add v to M

10: else /* required to borrow from all vertices*/

11: return false /* unwinnable */

12: return true /* winnable */

such that
D

σ−→ D′.

By adding a constant function, we may assume that σ ≤ 0 and that σ does not
have full support, i.e., the following set is nonempty:

Z := {v ∈ V : σ(v) = 0}.
Thus, σ transforms D into an effective divisor by only making borrowing moves
and never borrowing at any vertex in Z.

Given this knowledge about D, we now apply the greedy algorithm. If D is
effective, we are done. Otherwise, choose a vertex u such that D(u) < 0. In order
to get u out of debt it will be necessary to make a borrowing move there. Thus, it
is necessarily the case that σ(u) < 0. The algorithm modifies D by borrowing at u.
We keep track of this by replacing σ by σ + u (in other words, replacing σ(u) by
σ(u) + 1). If σ(u) = 0, then add u to Z. Repeat. Since σ ≤ 0 at each step and the
sum of the values of σ increases by one at each step, the algorithm must eventually
terminate with D transformed into a linearly equivalent effective divisor.

Now suppose that D ∈ Div(G) is unwinnable. Let D1, D2, D3, . . . be any
sequence of divisors obtained by starting at D = D1 and then repeatedly borrowing
at in-debt vertices. We must show that, eventually, each vertex must borrow. First
note that for all v ∈ V and for all i,

Di(v) ≤ max{D(v),degG(v)− 1} =: Bv.

This is because a vertex v will only borrow if it is in debt, in which case it will gain
degG(v) dollars. Letting B := max{Bv : v ∈ V }, we see that Di(v) ≤ B for all
v ∈ V and for all i. Let n = |V |. Then, since deg(Di) = deg(D) for all i, we see
that for each vertex v we have

deg(D) = Di(v) +
∑
w 6=v

Di(w) ≤ Di(v) + (n− 1)B.

It follows that for all i and for all v, we have

deg(D)− (n− 1)B ≤ Di(v) ≤ B.
Hence, there are only finitely many possibilities for the divisors Di, so there must
exist j and k with j < k such that Dj = Dk. Since the kernel of the Laplacian

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

3.1. Greed 45

is generated by ~1 (Proposition 2.8), the sequence of vertices at which borrowing
moves were made in going from Dj to Dk contains every vertex. �

3.1.1. Uniqueness of greedy algorithm script. The greedy algorithm can be
modified to produce a firing script in the case its input is winnable. Initialize by
setting σ = 0, and then each time step 6 is invoked, replace σ by σ−v. It turns out
that the resulting script is independent of the order in which vertices are added.

Proposition 3.1. Suppose D is winnable, and let σ1 and σ2 be firing scripts pro-
duced by applying the greedy algorithm to D, so that firing these scripts from D
produces effective divisors E1 and E2 respectively. Then σ1 = σ2, so that E1 = E2

as well.

Proof. Suppose on the contrary that σ1 6= σ2. Then without loss of generality,
we may assume that there is a vertex that borrows more times according to σ2

than according to σ1. Let {w1, . . . , wm} be a greedy-sequence of borrowings corre-
sponding to σ2. By our assumption, as we perform this borrowing sequence, there
will be a first step, k, when vertex wk borrows more than |σ1(wk)| times. Let σ̃2

be the firing script associated with {w1, . . . , wk−1}, the first k − 1 steps of the σ2-
borrowing sequence. Then (remembering that σ1, σ2 ≤ 0), we have σ̃2 ≥ σ1 and
σ̃2(wk) = σ1(wk). Hence, after performing the first k− 1 steps of the σ2-borrowing
sequence, the amount of money at vertex wk is:

(D − div(σ̃2))(wk) = D(wk)− degG(wk) σ̃2(wk) +
∑

wku∈E
σ̃2(u)

≥ D(wk)− degG(wk)σ1(wk) +
∑

wku∈E
σ1(u)

= (D − div(σ1))(wk)

= E1(wk)

≥ 0.

So wk has no debt after the first k − 1 steps of the σ2-borrowing sequence, contra-
dicting the assumption that wk borrows at the next (kth) step. �

Given a divisor D, suppose that two players separately employ the greedy
algorithm in an attempt to win the dollar game. Then our work in this section has
shown that they will either both discover that D is unwinnable (if they are forced
to borrow at every vertex), or they will both win the game. Moreover, despite the
fact that they may choose different sequences of borrowing moves, their final firing
scripts will be the same, and they will both end up with the same effective divisor
E ∼ D. At this point, it is natural to ask how E is special compared to the other
effective divisors in the complete linear system |D|. It turns out that this is best
answered in terms of sandpiles: in Chapter 6 we will introduce a notion of duality,
and show that E is dual to the stabilization of the divisor that is dual to the original
divisor D.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

46 3. Algorithms for winning

3.2. q-reduced divisors

In the previous section, we saw how greed can lead to a resolution of the dollar game.
One might think that benevolence, in the form of debt-free vertices lending to their
in-debt neighbors, might also work, but it does not in general (cf. Problem 3.1).
Nonetheless, in this section we present a particular version of benevolence that does
solve the dollar game and which will have theoretical significance for us later on.

Start with D ∈ Div(G). We would like to find E ∈ |D|, i.e., an effective divisor
linearly equivalent to D. Proceed as follows.

(1) Pick some “benevolent vertex” q ∈ V . Call q the source vertex, and let Ṽ :=
V \ {q} be the set of non-source vertices.

(2) Let q lend so much money that the non-source vertices, sharing among them-
selves, are out of debt.

(3) At this stage, only q is in debt, and it makes no further lending or borrowing
moves. It is now the job of the non-source vertices to try to relieve q of its debt.

Look for S ⊆ Ṽ with the property that if all members of S simultaneously lend,
then none go into debt. Having found such an S, make the corresponding set-
lending move. Repeat until no such S remains. The resulting divisor is said to
be q-reduced.

Result: In the end, if q is no longer in debt, we win. Otherwise, |D| = ∅, i.e., D is
unwinnable.

Exercise 3.2. Find linearly equivalent q-reduced divisors for the following two
divisors and thus determine whether each is winnable:

(a)

q

3

v1 2

v2

1

v3−2

(b) v2

v1

qv4

v3

4

−3

−2 3

−1

Several questions immediately come to mind with regard to the above strategy:

• Is it always possible to complete step 2?

• Is step 3 guaranteed to terminate?

• If the strategy does not win the game, does this mean the game is unwinnable?
(After all, the moves in step 3 are constrained.)

• Is the resulting q-reduced divisor unique?

• Can the strategy be efficiently implemented?

The main goal of this chapter is to show that the answer to all of these questions
is “yes.”

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

3.2. q-reduced divisors 47

3.2.1. Existence and uniqueness.

Definition 3.3. Let D ∈ Div(G), and let S ⊆ V . Suppose D′ is obtained from D

by firing each of the vertices in S once. Then D
S−→ D′ is a legal set-firing if

D′(v) ≥ 0 for all v ∈ S, i.e., after firing S, none of the vertices in S are in debt. In
this case, we say it is legal to fire S. [Note: if it is legal to fire S, then the vertices
in S must also be out of debt before firing.]

Definition 3.4. Let D ∈ Div(G) and q ∈ V . Then D is q-reduced if

(1) D(v) ≥ 0 for all v ∈ Ṽ := V \ {q}, and

(2) for all nonempty S ⊆ Ṽ , it is not legal to fire S. In other words, for each
such S, there exists v ∈ S such that

D(v) < outdegS(v),

where outdegS(v) denotes the number of edges of the form {v, w} with w /∈ S.

Recall that a spanning tree of G is a connected subgraph T of G containing all
the vertices and no cycles. Fixing q ∈ V , we refer to the pair (T, q) as the spanning
tree T rooted at q.

Let T be a spanning tree of G rooted at the source vertex q. An ordering
of the vertices v1, v2, . . . , vn is called a tree ordering compatible with T if i < j
whenever vi lies on the unique path from vj to q in T . In particular, v1 = q for any
tree ordering.

Example 3.5. Consider the spanning tree T of the house graph pictured in Fig-
ure 2. Let q = v1 be the root vertex. Two of the many tree orderings of the vertices
compatible with T are indicated by the vertex labels vi and wi.

v1 v2

v4

v5

v3

w1 w4

w5

w3

w2

Figure 2. A spanning tree of the house graph with two compatible tree orderings.

We can extend a tree ordering of the vertices to a total ordering of all divisors
as follows: given D,D′ ∈ Div(G), set D′ ≺ D if (i) deg(D′) < deg(D) or (ii)
deg(D′) = deg(D) and D′(vk) > D(vk) for the smallest index k such that D′(vk) 6=
D(vk). Roughly, D′ ≺ D if it has “more cash closer to q.” We say that ≺ is a tree
ordering rooted at q.

The essential property of this ordering is that when a set of non-source vertices
fires, some dollars move towards q, producing a smaller divisor with respect to the
tree ordering. This idea is made precise in the following proposition.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

48 3. Algorithms for winning

Proposition 3.6. Let D ∈ Div(G), and let ≺ be a tree ordering rooted at q ∈ V .

Let D′ be the divisor obtained from D by firing a nonempty set S ⊆ Ṽ . Then,
D′ ≺ D.

Proof. Let v1 ≺ · · · ≺ vn be the tree ordering, and let k be the smallest index
such that vk is adjacent to a vertex of S. Since q /∈ S and every element of S has
a path to q, it is necessarily the case that vk /∈ S. Then deg(D′) = deg(D) and
D′(vi) = D(vi) for i = 1, . . . , k − 1, but D′(vk) > D(vk). �

Theorem 3.7 (Existence and uniqueness for q-reduced divisors). Let D ∈ Div(G),
and fix q ∈ V . Then there exists a unique q-reduced divisor linearly equivalent to D.

Proof. Fix a tree ordering v1 ≺ · · · ≺ vn compatible with a spanning tree T rooted
at q. We first show that by a sequence of lending moves, all vertices except q can
be brought out of debt. Each vertex v 6= q has a unique neighbor w in T such that
w ≺ v. Call this neighbor ε(v). Now bring vn, vn−1, . . . , v2 out of debt successively,
in the order listed, by having ε(vi) lend to vi.

We may now assume that D(v) ≥ 0 for all vertices v 6= q. If D is not q-reduced,
perform a legal set-firing of non-source vertices to produce an equivalent divisor,
still nonnegative away from q, and strictly smaller than D with respect to the tree
ordering by Proposition 3.6. Repeat. Say the resulting sequence of divisors is
D1, D2, D3, . . . with D = D1. Write Di = ci + kiq where ci ∈ Config(G, q) for all i.
We have deg(c1) ≥ deg(ci) ≥ 0 for all i. Hence, there can be only finitely many
distinct divisors Di in the sequence. But Di 6= Dj if i 6= j since Di+1 ≺ Di. Hence,
the process stops, producing a q-reduced divisor.

For uniqueness, suppose D and D′ are linearly equivalent q-reduced divisors.
Then D = D′ − div(σ) for some firing script σ. Let m = maxv∈V {σ(v)}, and

S = {v ∈ V : σ(v) = m}.

If S = V , then σ is a constant function and D = D′. So we may assume S 6= V . We
may also assume q /∈ S (otherwise, swap D and D′, which exchanges σ and −σ).

If v ∈ S and u /∈ S, then σ(v)− σ(u) ≥ 1. Therefore, for each v ∈ S, we have

0 ≤ D(v) = D′(v)−
∑
vu∈E

(σ(v)− σ(u)) ≤ D′(v)− outdegS(v).

Hence, S ⊆ Ṽ is a legal set-firing, contradicting the fact that D′ is q-reduced. �

Corollary 3.8. Let D ∈ Div(G), and let D′ be the q-reduced divisor linearly equiv-
alent to D. Then |D| 6= ∅ if and only if D′ ≥ 0. In other words, D is winnable if
and only if D′(q) ≥ 0.

Proof. Suppose D is winnable, and let E ∈ |D|. From E, perform all legal set-
firings of non-source vertices, arriving at the q-reduced divisor E′ ≥ 0. By unique-
ness, D′ = E′, and hence D′ ≥ 0. The converse is immediate. �

Example 3.9. Let Cn be the cycle graph on n vertices, and let D = v− q for any
distinct vertices v and q of Cn. Then D is q-reduced, hence, unwinnable.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

3.2. q-reduced divisors 49

It seems reasonable to expect that the complete linear system of a divisor will be
small if the degree of the divisor is small or if the graph has many interconnections
among its vertices—both of these qualities make it harder to fire collections of
vertices without going into debt. We now provide a sound basis for this intuition.

The graph G is d-edge connected if G remains connected whenever d− 1 of its
edges are removed, and the edge-connectivity of G is the largest d such that G is
d-edge connected. Equivalently, the edge-connectivity is the minimal number of
edge-removals needed to disconnect the graph.

Proposition 3.10. Suppose that the graph G is d-edge connected. Then every
effective divisor on G of degree less than d is q-reduced.

Proof. Suppose that E is an effective divisor of degree k < d, and let S ⊂ Ṽ be an
arbitrary non-empty subset of non-source vertices. Note that the number of edges
connecting S to V \ S 6= ∅ is given by

∑
v∈S outdegS(v) ≥ d, since G is d-edge

connected. But then ∑
v∈S

E(v) ≤ k < d ≤
∑
v∈S

outdegS(v).

It follows that there exists v ∈ S such that E(v) < outdegS(v), so that E is
q-reduced. �

Proposition 3.11. Suppose that G has edge-connectivity d. Let D ∈ Div(G) be
a winnable divisor of degree less than d. Then the complete linear system of D
consists of a single effective divisor. For each degree k ≥ d, there exists a complete
linear system of degree k containing more than one effective divisor.

Proof. Since D is winnable, the linear system of D is nonempty. Suppose that
E1 ∼ E2 ∼ D for effective divisors E1, E2. Since

deg(E1) = deg(E2) = deg(D) < d,

the previous proposition implies that E1 and E2 are each q-reduced. By the unique-
ness of q-reduced divisors (Theorem 3.2.1), it follows that E1 = E2. Thus, |D|
consists of a single effective divisor as claimed.

Since G is not (d + 1)-edge connected, there exists a subset U ⊆ E(G) of
size d whose removal disconnects the graph. Let W be a connected component
of the disconnected graph (V (G), E(G) \ U), and consider the set-firing script
χV (W) ∈ M(G). Then div(χV (W)) = F1 − F2, where F1 and F2 are each effective
of degree d, F1 has support in W , and F2 has support outside W . In particular, F1

and F2 are distinct linearly equivalent effective divisors of degree d. Thus, the com-
plete linear system of F1 contains at least two effective divisors. But then for any
k > d, we have that F1 + (k − d) q ∼ F2 + (k − d) q are distinct linearly equivalent
divisors, so that the complete linear system of the degree-k divisor F1 + (k − d) q
contains at least two elements. �

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

50 3. Algorithms for winning

v2

v1

qv4

v3

1

1

2

1 {v1, v2, v3, v4}

v2

v1

qv4

v3

0

0

1

0

Figure 3. The superstablization of a configuration on K5.

3.3. Superstable configurations

It will be convenient to translate the notion of a q-reduced divisor in terms of the
configurations introduced in Section 2.2.

Definition 3.12. Let c ∈ Config(G), and let S ⊆ Ṽ . Suppose c′ is the configuration

obtained from c by firing the vertices in S. Then c
S−→ c′ is a legal set-firing if

c′(v) ≥ 0 for all v ∈ S.

Definition 3.13. The configuration c ∈ Config(G) is superstable if c ≥ 0 and has

no legal nonempty set-firings, i.e., for all nonempty S ⊆ Ṽ , there exists v ∈ S such
that

c(v) < outdegS(v).

Example 3.14. In Figure 3, the configuration on the left is not superstable, since
S = {v1, v2, v3, v4} is a legal firing set. Firing S yields the superstable configuration
on the right.

Remark 3.15. Every divisor D may be written as c + kq where c ∈ Config(G, q)
and k ∈ Z. In this form, D is q-reduced if and only if c is superstable, and if so, by
Corollary 3.8, D is winnable if and only if k ≥ 0.

We have the isomorphism of Proposition 2.12:

Config(G)/ im(d̃iv)→ Jac(G)

[c] 7→ [c− deg(c) q].

So c ∼ c′ as configurations exactly when c− deg(c) q ∼ c′ − deg(c′) q as divisors. It
follows from existence and uniqueness of q-reduced divisors that each c ∈ Config(G)
is equivalent to a unique superstable configuration, which we call the superstabi-
lization of c.

The collection of superstables of G forms an abelian group where addition is the
usual addition of configurations followed by superstabilization. The isomorphism
of Proposition 2.12 then identifies this group with Jac(G).

3.4. Dhar’s algorithm and efficient implementation

At the beginning of Section 3.2, we outlined a three-step procedure for determining
whether a given divisor is winnable. The proof of the existence and uniqueness

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

3.4. Dhar’s algorithm and efficient implementation 51

theorem for q-reduced divisors and Corollary 3.8 guarantee the procedure works in
principle. However, how quickly can it be made to work in practice?

Of particular concern is step 3. When it is reached, the original divisor has been
replaced by a linearly equivalent divisor of the form c+kq where c is a nonnegative
configuration. The immediate task is then to find a legal nonempty set-firing for c.

But how should we search through the 2|Ṽ | − 1 plausible subsets that might be
fired? Amazingly, it can be done very efficiently!

3.4.1. Dhar’s algorithm. Let c ∈ Config(G, q) be nonnegative. To find a legal
set-firing for c, imagine the edges of our graph are made of wood. Vertex q is
ignited, and fire spreads along its incident edges. Think of the configuration c as

a placement of c(v) firefighters at each v ∈ Ṽ . Each firefighter can control the fire
coming from a single edge, so a vertex is protected as long as it has at most c(v)
burning incident edges. If it ever happens that this number is greater than c(v),
the firefighters are overwhelmed and the vertex they are protecting ignites.1 When
a vertex ignites, fire spreads along its incident edges. In the end, the unburnt
vertices constitute a set that may be legally fired from c. If this set is empty, then c
is superstable.

Example 3.16. Figure 4 illustrates Dhar’s algorithm on the house graph with a
configuration c. The vertex q is ignited, and fire spreads along the incident edges.
A vertex v ignites when the number of red (burning) edges incident to v is greater
than c(v). At the end, the two unburnt vertices form a legal firing set for the
configuration c.

0

0

1

2

0

0

1

2

0

0

1

2

0

0

1

2

Figure 4. Dhar’s algorithm.

Exercise 3.17. Run Dhar’s algorithm on the configuration below and show that
all vertices are burnt in the end. Hence, the configuration is superstable.

0

0

0

2

We formalize the preceding discussion as Algorithm 2. Recall that for S ⊂ V
and v ∈ V , the number of edges of G connecting v to a vertex outside of S is
denoted outdegS(v).

1Don’t worry—the firefighters are airlifted out by helicopter.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

52 3. Algorithms for winning

Algorithm 2 Dhar’s algorithm.

1: input: a nonnegative configuration c.

2: output: a legal firing set S ⊂ Ṽ , empty iff c is superstable.

3: initialization: S = Ṽ
4: while S 6= ∅ do
5: if c(v) < outdegS(v) for some v ∈ S then
6: S = S \ {v}
7: else
8: return S /* c is not superstable */

9: return S

Proof of validity. When S is returned, c(v) ≥ outdegS(v) for all v ∈ S. Hence, S
is a legal firing set. If c is superstable, then it has no nonempty legal firing set,
and hence S is empty in that case. Conversely, suppose that S is empty, and let U

be a nonempty subset of Ṽ . We must show that U is not a legal firing set for c.

At initialization, U ⊆ S = Ṽ , and during the while-loop, vertices are removed
from S one at a time. Since S is empty upon termination, a vertex from U is
eventually removed from S. Let u be the first such vertex, and consider the step
of the algorithm just before u is removed from S. At that point, U is still a subset
of S and c(u) < outdegS(u). The key observation is that since U ⊆ S, we have
outdegS(u) ≤ outdegU (u), and the result follows. �

Returning to Example 3.16, label the vertices as in Figure 5. Then Figure 4
illustrates Dhar’s algorithm applied to the configuration c = v4 + 2v5. At ini-
tialization, S = {v2, v3, v4, v5}, corresponding to the unburnt vertices in the first
picture in the figure. During the first run of the while loop, vertex v2 satis-
fies the condition c(v2) = 0 < outdegS(v2) = 1, so v2 is removed from S to
yield the new set S = {v3, v4, v5} corresponding to the second picture in the
figure. In the second run of the while loop, vertex v3 satisfies the condition
c(v3) = 0 < outdegS(v3) = 1, so it is removed to yield S = {v4, v5} corre-
sponding to the unburnt vertices in the third picture. At this point, we have
c(v4) = 1 = outdegS(v4) and c(v5) = 2 = outdegS(v5), so the legal firing set S is
returned.

q v2

v3

v4

v5

Figure 5. Vertex labeling of the house graph.

Remark 3.18. Instead of removing just a single vertex in step 6 of Dhar’s algo-
rithm, one could remove any number of vertices that meet the criterion of step 5.
For instance, steps 5 and 6 of Dhar’s algorithm could be replaced by

U = {v ∈ Ṽ : c(v) < outdegS(v)}

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

3.4. Dhar’s algorithm and efficient implementation 53

if U 6= ∅ then
S = S \ U .

3.4.2. Greed and the debt-reduction trick. We would now like to further ana-
lyze and refine step 2 of our three-step procedure from the beginning of Section 3.2.
Given D ∈ Div(G), the proof of the existence and uniqueness theorem for q-reduced
divisors uses a tree ordering on the vertices of the graph to show that all of the non-
source vertices may be brought out of debt through lending moves. Problem 3.5
shows that a simpler greedy algorithm also works: if a non-source vertex is in debt,
it borrows. Repeat until every non-source vertex is out of debt.

Example 3.19. Consider the divisor D = −2v3 + 3v4− v5 + q on the house graph
in Figure 5. Figure 6 illustrates the process of borrowing greedily at non-source,
in-debt vertices.

1 0

−2

3

−1 −v3

1 −1

1

2

−2 −v2

0 1

0

2

−2

−v5

−1 1

−1

1

1−v3

−1 0

2

0

0

Figure 6. Greedy borrowing from non-source vertices.

Before applying this greedy algorithm, you may want to quickly replace D with
an equivalent divisor whose non-source vertices are not in too much debt by using
the following debt-reduction trick. Write D = c+ kq with c ∈ Config(G). Fixing an
ordering of the vertices, v1, . . . , vn with q = v1, identify c with a vector c ∈ Zn−1,
as usual. We seek a firing script that will replace c by an equivalent configuration

whose components are small. By Corollary 2.15, the reduced Laplacian L̃ is in-

vertible over the rationals. If we could use L̃−1 c as a firing script, we would get

the configuration c − L̃(L̃−1 c) = 0, whose components are as small as could be!

However, L̃−1 c will not be a valid firing script in general, since it is probably not

an integer vector. Seeking the next best thing, we replace L̃−1 c with the close-by

smaller integer vector bL̃−1 cc obtained by taking the floor of each component.

Firing

σ := bL̃−1 cc ∈ Zn−1

yields the equivalent configuration c′ := c − L̃ σ. Problem 3.6 shows |c′(v)| <
degG(v) for all v ∈ Ṽ , which means that for c′ any particular non-source vertex v

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

54 3. Algorithms for winning

can be brought out of debt with a single borrowing move. (Of course, borrowing
might then increase the debt of v’s neighbors).

Finally, we replace D by the linearly equivalent divisor,

D′ := c′ + (deg(D)− deg(c′)) q.

Example 3.20. Let’s apply the debt-reduction trick described above to the divisor
D = −10v2 − 2v3 + 11v4 − 7v5 + 10q on the house graph in Figure 5. Note that
deg(D) = 2 and D = c + 10q for the configuration c = −10v2 − 2v3 + 11v4 − 7v5.
The reduced Laplacian matrix and its inverse are given by

L̃ =


2 −1 0 0
−1 3 −1 −1

0 −1 2 −1
0 −1 −1 3

 , L̃−1 =
1

11


8 5 4 3
5 10 8 6
4 8 13 7
3 6 7 8

 .

Applying L̃−1 to the vector (−10,−2, 11,−7) corresponding to c yields L̃−1c =(
− 67

11 , −
24
11 ,

38
11 , −

21
11

)
. Taking the floor of each component defines the firing script

σ = (−7,−3, 3,−2). Implementing this firing script yields the linearly equivalent
configuration c′ = v2 + v3 − v5:

c′ = c− L̃σ = (1, 1, 0,−1).

Hence, we may replace the original divisor D by the linearly equivalent divisor D′

with smaller coefficients:

D′ = c′ + (deg(D)− deg(c′)) q = v2 + v3 − v5 + q.

3.4.3. Summary. We reformulate the procedure from the beginning of Sec-
tion 3.2.

Algorithm 3 Find the linearly equivalent q-reduced divisor.

1: input: D ∈ Div(G) and q ∈ V .
2: output: the unique q-reduced divisor linearly equivalent to D.
3: optional : Apply the debt-reduction trick to D.
4: Use a greedy algorithm to bring each vertex v 6= q out of debt, so we may assume
D(v) ≥ 0 for all v 6= q.

5: Repeatedly apply Dhar’s algorithm until D is q-reduced.

3.5. The Abel-Jacobi map

As seen in Proposition 3.11, the q-reduced concept has immediate implications for
the the size of complete linear systems on d-edge connected graphs. To discuss
these implications in a larger context, we begin by formulating the dollar game
with explicit reference to the Picard group:

The dollar game: Given a divisor D ∈ Div(G), does there exist an effective
divisor, E ∈ Div+(G), such that [E] = [D] in Pic(G)?

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

3.5. The Abel-Jacobi map 55

In order to phrase this in terms of the Jacobian group, we need a way of shifting
questions about degree-d divisors to questions about degree-0 divisors. Of course,
Div0(G) is a subgroup of Div(G), while Divd(G) is only a subset of Div(G) for
d 6= 0. But each of these subsets has a natural action by the group Div0(G):

Div0(G)×Divd(G) → Divd(G)

(Z,D) 7→ Z +D.

This action is simply-transitive: Given any two degree-d divisors D and D′, there
is a unique divisor Z of degree zero such that D′ = Z + D, namely Z := D′ −D.
To describe this situation (a natural simply-transitive group action), we say that

Divd(G) is a torsor for the group Div0(G).

Moreover, for each d ∈ Z, the subgroup of principal divisors acts on Divd(G)
by restriction of the natural Div0(G)-action:

Prin(G)×Divd(G) → Divd(G)

(div(f), D) 7→ div(f) +D.

Define Picd(G) := Divd(G)/Prin(G) to be the quotient set, i.e., the set of linear
equivalence classes of degree-d divisors. For d = 0, this is the Jacobian group,
Jac(G) = Div0(G)/Prin(G).

Exercise 3.21. Show that each Picd(G) is a torsor for Jac(G).

You should think of a torsor as a group that has forgotten its identity element.
Indeed: choosing any linear equivalence class Q ∈ Picd(G) yields a bijection

Jac(G) → Picd(G)

Z 7→ Z +Q,

by which the group law on Jac(G) may be transferred to Picd(G). In this way

Picd(G) is identified with the group Jac(G), with the chosen divisor class Q serving
as the identity.

The dollar game on G starting with D ∈ Divd(G) asks for an effective divisor

E ∈ Divd+(G) such that [E] = [D] in Picd(G). Subtracting the chosen divisor-class

Q ∈ Picd(G) yields the following reformulation in terms of the group Jac(G):

The dollar game: Given a divisor D ∈ Divd(G), does there exist an effective

divisor, E ∈ Divd+(G), such that [E]−Q = [D]−Q in Jac(G)?

Thus, at the price of choosing an arbitrary divisor class Q ∈ Picd(G), we have
succeeded in casting the dollar game as a question about the Jacobian group Jac(G).
At this point, it is reasonable to ask whether some choices for Q are better than
others. The following proposition suggests that the answer is yes.

Proposition 3.22. The following sequence is exact:

0→ Jac(G)→ Pic(G)
deg−−→ Z→ 0.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

56 3. Algorithms for winning

The set of splittings {s : Z→ Pic(G) : deg ◦s = id} is in bijection with Pic1(G), the
divisor-classes of degree 1. In particular, the choice of any vertex q ∈ V determines
a splitting sq defined by sq(1) := [q].

Exercise 3.23. Prove Proposition 3.22 and show that each choice of splitting
determines an isomorphism Pic(G) ' Jac(G)× Z.

The previous proposition and exercise suggest that in choosing the divisor
class Q, we should begin by fixing a vertex q ∈ V , and then define Q := [dq].
This procedure simultaneously selects a divisor in each degree, thereby identifying
each torsor Picd(G) with Jac(G) in a way compatible with the isomorphism induced
by the splitting sq:

Pic(G)
∼−→ Jac(G)× Z

C 7→ (C − [deg(C)q],deg(C)).

To summarize: by choosing a vertex q ∈ V , the dollar game on G is transformed
into the following question about the Jacobian group Jac(G). (Note that the choice
of a vertex q is the same as the specification of a “benevolent vertex” in the strategy
that led us to the notion of q-reduced divisors.)

The dollar game: Given a divisor D ∈ Divd(G), does there exist an effective

divisor, E ∈ Divd+(G), such that [E − dq] = [D − dq] in Jac(G)?

We are thus led to consider the following family of maps from the graded pieces
of the monoid Div+(G) to the Jacobian Jac(G):

S(d)
q : Divd+(G) → Jac(G)

E 7→ [E − dq].

These maps are completely determined by additive extension from Sq := S
(1)
q ,

which we think of as being defined on the vertices of G. This map is called the
Abel-Jacobi map, Sq : V → Jac(G), and is defined as Sq(v) := [v − q]. As shown
below, it enjoys a universal property related to harmonic functions on the graph G.

Definition 3.24. Let A be an abelian group, and h : V → A a function defined on
the vertices of G. Then h is harmonic if for all v ∈ V ,

degG(v)h(v) =
∑
vw∈E

h(w).

In words: the value of h at v is the average of the values of h at the neighbors of v
in G.

Note that for A = Z, the harmonic functions are exactly given by the kernel of
the Laplacian L : M(G)→ Div(G). In Chapter 2, we saw that this kernel consists
of functions that are constant on the connected components of G. More generally,
for an arbitrary abelian group A, we can think of the integral Laplacian matrix
as defining a mapping LA : M(G,A) → Div(G,A) from A-valued functions on G
to divisors with A-coefficients. The A-valued harmonic functions are given by the
kernel of LA.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

3.5. The Abel-Jacobi map 57

Exercise 3.25. Show that any constant function a : V → A is harmonic. Con-
sequently, every harmonic function h : V → A may be written uniquely as h =
h̃+ h(q), where h̃ is harmonic with h̃(q) = 0.

Exercise 3.26. Show that the Abel-Jacobi map Sq : V → Jac(G) is harmonic.
Moreover, given any group homomorphism φ : Jac(G)→ A, show that the compo-
sition φ ◦ Sq : V → A is a harmonic function sending q to 0 ∈ A.

By the previous exercise, we can find A-valued harmonic functions on G by
instead finding homomorphisms from Jac(G) to A. In fact, the next proposition
shows that Sq is universal for harmonic functions on G. That is, every harmonic
function (sending q to 0) arises from a group homomorphism. In effect, the Abel-
Jacobi map reduces the harmonic function theory of the graph G to group theory.

Proposition 3.27. Suppose that h : V → A is harmonic on G with h(q) = 0. Then

there exists a unique homomorphism ĥ : Jac(G)→ A such that h = ĥ ◦ Sq:

V Jac(G)

A

h

Sq

∃! ĥ
.

Proof. Given the harmonic function h, consider the unique extension to the free
abelian group Div(G) = ZV , and denote by h0 : Div0(G) → A the restriction to
the subgroup of degree-0 divisors. For any vertex v ∈ V , we have

h0(div(χv)) = h0(degG(v) v −
∑
vw∈E w)

= degG(v)h(v)−
∑
vw∈E h(w) = 0.

Since the principal divisors of the form div(χv) generate the subgroup Prin(G), this

shows that h0 induces a homomorphism ĥ : Jac(G) = Div0(G)/Prin(G)→ A. For
any v ∈ V ,

(ĥ ◦ Sq)(v) = ĥ([v − q]) = h(v)− h(q) = h(v),

where in the last step we use the assumption that h(q) = 0. The uniqueness of ĥ
follows from the uniqueness of h0. �

Proposition 3.11 may be reformulated as a simple statement about the Abel-
Jacobi map.

Proposition 3.28. The map S
(d)
q : Divd+(G) → Jac(G) is injective if and only

if G is (d+ 1)-edge connected.

Proof. First suppose that G is (d+ 1)-edge connected and that E1, E2 ∈ Divd+(G)

are effective of degree d with S
(d)
q (E1) = S

(d)
q (E2). Explicitly, this means that

E1 − d q ∼ E2 − d q, which implies that E1 ∼ E2, so that E2 ∈ |E1|. But by

Proposition 3.11, we have |E1| = {E1}, so that E2 = E1 and S
(d)
q is injective.

Now suppose that S
(d)
q is injective, and that G is k-edge connected but not

(k+ 1)-edge connected. We wish to show that d+ 1 ≤ k. By the injectivity of S
(d)
q ,

if F1 6= F2 are distinct effective divisors of degree d, then F2 is not linearly equivalent
to F1. This means that every nonempty complete linear system of degree d consists

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

58 3. Algorithms for winning

of exactly one effective divisor. But by Proposition 3.11, there exists a complete
linear system of each degree greater than or equal to k containing more than one
element. It follows that d < k, so that d+ 1 ≤ k as required. �

Having settled the question of the injectivity of the maps S
(d)
q , it is natural to

wonder about their surjectivity. We will be able to provide a simple answer to this
question in the next chapter (cf. Proposition 4.10).

Notes

Most of the results appearing in this chapter have their source in the paper [6] by
Baker and Norine or the paper [8] by Baker and Shokrieh. In particular, see [8]
for a thorough analysis of the complexity of the algorithms presented here. We
learned of the greedy algorithm for the dollar game through conversations with
Spencer Backman who further pointed us to the work by Björner et al. on the
relation between greedoids and chip-firing games ([18]). The original version of
Dhar’s algorithm appears in [34].

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 3

3.1. Consider the following proposal for a “benevolent” algorithm to solve the dollar
game, mirroring the greedy algorithm presented in this chapter:

Let D be a divisor. Pick any pair of adjacent vertices v and w such
that v is debt-free and w is in debt, and have v perform a lending move.
Repeat until each vertex is out of debt or until a state is reached at which
continuing would force each vertex to have made a lending move, at which
point the game is declared unwinnable.

Give an example of a winnable divisor D which is declared unwinnable by the above
procedure.

3.2. Let C4 be the cycle graph with vertices v1, v2, v3, v4 listed in order around the
cycle. Let D = −2v1 − 2v2 + 2v3 + 3v4 ∈ Div(C4).

(a) Find the firing script σ determined by the greedy algorithm for the dollar
game.

(b) Let L be the Laplacian for C4. Verify that D − Lσ is effective.

3.3. Let Cn be the cycle graph with vertices v1, . . . , vn, listed in order around the
cycle. Suppose n = 2m with m > 1, and let D = −2v1 + 2vm+1 ∈ Div(Cn). What
is the firing script produced by the greedy algorithm for the dollar game applied to
D?

3.4. Let G be the house graph pictured in Figure 7 in the Problems for Chapter 2.
Let q = v1, and compute linearly equivalent q-reduced divisors for the following
divisors on G:

(a) D1 = (−3, 2, 4,−2, 1)

(b) D2 = (2, 1,−5, 2, 2)

(c) D3 = (0,−2,−2, 0, 0).

3.5. Let D ∈ Div(G) and fix a source vertex q ∈ V . The proof of the existence
and uniqueness theorem for q-reduced divisors guarantees the existence of a firing

script σ such that D
σ−→ D′ where D′(v) ≥ 0 for all v 6= q. Using this fact, mimic

the proof of the validity of Algorithm 1 in Chapter 3 to verify that the greedy
algorithm in Algorithm 4 brings the non-source vertices of D out of debt.

Algorithm 4 Greedy algorithm for Problem 3.5.

1: input: D ∈ Div(G).

2: output: D′ ∼ D such that D′(v) ≥ 0 for all v ∈ Ṽ .
3: initialization: D′ = D.
4: while D′|Ṽ 6≥ 0 do

5: choose v ∈ Ṽ such that D′(v) < 0
6: modify D′ by performing a borrowing move at v

7: return D′

3.6. Let c ∈ Config(G, q). Fixing an ordering of the vertices, let L̃ be the reduced
Laplacian of G and identify c with an integer vector in Zn−1, as usual. Let

σ := bL̃−1 cc ∈ Zn−1

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

60 3. Algorithms for winning

be the integer vector obtained from L̃−1 c by taking the floor of each of its compo-

nents. Define c′ = c− L̃ σ. Prove that |c′(v)| < degG(v) for all v ∈ Ṽ .

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Chapter 4

Acyclic orientations

In Section 3.4 we introduced Dhar’s algorithm which provides an efficient method
for computing the q-reduced divisor linearly equivalent to a given divisor D. In this
chapter we investigate Dhar’s algorithm further and show that it may be used to
establish a bijection between two seemingly unrelated structures on a graph G: the
set of maximal unwinnable q-reduced divisors and the set of acyclic orientations
with unique source q. This bijection will play a crucial role in the proof of the
Riemann-Roch theorem for graphs (Theorem 5.9) in Chapter 5.

4.1. Orientations and maximal unwinnables

If we are interested in determining which divisors on a graph are winnable and
which are unwinnable, then a good place to start is with the maximal unwinnable
divisors: those unwinnable divisors D such that given any unwinnable divisor D′

such that D ≤ D′, it follows that D = D′. Equivalently, D is a maximal unwinnable
if D is unwinnable but D + v is winnable for each v ∈ V . Similarly, a maximal
superstable configuration is a superstable c such that given any superstable c′ with
c ≤ c′, we have c = c′.

Exercise 4.1. Let D and D′ be linearly equivalent divisors. Explain why D is
maximal unwinnable if and only if D′ is maximal unwinnable.

As a consequence of Remark 3.15, it is clear that if the divisor D is a maximal
unwinnable, then its q-reduced form is c− q where c is a maximal superstable. The
converse is not immediately obvious but will emerge as a consequence of our work
with acyclic orientations in this chapter (cf. Corollary 4.9). It then follows that
every unwinnable divisor is dominated by some (not necessarily unique) maximal
unwinnable divisor. Thus, we may find all of the unwinnable divisors on a graph
by simply removing dollars from the maximal unwinnables.

61

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

62 4. Acyclic orientations

One of the key ideas in the divisor theory of graphs is that Dhar’s algorithm
provides a connection between the maximal superstables and the acyclic orienta-
tions, defined below. If {u, v} is an edge of G, we think of the ordered pair e = (u, v)
as an assignment of a direction or orientation for the edge. We write e− = u and
e+ = v and think of e as an arrow from u to v:

u v
e

Each edge has exactly two possible orientations. An orientation O for G consists
of a choice of direction for each edge. See Figure 1 for an example of an orientation
for a graph with a multiset of edges.

v1

v2

v3

v4 v5

Figure 1. An acyclic orientation with unique source v1.

A vertex u is a source for the orientation O if every edge incident to u is directed
away from u, i.e, appears as e ∈ O with e− = u. Dually, a vertex v is a sink for O
if every edge incident to v is directed towards v, i.e, appears as e ∈ O with e+ = v.
An orientation is acyclic if, as in Figure 1, it contains no cycle of directed edges.
Note that if there are multiple edges between two vertices, they must be oriented
in the same direction in any acyclic orientation.

Exercise 4.2. Explain why an acyclic orientation must have at least one sink and
one source. Is it possible to have more than one of either?

If u ∈ V and O is an orientation, define

indegO(u) = |{e ∈ O : e+ = u}|
outdegO(u) = |{e ∈ O : e− = u}|.

The function v 7→ indegO(v) is the indegree sequence for O.

Lemma 4.3. An acyclic orientation is determined by its indegree sequence: if O
and O′ are acyclic orientations of G and indegO(v) = indegO′(v) for all v ∈ V ,
then O = O′.

Proof. Given an acyclic orientation O on G, let V1 ⊂ V be its (nonempty) set
of source vertices. These are exactly the vertices v such that indegO(v) = 0.
Remove these vertices and their incident edges from G and from O to get an acyclic
orientation O1 on a subgraph G1 of G. Repeat, letting V2 be the sources of O1, etc.
In this way, we get a sequence (V1, V2, . . .) partitioning V . The result follows by
noting that the sequence determines O and is determined by the indegree sequence
of O. �

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

4.2. Dhar’s algorithm revisited 63

Exercise 4.4. What is the acyclic orientation of the graph in Figure 1 with indegree
sequence (v1, . . . , v5) 7→ (2, 0, 3, 2, 0)?

4.2. Dhar’s algorithm revisited

Given a superstable c, place c(v) firefighters on each vertex v, ignite the source
vertex, and let the fire spread according to Dhar’s algorithm. This time, though,
whenever fire spreads along an edge from vertex u to vertex v, record this fact by
directing that edge from u to v. (Direct the edge even if there are enough firefighters
on v at this point to prevent v from igniting.) In the end, since c is superstable, all
the vertices are ignited, but what can be said about the oriented edges?

Example 4.5. Consider the superstable shown on the graph in Figure 2. The
figure shows the process of running Dhar’s algorithm as described above. Observe
that every edge burns, and the resulting orientation is acyclic with unique source
at q.

0

0

2 0

0

2 0

0

2 0

0

2

Figure 2. Running Dhar’s algorithm on a superstable.

Exercise 4.6. Find a maximal superstable c on the house graph such that running
Dhar’s algorithm on c produces the acyclic orientation shown in Figure 3 below.
Note that this orientation has a unique source q.

q v2

v3

v4

v5

Figure 3. An acyclic orientation with unique source.

Definition 4.7. The divisor corresponding to an orientation O of G is

D(O) =
∑
v∈V

(indegO(v)− 1) v.

The corresponding configuration (with respect to q ∈ V) is

c(O) =
∑
v∈Ṽ

(indegO(v)− 1) v.

For example, if O is the orientation of Figure 1, then D(O) = −v1 + v2 + 2v5

and c(O) = v2 + 2v5, taking q = v1.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

64 4. Acyclic orientations

Theorem 4.8. Fix q ∈ V . The correspondence O 7→ c(O) gives a bijection between
acyclic orientations of G with unique source q and maximal superstables of G (with
respect to q).

Proof. Let O be an acyclic orientation with unique source q, and let c = c(O).
We first show that c is superstable using Dhar’s algorithm as stated on page 52.
To initialize the algorithm, start with S equal to an ordered list of the elements of

Ṽ such that that if u, v ∈ Ṽ and (u, v) ∈ O, then u precedes v in S. Since O is
acyclic, this is always possible, and in fact, there may be several choices.

Let u be the first element of S. The first time through the while-loop of Dhar’s
algorithm, outdegS(u) is the number of edges connecting u to q (which may be
greater than 1 since we are allowing G to be a multigraph). However, since u is
first in the list S, we know that c(u) = indegO(u) − 1 = outdegS(u) − 1. Hence,
we may remove u from S at step 6 and continue. Suppose, by induction, that
the algorithm has proceeded until exactly all of the vertices preceding some vertex
v ∈ S have been removed from S in the order listed. If {w, v} is an edge with

w ∈ Ṽ \S, then since w has already been removed from S, it precedes v in our list.
Since every edge is oriented, it must be that (w, v) ∈ O. Moreover, since all vertices
preceding v have been removed from S, only the vertices outside of S contribute to
the indegree of v. Hence, outdegS(v) = indegO(v) = c(v)+1. So v may be removed
from S. In this way, the algorithm continues removing vertices in order until S is
empty. It follows that c is superstable.

Algorithm 5, below, associates an acyclic orientation a(c) with unique sink q to
each superstable configuration c. The idea is to run Dhar’s algorithm on c, and just
before a vertex v is removed from S, take each edge connecting v to a vertex outside
of S and direct it into v. Each time Step 5 is invoked, a choice is made, but we will
see below that in the case of a maximal superstable, the output is independent of
these choices.

Algorithm 5 Acyclic orientation algorithm.

1: input: a superstable configuration c ∈ Config(G).
2: output: an acyclic orientation a(c) of G with unique sink q.

3: initialization: a(c) = ∅ and S = Ṽ
4: while S 6= ∅ do
5: choose v ∈ S such that c(v) < outdegS(v)
6: for all edges {u, v} ∈ E such that u ∈ V \ S do
7: a(c) = a(c) ∪ {(u, v)}
8: S = S \ {v}
9: return a(c)

Considering steps 5–7 in the algorithm, just before a vertex v is removed from
the set S we have

c(v) < outdegS(v) = indega(c)(v).

It follows that c ≤ c(a(c)) for all superstables c. Hence, if c is maximal, then
c = c(a(c)). So the composition c ◦a is the identity mapping on the set of maximal
superstables.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

4.2. Dhar’s algorithm revisited 65

On the other hand, suppose that O is any acyclic orientation with unique
source q, and set c = c(O). Since c ≤ c(a(c)),

(4.1) indegO(v) ≤ indega(c)(v)

for all v ∈ V . However, since O and a(c) are both acyclic orientations,∑
v∈V

indegO(v) =
∑
v∈V

indega(c)(v) = |E|.

Therefore, we must have equality in (4.1), and thus, by Lemma 4.3 O = a(c) =
a(c(O)). We have shown c and a are inverse mappings between maximal supersta-
bles and acyclic orientations with unique source q. Consequently, c is a bijection
as claimed. �

In the following corollary, we introduce the term genus for the quantity |E| −
|V | + 1. Among graph theorists, this quantity is usually called the cyclomatic
number or cycle rank, since it counts the number of independent cycles in the
graph (see Chapter 13). Further, a graph theorist is more likely to use the word
“genus” to refer to the smallest number γ such that the graph can be embedded
without edge-crossings on a compact orientable surface of genus γ (i.e., a donut
with γ holes). Thus, for example, a planar graph would have genus 0 since it can
be embedded on a sphere with no crossings. Our use of the word “genus” is dictated
by the main goal for this part of the book—the Riemann-Roch formula for graphs
(Theorem 5.9)—in which it plays the role of the usual genus for Riemann surfaces.

Corollary 4.9. Let g = |E| − |V |+ 1, the genus of G.

(1) A superstable c is maximal if and only if deg(c) = g.

(2) A divisor D is maximal unwinnable if and only if its q-reduced form is c − q
where c is a maximal superstable.

(3) The correspondence O 7→ D(O) gives a bijection between acyclic orientations
of G with unique source q and maximal unwinnable q-reduced divisors of G.

(4) If D is a maximal unwinnable divisor, then deg(D) = g−1. Hence, if deg(D) ≥
g, then D is winnable.

Proof. Let c be superstable. Applying Algorithm 5 gives an acyclic orientation

O = a(c) with unique sink q such that c(v) ≤ c(O)(v) for all v ∈ Ṽ . We have seen
that c(O) is a maximal superstable. Then

deg(c) ≤ deg(c(O))

=
∑
v∈Ṽ

(indegO(v)− 1)

=
∑
v∈Ṽ

indegO(v)−
∑
v∈Ṽ

1

= |E| − (|V | − 1),

and the inequality on the first line is an equality if and only if c(v) = c(O)(v) for

all v ∈ Ṽ . Part (1) follows.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

66 4. Acyclic orientations

As stated earlier, a consequence of Remark 3.15 is that if the divisor D is a
maximal unwinnable, then its q-reduced form is c−q where c a maximal superstable.
For the converse, we may assume that D = c − q with c a maximal superstable.
Then D is unwinnable since D(q) < 0. To show D is a maximal unwinnable, let
v ∈ V . If v = q, then clearly, D+ v is winnable. If v 6= q, then D = (c+ v)− q with
c+v ∈ Config(G). To compute the q-reduced form of D+v, we superstabilize c+v.
By part (1), the degree of c + v is g + 1 and the degree of its superstabilization is
at most g. Hence, at least one dollar is sent to q, showing that D + v is winnable.
This completes the proof of part (2).

Parts (3) and (4) now follow immediately. �

Note that the converse of Corollary 4.9 (4) is clearly false: any effective divisor
of degree g−1 on a graph of genus g is winnable. On the other hand, Corollary 4.9
provides an answer to the second question from the end of Chapter 1: if deg(D) ≥
g = |E|−|V |+1, then D is winnable, and g is the minimal degree with this property.
This degree-condition on winnability also allows us to answer our question from the
end of Chapter 3 about the surjectivity of the Abel-Jacobi maps.

Proposition 4.10. The map S
(d)
q : Divd+(G)→ Jac(G) is surjective if and only if

d ≥ g, the genus of the graph G.

Proof. Suppose that [D] ∈ Jac(G) is an arbitrary divisor class of degree zero. For
d ≥ g, consider the divisor D+dq. By Corollary 4.9, there exists an effective divisor

E ∈ Divd+(G) such that E ∼ D + dq. It follows that S
(d)
q (E) = [E − dq] = [D].

Since [D] ∈ Jac(G) was arbitrary, this shows the surjectivity of S
(d)
q for d ≥ g.

On the other hand, by Corollary 4.9, there exists a maximal unwinnable divi-
sor F of degree g − 1. Consider the degree-0 divisor class [F − (g − 1)q] ∈ Jac(G).

If this element were in the image of S
(d)
q for some d ≤ g − 1, then we would have

[E−dq] = [F − (g−1)q] for some effective divisor E of degree d. But then F would
be linearly equivalent to the effective divisor E + (g − 1 − d)q, contradicting the

unwinnability of F . Hence, the maps S
(d)
q are not surjective for d ≤ g − 1. �

The following proposition concerns acyclic orientations that do not necessarily
have a unique source.

Proposition 4.11. Let O be any acyclic orientation. Then D(O) is a maximal
unwinnable divisor.

Proof. Let D = D(O). Let v be any source of O, and let O′ be the acyclic
orientation obtained by reversing the direction of each edge incident on v. We call
this operation a vertex reversal. Then D′ = D(O′) is the divisor obtained from D
by firing vertex v. Hence, D′ ∼ D.

We now show that through a series of vertex reversals, O can be transformed
into an acyclic orientation with a unique source. The result then follows from
Theorem 4.8. Start by fixing a source v for O. Let S be the set consisting of v and
its adjacent vertices. Clearly, v is the only source vertex in S. Next, choose any
vertex v′ ∈ V \ S that is adjacent to a vertex in S. If v′ is a source, reverse the
directions of its incident edges. In any case, add v′ to S. It is still the case that v is

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Notes 67

the unique source vertex in S. Repeat until S = V to obtain an acyclic orientation
with unique source v. �

Notes

The correspondence between maximal superstable configurations and acyclic orien-
tations has been noted many times, in different forms ([11], [15], [49], [50]). See
also [3] and [57].

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 4

4.1. If D is an unwinnable divisor, why must there exist a maximal unwinnable
divisor D′ such that D ≤ D′?
4.2. Let G be the house graph from Problem 2.5, and take q = v1. Find all maximal
superstables on G and their corresponding acyclic orientations.

4.3. Let G be a graph of genus g. Use Corollary 4.9 (4) to show that g = 0 if and
only if v ∼ w for all vertices v, w in G. Thus, G is a tree if and only if Jac(G) = 0.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Chapter 5

Riemann-Roch

We now reach the culmination of Part 1 of this book, revealing an elegant relation-
ship between the rank of a divisor D and of a certain canonically dual divisor K−D.
This formula was first established in the 2007 paper [6] by M. Baker and S. Norine,
from which much of the material in this book is derived. The result immediately
captured the attention of mathematicians from a variety of fields, due to the fact
that it provides a discrete, graph-theoretic version of a central result from classical
algebraic geometry: the Riemann-Roch theorem for Riemann surfaces, which we
describe in Section 5.3. For this reason, Theorem 5.9 due to Baker and Norine is
known as the Riemann-Roch theorem for graphs.

5.1. The rank function

In one sense, the “degree of winnability” of the dollar game is measured by the size
of complete linear systems: D is “more winnable” than D′ if #|D| > #|D′|. As
shown in Section 2.3, determining the size of |D| requires counting the number of
lattice points in a certain convex polytope. However, there is another, less obvious,
measure of winnability that turns out to be central to our main goal—the Riemann-
Roch theorem for graphs. Instead of demanding an exact determination of #|D|,
we will introduce a quantity r(D) ∈ Z that measures “robustness of winnability.”

To begin, define r(D) = −1 if D is an unwinnable divisor. That is:

r(D) = −1 ⇐⇒ |D| = ∅.

Next, define r(D) = 0 if D is barely winnable in the sense that D is winnable, but
there exists a vertex v ∈ V such that D − v is unwinnable. That is, r(D) = 0 if
and only if the winnability of D can be destroyed by a single vertex losing a dollar.
In general, for k ≥ 0 we define

r(D) ≥ k ⇐⇒ |D − E| 6= ∅ for all effective E of degree k.

In words: r(D) ≥ k if and only if the dollar game on G is winnable starting from
all divisors obtained from D by removing k dollars from the graph. It follows that

69

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

70 5. Riemann-Roch

r(D) = k if and only if r(D) ≥ k and there exists an effective divisor E of degree
k + 1 such that D − E is not winnable.

Exercise 5.1. Show that r(D) ≤ max{−1,deg(D)} for all divisors D.

Exercise 5.2. Show that if D is a divisor of degree 0, then r(D) = 0 if and only
if D is principal.

Exercise 5.3. Show that r(D) ≤ r(D + v) ≤ r(D) + 1 for all D ∈ Div(G) and all
v ∈ V . That is, adding one dollar to a divisor can increase its rank by at most one.

Exercise 5.4. Show that if r(D) and r(D′) are each nonnegative, then r(D+D′) ≥
r(D) + r(D′).

Proposition 5.5. Suppose that G is a d-edge connected graph and E ∈ Div+(G)
is an effective divisor of degree less than d. Then r(E) = min{E(v) : v ∈ V (G)}.

Proof. Choose a vertex v with minimal coefficient E(v). Set m := E(v) + 1, and
suppose that |E −mv| is nonempty. Then there exists an effective divisor E′ such
that E − mv ∼ E′, or equivalently E ∼ E′ + mv. But by Proposition 3.11, this
linear equivalence must be an equality: E = E′ +mv = E′ + (E(v) + 1)v. This is
a contradiction since v appears on the right hand side at least once more than on
the left. It follows that |E − mv| = ∅, so r(E) ≤ E(v). On the other hand, the
minimality of E(v) implies that if F is any effective divisor of degree less than or
equal to E(v), then E − F is effective. It follows that r(E) = E(v) as claimed. �

It might seem that the rank function, D 7→ r(D), is even more difficult to com-
pute than the size of the complete linear system |D|. Indeed, to make a straight-
forward computation of r(D), one would need to answer the entire sequence of
questions:

Is |D| nonempty?

If so, then are all |D − vi| nonempty?

If so, then are all |D − vi − vj | nonempty?

If so, then what about all |D − vi − vj − vk|?
etc.,

each of which involves the investigation of lattice points in a convex polytope. In
fact, the problem of computing the rank of a general divisor on a general graph is
NP-hard ([62]), which means it is likely that the time it takes for any algorithm to
compute the rank of a divisor will grow exponentially with the size of the graph.

Of course, the fact that the rank computation is NP-hard in general doesn’t
mean that it is hard to compute the rank of every divisor on a graph G. Indeed,
the following proposition provides a lower bound for the rank and shows that the
bound is attained for divisors that dominate a maximal unwinnable.

Proposition 5.6. For all divisors D ∈ Div(G), we have the lower bound r(D) ≥
deg(D) − g. Moreover, if D ≥ N for some maximal unwinnable divisor N , then
r(D) = deg(D)− g.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

5.2. Riemann-Roch for graphs 71

Proof. First note that, by Corollary 4.9, D is winnable if deg(D) ≥ g. Thus, if D
is unwinnable, then r(D) = −1 ≥ deg(D) − g. Similarly, if D is winnable and
deg(D) ≤ g, then r(D) ≥ 0 ≥ deg(D)− g. So it only remains to consider winnable
divisors of degree greater than g. Given such a divisor D, let E be any effective
divisor of degree at most deg(D) − g > 0. Then deg(D − E) ≥ g, so D − E is
winnable. By the definition of the rank function, we see that r(D) ≥ deg(D) − g
as claimed.

Finally, suppose thatD ≥ N for some maximal unwinnable divisorN . Consider
the effective divisor E := D−N with deg(E) = deg(D)−deg(N) = deg(D)−g+1.
Then |D − E| = |N | = ∅, which shows that r(D) ≤ deg(D) − g. It follows that
r(D) = deg(D)− g. �

In the next section we will see that the Riemann-Roch theorem provides an easy
way to determine whether a given divisor D dominates a maximal unwinnable (cf.
Corollary 5.12). Those divisors that do not dominate a maximal unwinnable are
the ones for which the rank computation is difficult. Nevertheless, we will at least
be able to improve upon Exercise 5.1 to provide a nontrivial upper bound for the
ranks of such divisors in terms of their degrees (Clifford’s theorem, Corollary 5.13).

5.2. Riemann-Roch for graphs

In the previous section we explained that it is difficult, in general, to compute the
rank of a divisor. But in Proposition 5.6 we provided a linear lower bound for the
rank in terms of the degree of the divisor and the genus of the graph:

r(D) ≥ deg(D)− g.

In this section we identify the “correction term” that turns this inequality into an
equality. In order to do so, we need to introduce the canonical divisor of a graph G.

Definition 5.7. For any orientation O on a graph G, denote by Orev the reversed
orientation obtained by reversing the direction of each edge in O. Define the
canonical divisor of G to be the divisor

K := D(O) + D(Orev).

Note that for every v ∈ V (G),

K(v) = (indegO(v)− 1) + (outdegO(v)− 1) = degG(v)− 2,

so that the canonical divisor depends only on the graph G and not on the orienta-
tion O.

Exercise 5.8. Show that deg(K) = 2g− 2, where g = |E| − |V |+ 1 is the genus of
the graph G.

Theorem 5.9 (Riemann-Roch). Let D be a divisor on a (loopless, undirected)
graph G of genus g = |E| − |V |+ 1 with canonical divisor K. Then

r(D)− r(K −D) = deg(D) + 1− g.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

72 5. Riemann-Roch

Proof. By definition of r(D), there exists an effective divisor F of degree r(D) + 1
such that |D−F | = ∅, i.e., D−F is unwinnable. Find the q-reduced divisor linearly
equivalent to D − F :

D − F ∼ c+ k q,

where c is superstable and k ∈ Z. Since D − F is unwinnable, k < 0. Now pick
a maximal superstable c̃ ≥ c, and consider the maximal unwinnable divisor c̃ − q.
Let O be the corresponding acyclic orientation of G. So

D(O) = c̃− q ≥ c+ k q ∼ D − F.

Define the effective divisor

H := (c̃− c)− (k + 1)q ∼ D(O)− (D − F).

Add D(Orev) to both sides of the above relation:

D(Orev) +H ∼ D(Orev) + D(O)︸ ︷︷ ︸
K

−(D − F),

and rearrange to get

K −D −H ∼ D(Orev)− F.
Since D(Orev) is unwinnable and F ≥ 0, it follows a fortiori that D(Orev)−F , and
hence, K − D − H, is unwinnable. Therefore, r(K − D) < deg(H). The degree
of H is

deg(H) = deg(D(O)− (D − F))

= deg(D(O))− deg(D) + deg(F)

= g − 1− deg(D) + r(D) + 1.

Hence,

(?) r(K −D) < g − deg(D) + r(D),

for all divisors D.

Since (?) holds for all divisors D, we may substitute K −D for D yielding

r(D) < g − deg(K −D) + r(K −D).

Since deg(K) = 2g − 2,

(??) r(D) < 2− g + deg(D) + r(K −D).

Combining (?) and (??),

deg(D)− g
?
< r(D)− r(K −D)

??
< deg(D)− g + 2.

Since r(D)− r(K −D) is an integer, we must have

r(D)− r(K −D) = deg(D) + 1− g.

�

Exercise 5.10. Show that r(K) = g − 1.

As first consequences of the Riemann-Roch formula, we prove the following
results about maximal unwinnable divisors.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

5.2. Riemann-Roch for graphs 73

Corollary 5.11. A divisor N is maximal unwinnable if and only if K − N is
maximal unwinnable.

Proof. If N is maximal unwinnable, then deg(N) = g − 1 and r(N) = −1.
Riemann-Roch says

−1− r(K −N) = deg(N) + 1− g = 0,

which implies that r(K − N) = −1 so K − N is unwinnable. But deg(K − N) =
deg(K) − deg(N) = 2g − 2 − g + 1 = g − 1, so K − N is maximal unwinnable.
Replacing N by K −N yields the other direction. �

Corollary 5.12. Suppose that D ∈ Div(G) is a divisor. Then D dominates a
maximal unwinnable divisor if and only if r(K −D) = −1.

Proof. First suppose that D ≥ N for a maximal unwinnable divisor N . Then
K −D ≤ K −N , and K −N is maximal unwinnable by the previous corollary. It
follows that K −D is unwinnable, so r(K −D) = −1.

Now suppose that r(K −D) = −1. Then K −D is unwinnable, and we may
choose a maximal unwinnable that dominates it: K−D ≤ N . Then K−N ≤ D, so
that D dominates the divisor K−N , which is maximal unwinnable by the previous
corollary. �

To what extent does the Riemann-Roch theorem help us determine the rank
of a divisor D? First, we’ve seen that it is easy to check whether D is unwinnable,
i.e., r(D) = −1: simply compute the q-reduced divisor linearly equivalent to D
and check whether it is effective. Similarly, if D is winnable, it is easy to check if
r(K−D) = −1. The Riemann-Roch formula then implies r(D) = deg(D)−g. The
difficult case is when D is winnable and r(D −K) ≥ 0. Here, the Riemann-Roch
formula only gives us a lower bound on the rank: r(D) > deg(D) − g. The next
result provides an upper bound in this case.

Corollary 5.13 (Clifford’s Theorem). Suppose that D ∈ Div(G) is a divisor with
r(D) ≥ 0 and r(K −D) ≥ 0. Then r(D) ≤ 1

2 deg(D).

Proof. By Exercises 5.4 and 5.10,

r(D) + r(K −D) ≤ r(D +K −D) = r(K) = g − 1.

Adding this to the Riemann-Roch formula gives 2r(D) ≤ deg(D), and dividing by
2 yields the stated upper bound. �

Corollary 5.14. Let D ∈ Div(G).

(1) If deg(D) < 0, then r(D) = −1.

(2) If 0 ≤ deg(D) ≤ 2g − 2, then r(D) ≤ 1
2 deg(D).

(3) If deg(D) > 2g − 2, the r(D) = deg(D)− g.

Proof. Part 1 is clear and part 3 follows from the Riemann-Roch formula. For
part 2, suppose that 0 ≤ deg(D) ≤ 2g−2. The result certainly holds if r(D) = −1,

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

74 5. Riemann-Roch

so assume r(D) ≥ 0. If r(K − D) ≥ 0 as well, then the result holds by Clifford’s
theorem. Finally, if r(K −D) = −1, then by the Riemann-Roch formula,

r(D) = deg(D)− g =
1

2
deg(D) +

1

2
(deg(D)− 2g) <

1

2
deg(D).

�

5.3. The analogy with Riemann surfaces

The Riemann-Roch theorem for graphs derives its name from a theorem about
surfaces established in the mid-nineteenth century by Bernhard Riemann and his
student, Gustav Roch. In fact, the entire theory of divisors on graphs is modeled
after the theory of divisors on Riemann surfaces, and in this section we give a brief
and informal outline of the classical story. We begin by providing a quick summary
of the divisor theory of graphs as presented in the previous chapters.

Our basic object of study has been a finite, undirected, connected multigraph,
G = (V,E), as pictured below: The genus of a graph is g := |E| − |V | + 1, which

v1 v2

v3

v4

v5

Figure 1. A graph of genus g = 4.

counts the number of independent cycles or “holes” in the graph G. Every graph
has a divisor group

Div(G) :=

{∑
v∈V

av v : av ∈ Z

}
,

and the degree homomorphism, deg : Div(G)→ Z, sends a divisor to the sum of its
coefficients:

deg

(∑
v∈V

av v

)
=
∑
v∈V

av.

Every graph has a canonical divisor, K, defined by

K =
∑
v∈V

(degG(v)− 2) v.

The canonical divisor for the genus-four graph shown in Figure 1 is K = 2v1 + v2 +
2v3 + v5.

Every graph G also has a group of firing scripts, which are simply integer-valued
functions on the vertices:

M(G) := {σ : V → Z} .

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

5.3. The analogy with Riemann surfaces 75

The divisor homomorphism, div : M(G) → Div(G), sends a firing script to the
resulting degree-zero divisor:

div(σ) :=
∑
v∈V

(
degG(v)σ(v)−

∑
vw∈E

σ(w)

)
v.

The kernel of the divisor homomorphism is the subgroup of constant functions, Z.
These homomorphisms fit into a sequence in which the image of each map is con-
tained in the kernel of the next map:

0→ Z→M(G)
div−−→ Div(G)

deg−−→ Z→ 0.

This sequence is exact except at Div(G), where (in general) the kernel of deg
is strictly larger than the image of div, which we call the subgroup of principal
divisors, Prin(G). Taking the quotient, we obtain the Picard group and its subgroup
the Jacobian:

Pic(G) = Div(G)/Prin(G) and Jac(G) = Div0(G)/Prin(G).

The Picard and Jacobian groups are related by the split-exact sequence

0→ Jac(G)→ Pic(G)
deg−−→ Z→ 0.

We call two divisors D,D′ ∈ Div(G) linearly equivalent and write D ∼ D′

if they define the same element of the Picard group. That is, D ∼ D′ when
D = D′−div(σ) for some firing script σ. A divisor with all coefficients nonnegative
is called effective. For any divisor D, its complete linear system |D| is the set of
linearly equivalent effective divisors:

|D| := {E ∈ Div(G) : E = D + div(σ) ≥ 0 for some σ ∈M(G)} .
The rank r(D) of a divisor D is defined to be one less than the minimal degree of
an effective divisor E such that |D − E| = ∅. Equivalently:

r(D) = max {r ∈ Z : |D − E| 6= ∅ for all effective E of degree r} .
The Riemann-Roch theorem for graphs expresses a relation between the rank of a
divisor, D, and the rank of the canonically dual divisor K −D:

r(D)− r(K −D) = deg(D) + 1− g.

Our goal now is to sketch an entirely analogous story in the context of Rie-
mann surfaces. There, the basic objects of study are smooth, compact, connected
Riemann surfaces as pictured in figure 2.

Figure 2. A surface of genus g = 2.

Roughly speaking, a Riemann surface is a topological space such that every
point has an open neighborhood that has been identified with an open subset of

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

76 5. Riemann-Roch

(0, 0, 1)

(x, y, z)

u+ iv

Figure 3. Stereographic projection.

the complex plane, C. Specifying these identifications in a compatible way is called
putting a complex structure on the underlying topological surface. The genus of
a surface is its number of “handles.” Viewed only as topological spaces, any two
surfaces of genus g are the same (i.e., homeomorphic). But for g ≥ 1, there are
infinitely many different complex structures, so that there are infinitely many dif-
ferent Riemann surfaces of genus g. To illustrate the ideas in this section, we will
provide a running example with g = 0; we will see below (as a consequence of
the Riemann-Roch theorem!) that this is actually the only example of a Riemann
surface of genus zero.

Example 5.15. The topological surface of genus zero is the sphere, S2. In order
to put a complex structure on the sphere, we use the technique of stereographic
projection as shown in Figure 3. Thinking of S2 as the subset of R3 defined by the
equation x2 + y2 + z2 = 1, we identify the complex plane C with the equatorial
xy-plane by writing x + iy = (x, y, 0). Consider the line through the north pole
(0, 0, 1) and any other point (x, y, z) on the sphere; this line intersects the complex
plane at a unique point u+ iv given by the formula

u+ iv =
x+ iy

1− z
.

The mapping (x, y, z) 7→ u + iv defines a homeomorphism from the punctured
sphere S2 − {(0, 0, 1)} to the complex plane. Similarly, we may instead consider
lines originating at the south pole (0, 0,−1), which yields a homeomorphism from
S2 − {(0, 0,−1)} to C defined by

u′ + iv′ =
x− iy
1 + z

.

Thus, we have succeeded in identifying an open neighborhood of each point in
S2 with the complex plane. But in order to qualify as a complex structure, the
identifications must be compatible on overlapping neighborhoods. To check this
compatibility in the present case, note that if (x, y, z) 6= (0, 0,±1), so that both
mappings are defined, we see that

(u+ iv)(u′ + iv′) =
x2 + y2

1− z2
=

1− z2

1− z2
= 1,

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

5.3. The analogy with Riemann surfaces 77

so that the transition function u + iv 7→ u′ + iv′ is simply inversion of complex
numbers, ζ 7→ ζ−1, which is a holomorphic, i.e., complex-differentiable, function.
In general, the compatibility we require for a complex structure is that all tran-
sition functions are holomorphic. As mentioned above, we will later show that
the Riemann-Roch theorem implies that every complex structure on the sphere is
equivalent to the one we have just described via stereographic projection.

Every Riemann surface determines a divisor group:

Div(S) :=

∑
p∈S

ap p : ap ∈ Z, ap = 0 for all but finitely many p

 .

Hence, a divisor on S is a finite, formal, integer-linear combination of points of
the surface. A divisor is effective if all of its coefficients are nonnegative. The
degree homomorphism, deg : Div(S)→ Z, sends a divisor to the (finite) sum of its
coefficients:

deg

∑
p∈S

ap p

 =
∑
p∈S

ap.

If S is a Riemann surface, then we may consider complex-valued functions
h : S → C. Since S has a complex structure, near each point p ∈ S we may think
of h as a function of a complex variable w, where w = 0 corresponds to the point p.
We may now check whether h(w) is complex-differentiable near w = 0, in which
case we say that h is holomorphic at p (the fact that all transition functions are
holomorphic guarantees that this notion is well-defined). If h is holomorphic at p,
then we may express h(w) as a power-series:

h(w) =
∑
k≥0

ckw
k.

Of course, not all functions on S are holomorphic. In fact, a theorem from
complex analysis asserts that (since S is compact), only the constant functions are
holomorphic at every point of S. In order to obtain a richer collection of functions
on S, we say that f : S → C ∪ {∞} is meromorphic if near each point p ∈ S, the
function f(w) may be expressed as a quotient of holomorphic functions g(w)/h(w)
with h(w) not identically zero. Equivalently, f is meromorphic at p if f(w) can be
represented by a Laurent series:

f(w) =
∑
k≥M

ckw
k.

In terms of this Laurent series, we define the order of f at p to be ordp(f) :=
min{k | ck 6= 0}. Note that

f(p) =

 0 if ordp(f) > 0 (zero of f)
∞ if ordp(f) < 0 (pole of f)

c0 6= 0 if ordp(f) = 0 .

We denote the field of meromorphic functions on S by M(S):

M(S) := {f : S → C ∪ {∞} : f is meromorphic} .

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

78 5. Riemann-Roch

The associated multiplicative group (obtained by removing the zero function) is
denoted M(S)×. From the compactness of the surface S, it follows that every
nonzero meromorphic function has only finitely many zeros and poles. Hence, we
may define a divisor homomorphism by sending each nonzero meromorphic function
to the weighted sum of its zeros and poles:

div(f) =
∑
p∈S

ordp(f) p.

Example 5.16. Consider the Riemann sphere from Example 5.15, which we iden-
tify with C ∪ {∞} via stereographic projection from the north pole, associating ∞
with the north pole (0, 0, 1) itself. The following rational function is an example of
a meromorphic function on the sphere:

f(w) :=
w(w − 1)

(w + 1)2
.

The value of this function at w =∞ is obtained by writing it in terms of 1/w and
evaluating at 1/w = 0:

f(1/w) =
(1− 1/w)

(1 + 1/w)2
=⇒ f(∞) = 1.

We see that f has zeros of order 1 at w = 0 and w = 1 as well as a pole of order 2
at w = −1. It follows that the divisor of f is given by

div(f) = p0 + p1 − 2p−1,

where (for clarity) we have denoted the point of the Riemann surface with co-
ordinate w by the symbol pw. This example is entirely typical, because every
meromorphic functions on the Riemann sphere is actually a rational function:
M(C ∪ {∞}) = C(w).

Returning to an arbitrary Riemann surface S, the image of the divisor ho-
momorphism is the subgroup of principal divisors, Prin(S). It follows from the
compactness of S that all principal divisors have degree zero, and that the ker-
nel of div is the nonzero constant functions, C×. As in the case of graphs, these
homomorphisms fit into a sequence

0→ C× →M(S)×
div−−→ Div(S)

deg−−→ Z→ 0.

Again, this sequence is exact except at the term Div(S), from which we obtain the
Picard and Jacobian groups:

Pic(S) = Div(S)/Prin(S) and Jac(G) = Div0(S)/Prin(S).

Once again, the Picard and Jacobian groups are related by the split-exact sequence

0→ Jac(S)→ Pic(S)
deg−−→ Z→ 0.

Linear equivalence of divisors is defined in the familiar way:

D ∼ D′ if and only if D = D′ − div(f) for some meromorphic f .

(For convenience, we define the divisor of the zero function to be zero.) The com-
plete linear system of a divisor D is the collection of linearly equivalent effective
divisors:

|D| = {E | E = D + div(f) ≥ 0 for some f ∈M(S)} .

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

5.3. The analogy with Riemann surfaces 79

Note that, just as for graphs, if deg(D) < 0, then the complete linear system |D| is
empty since linear equivalence preserves the degree of divisors.

For a given divisor D, the requirement that D + div(f) is effective places re-
strictions on the zeros and poles of the meromorphic function f :

ordp(f) ≥ −D(p) for all p ∈ S.
Explicitly: if D(p) < 0, then f must vanish to order at least −D(p) at p, and if
D(p) > 0, then f can have a pole of order at most D(p) at p. (If D(p) = 0, then f
cannot have a pole at p, although it may have a zero of any order or take a finite,
nonzero value). We say that such meromorphic functions have poles at worst D.
Moreover, the collection of meromorphic functions with poles at worst D forms a
complex vector subspace of the field of all meromorphic functions: L(D) ⊂M(S).
A fundamental result of algebraic geometry states that the vector spaces L(D) are
finite-dimensional. Moreover, two functions f, f ′ ∈ L(D) yield the same effective
divisor E = D + div(f) = D + div(f ′) if and only if one is a scalar multiple of the
other: f ′ = cf . Thus, the complete linear system |D| is the projectivization of the
vector space L(D), defined as the space of lines through the origin in L(D). Hence,
as a measure of the size of |D|, we define the rank of D to be one less than the
dimension of the vector space L(D):

r(D) := dimC L(D)− 1.

In particular, |D| is empty if and only if r(D) = −1.

Every Riemann surface has a canonical divisor class, [K] ∈ Pic(S). A repre-
sentative divisor, K, may be obtained by choosing any meromorphic differential
1-form on S and taking its divisor. Roughly speaking, a differential 1-form is an
object, ω, that may be integrated over paths in S. Due to the complex structure
on S, near each point p we may express ω as f dw, where f is a meromorphic
function of the local coordinate w. Then K, the divisor of ω, is given near p by
div(f), and we obtain the full divisor K by working in local patches that cover S.
Choosing a different 1-form ω′ would lead to a linearly equivalent divisor K ′.

Example 5.17. Consider the differential form defined by dw on the Riemann
sphere C∪ {∞}, where w is the local coordinate on the punctured sphere obtained
by stereographic projection from the north pole. This differential form has no ze-
ros or poles in the patch obtained by removing the north pole. To investigate its
behavior at the north pole, we must instead use the local coordinate w′ obtained
by stereographic projection from the south pole. Recall that these two local coor-
dinates are related by inversion: w = 1/w′. Hence we have

dw = d(1/w′) = − 1

w′2
dw′.

It follows that dw has a double pole at ∞ (where w′ = 0), and no other zeros or
poles. Hence, the canonical divisor class of the Riemann sphere is represented by
the divisor K = −2p∞.

We are now able to state the Riemann-Roch theorem for Riemann surfaces:

Theorem 5.18 (Riemann-Roch, 1865). Let D ∈ Div(S). Then

r(D)− r(K −D) = deg(D) + 1− g.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

80 5. Riemann-Roch

The reader will notice that the Riemann-Roch theorem for surfaces has exactly
the same form as the Riemann-Roch theorem for graphs. Moreover, as the next
proposition shows, the rank function for Riemann surfaces, although defined as a
vector space dimension, can be computed in the same way as for graphs:

Proposition 5.19. Let D be a divisor on a Riemann surface S. Then the rank
function r(D) = dimC L(D)− 1 may be computed in the following way:

r(D) = max{r ∈ Z : |D − E| 6= ∅ for all effective E of degree r}.

Proof. First note that the right hand side is −1 if and only if |D| is empty which is
equivalent to the statement that r(D) = −1. So we may suppose r(D) ≥ 0. In this
case, there exists a nonzero meromorphic function f ∈ L(D). Then choose a point
p ∈ S that is not a zero of f or in the support of D. Consider the linear evaluation
map αp : L(D)→ C defined by g 7→ g(p). The kernel of αp is exactly L(D−p), i.e.,
those functions with poles at worst D that also vanish at the additional point p.
But since f(p) 6= 0, the map αp is surjective, so that by rank-nullity, the dimension
of L(D−p) is one less than the dimension of L(D). Hence, r(D−p) = r(D)−1. We
may continue to subtract points from D in this way, lowering the rank by one each
time, until we reach a divisor of rank −1. It follows that there exists an effective
divisor E of degree r(D) + 1 such that |D − E| = ∅, so that

r(D) ≤ max{r ∈ Z : |D − E| 6= ∅ for all effective E of degree r}.

To establish the other inequality, we need to consider the relationship be-
tween r(D) and r(D − p) for arbitrary points p, not just the ones chosen in the
previous paragraph. So far we have shown that r(D−p) = r(D)−1 for all points p
not contained in the support of D and for which there exists a nonzero meromor-
phic function f satisfying f(p) 6= 0. So now suppose that p is not in the support
of D, but every function f ∈ L(D) vanishes at p. In this case L(D − p) = L(D),
so the rank does not change: r(D − p) = r(D). On the other hand, if p is in
the support of D, then we claim that r(D) ≤ r(D − p) + 1. Indeed, suppose that
r(D) > r(D− p), so that L(D− p) is a proper subspace of L(D). Then choose two
functions f, g ∈ L(D) − L(D − p); we wish to show that f − λg ∈ L(D − p) for
some λ ∈ C. Now, the fact that f and g each have poles at worst D but not poles
at worst D − p implies that they have the same order at p, namely −D(p). But
then (f/g) is a meromorphic function with neither a zero nor a pole at p; define
λ := (f/g)(p) ∈ C×. Then f −λg is a meromorphic function with poles at worst D
that also vanishes at p, so f −λg ∈ L(D− p) as required. This shows that the quo-
tient vector space L(D)/L(D− p) has dimension 1, and hence r(D)− r(D− p) = 1
as claimed. Putting this all together, we see that the rank of a divisor drops by at
most 1 every time we remove a point. It follows that if E is an effective divisor of
degree at most r(D), then dimC L(D−E) ≥ 1, so that |D−E| 6= ∅. It follows that

r(D) ≥ max{r ∈ Z | |D − E| 6= ∅ for all effective E of degree r}.

�

We have seen in this section that the divisor theory of graphs is exactly analo-
gous to the classical theory of divisors on Riemann surfaces. However, there is a shift
of emphasis between the two contexts. In the case of graphs, the preceding chapters

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

5.3. The analogy with Riemann surfaces 81

have utilized firing scripts in a supporting role: from the point of view of the dollar
game, we are fundamentally interested in the divisors themselves, and firing scripts
provide a useful tool for talking about lending and borrowing moves. But in the con-
text of Riemann surfaces, the situation is reversed: a divisor D is a discrete object
that imposes conditions on zeros and poles, cutting down the infinite-dimensional
(over C) field of all meromorphic functions to a finite-dimensional subspace L(D).
From this point of view, divisors are a useful tool for talking about the function
theory of Riemann surfaces.

For a given Riemann surface S, one of the most important uses of the function
spaces L(D) is to provide mappings ϕ : S → Pr, where Pr is the projective space of
dimension r = r(D) introduced below. Under suitable conditions on the divisor D,
the mapping ϕ will be an embedding. Such embeddings are interesting and useful,
because they allow us to study the abstract surface S using techniques and results
that are special to subvarieties of projective spaces.

The projective space Pr is the projectivization of the vector space Cr+1, i.e.,
the space of lines through the origin. Explicitly, we may describe Pr as the result
of removing the origin from Cr+1 and then identifying nonzero vectors that are
complex-scalar multiples of each other:

Pr =
(
Cr+1 − {0}

)
/ {v ∼ λv} .

We use the symbol [v1 : v2 : . . . : vr+1] to denote the equivalence class in Pr of
a nonzero vector (v1, v2, . . . , vr+1) ∈ Cr+1. Consider the case r = 1. If (v1, v2) ∈
C2 − {(0, 0)} and v2 6= 0, then [v1 : v2] = [v1/v2 : 1]. On the other hand, if v2 = 0,
then v1 6= 0, and [v1 : v2] = [1 : 0]. Hence, we may describe P1 as

P1 = {[v : 1] | v ∈ C} ∪ {[1 : 0]} = C ∪ {∞},

and we see that the projective line P1 is simply the Riemann sphere. A similar
argument shows that for r > 1 we have

Pr = Cr ∪ Pr−1.

For instance, the projective plane P2 looks like C2 together with a projective line P1

“at infinity”.

We now explain how a divisor D with r = r(D) > 0 on a Riemann surface S
leads to a mapping from S to the projective space Pr. Given such a divisorD, choose
a basis f1, f2, . . . , fr+1 for the vector space L(D). Then consider the mapping
ϕ : S → Pr defined by

ϕ(p) := [f1(p) : f2(p) : . . . : fr+1(p)].

This mapping is defined at p provided at least one of the functions fi does not
vanish at p; points where all the fi vanish are called basepoints of the linear sys-
tem |D|. So, if |D| has no basepoints, then ϕ : S → Pr is a (holomorphic) mapping
of the Riemann surface S to projective space. As mentioned above, under suitable
conditions on the divisor D, this mapping will be an embedding, so that the image
ϕ(S) ⊂ Pr is an isomorphic copy of the Riemann surface S.

At the other extreme from being an embedding, if r(D) = 1, then ϕ : S → P1

is a holomorphic many-to-one mapping between Riemann surfaces—if deg(D) = d,
then a generic point of P1 has exactly d preimages. The finitely many points with

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

82 5. Riemann-Roch

fewer than d preimages are called the branch points of ϕ. Such mappings are called
branched coverings of P1, and they provide a powerful way of studying Riemann
surfaces. In the special case where d = r = 1, we obtain an isomorphism between S
and P1. In the next example, we use this construction to show that every Riemann
surface of genus zero is isomorphic to the Riemann sphere.

Example 5.20. Suppose that S is a Riemann surface of genus zero—that is, S
is the result of specifying a complex structure on the topological sphere S2. Pick
any point p ∈ S, and consider the degree-one divisor D := p on S. Then by
Riemann-Roch we have

r(p) = r(K − p) + deg(p) + 1− 0 ≥ −1 + 2 = 1,

so L(p) has dimension at least 2. Hence, there must be a nonconstant meromorphic
function f on S having at most a single pole of order 1 at p. On the other hand,
since only the constants are holomorphic, f must have at least one pole, which
means that it has exactly one pole (of order 1) at p. If we think of f : S → C∪{∞}
as a function from S to the Riemann sphere, we see that p is the unique point
mapping to ∞. Now consider any complex number ζ ∈ C. Then the nonconstant
meromorphic function f − ζ : S → C ∪ {∞} also has a single pole of order 1 at p,
and (since its divisor has degree 0) must therefore have a unique zero at some point
q ∈ S. But this means that f(q) = ζ, and q is the unique point of S mapping to ζ.
It follows that (viewed as a map of Riemann surfaces rather than a meromorphic
function) f : S → C∪{∞} is a holomorphic bijection from S to the Riemann sphere.
It follows that the inverse function is also holomorphic, so S is isomorphic to the
Riemann sphere.

In Chapter 10, we introduce harmonic morphisms between graphs, which pro-
vide an analogue of branched coverings of Riemann surfaces—this analogy is de-
scribed in Section 10.2. Moreover, in Theorem 10.24 we show that divisors of rank 1
furnish harmonic branched covers of trees, which (as graphs of genus zero) play the
role of the Riemann sphere in the graph-theoretic analogy.

Riemann surfaces are the one-dimensional (over C) case of a more general type
of geometric object: compact complex manifolds. Moreover, there is a higher-
dimensional version of the Riemann-Roch theorem called the Hirzebruch-Riemann-
Roch theorem, proved by Friedrich Hirzebruch in the 1950s. Shortly thereafter,
Alexandre Grothendieck established a generalization of this result (appropriately
called the Grothendieck-Riemann-Roch theorem) which applies to mappings be-
tween smooth schemes. A major open question in the graph-theoretic context is
whether there is a higher-dimensional version of the Riemann-Roch theorem for
simplicial complexes (of which graphs are the one-dimensional case). Chapter 15
starts to address this topic by providing a brief introduction to higher-dimensional
chip-firing.

5.4. Alive divisors and stability

The Riemann-Roch formula expresses a precise relation between the ranks of di-
visors D and K − D, where K =

∑
v∈V (degG(v) − 2) v is the canonical divisor

of the graph G. This suggests that we should pay attention to the map from

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

5.4. Alive divisors and stability 83

Div(G) to itself defined by D 7→ K −D. In particular, we have seen that this map
preserves the set of maximal unwinnables (Corollary 5.11) and reveals a duality
between unwinnable divisors and divisors that dominate a maximal unwinnable
(Corollary 5.12). In this section, we will define another closely related map from
Div(G) to itself that expresses a further duality for divisors.

Definition 5.21. Let D ∈ Div(G) be a divisor. A vertex v ∈ V is stable for D if
D(v) < degG(v); otherwise v is unstable for D. Note that a vertex is unstable for D
exactly when it can lend without going into debt. If every vertex is stable for D,
then we say that the divisor D is stable; otherwise D is unstable. The divisor D is
alive or unstabilizable if every member of the linear equivalence class [D] is unstable.

Exercise 5.22. Prove that alive divisors are winnable.

If we add 1 to each vertex in the canonical divisor, then we obtain the maximal
stable divisor

Dmax := K +~1 =
∑
v∈V

(degG(v)− 1) v.

This is the unique largest divisor in which no vertex can lend without going into
debt. The next proposition shows that the mapping D 7→ D∗ := Dmax−D yields a
duality between unwinnable and alive divisors; for this reason we call D∗ the dual
divisor to the original divisor D.

Proposition 5.23. A divisor D is (maximal) unwinnable if and only if D∗ is
(minimal) alive.

Proof. Suppose D is unwinnable. Then for all D′ ∼ D, there exists v ∈ V such
that D′(v) < 0, so (Dmax −D′)(v) = degG(v) − 1 −D′(v) ≥ degG(v). Hence, v is
unstable for Dmax −D′. Since [D∗] = {Dmax −D′ | D′ ∼ D}, it follows that D∗ is
alive.

Now suppose D∗ is alive, and let D′ ∈ [D]. Then Dmax − D′ ∼ D∗, so there
exists v ∈ V such that degG(v) ≤ (Dmax −D′)(v) = degG(v) − 1 −D′(v). This is
only possible if D′(v) < 0, so D′ is not effective. Thus, D is unwinnable.

Now suppose that D is maximal with respect to being unwinnable. This means
that D + v is winnable for all vertices v. But we have just shown that this is
equivalent to the statement that for all v, the divisor (D + v)∗ = D∗ − v is not
alive. This means that D∗ is minimal with respect to being alive. �

Corollary 5.24. If D ∈ Div(G) is an alive divisor, then D is minimal alive if and
only if deg(D) = |E(G)|.

Proof. A divisor D is minimal alive if and only if D∗ is maximal unwinnable, and
hence if and only if D∗ is unwinnable of degree g − 1 (cf. Corollary 4.9). But

deg(D∗) =
∑
v∈V

(degG(v)− 1)− deg(D)

= 2|E(G)| − |V (G)| − deg(D)

= g − 1 + |E(G)| − deg(D).

It follows that D∗ has degree g − 1 if and only if deg(D) = |E(G)|. �

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

84 5. Riemann-Roch

Proposition 5.25. Let D ∈ Div(G) be a divisor. Then D is dominated by a

minimal alive divisor if and only if D −~1 is unwinnable.

Proof. Let A ∈ Div(G) denote a minimal alive divisor, so that A∗ is maximal
unwinnable. Then

D ≤ A ⇐⇒ A∗ ≤ D∗

⇐⇒ r(K −D∗) = −1 (Corollary 5.12)

⇐⇒ r(K −Dmax +D) = −1

⇐⇒ r(D −~1) = −1 (since Dmax = K +~1).

�

Exercise 5.26. Prove that D is dominated by a minimal alive divisor if and only
if no element of the complete linear system |D| has full support.

The duality D ↔ D∗ allows us to see the greedy algorithm from Section 3.1 in
a different light. In the case where the dollar game on G starting with a divisor D
is winnable, the algorithm produces a unique firing script, σ ∈ M(G), that wins
the game (Proposition 3.1.1). But note that D(v) < 0 iff D∗(v) ≥ degG(v), so
that the debt-vertices of D correspond to the unstable vertices of D∗. Moreover,
(D + Lv)∗ = D∗ − Lv, so a borrowing move for D corresponds to a lending move
for D∗. Thus, applying the greedy algorithm to win the dollar game starting with D
is the same as attempting to stabilize D∗ by sequentially lending from unstable
vertices. Moreover, this greedy lending algorithm applied to D∗ will either return a
stable divisor, or else certify that no stabilization exists (if every vertex eventually
becomes unstable). Proposition 3.1.1 immediately yields a dual uniqueness result
for the stabilization of divisors:

Proposition 5.27. Suppose that D∗ is not alive, so a stabilization of D∗ exists.
Then both the stabilization and the corresponding firing script are unique.

In Part 2 we will further pursue the notions of stability and stabilization by rein-
terpreting the dollar game as a toy physical system involving the toppling of grains
of sand. Moreover, the duality D ↔ D∗ will reappear in the form of Theorem 7.12,
expressing a duality between two special classes of sandpiles: the recurrents and
the superstables.

Notes

The Riemann-Roch theorem for graphs was first established by Baker and Norine
in [6] via a different proof from the one presented here. In particular, the original
proof proceeds by showing ([6, Theorem 2.2]) that the Riemann-Roch formula is
equivalent to the conjunction of two properties (RR1) and (RR2), corresponding
in our text to Problem 5.2 and Exercise 5.10 respectively.

The proof of Riemann-Roch presented here, using acyclic orientations, is due to
Cori and Le Borgne ([27]). Independently, Backman ([3]) provides a similar proof

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Notes 85

using acyclic orientations and provides a thorough investigation of the relationship
between the dollar game and orientations of a graph.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 5

5.1. Suppose that D ∈ Div(G) has the property that for every vertex v, there exists
an effective divisor E ∈ |D| such that E(v) ≥ 1. Show that r(D) ≥ 1.

5.2. For each divisor D ∈ Div(G), show that there exists a maximal unwinnable
divisor N with the property that D is winnable if and only if N−D is unwinnable.

5.3. Let N denote the set of maximal unwinnable divisors on a graph G. For a
divisor D ∈ Div(G), define deg+(D) :=

∑
v∈V max{D(v), 0}, the sum of the non-

negative coefficients of D. This problem establishes the following formula for the
rank function, which appears as Lemma 2.7 in [6].

r(D) =

(
min

D′∈[D],N∈N
deg+(D′ −N)

)
− 1 =: R(D).

(a) First show that r(D) ≥ R(D) by filling in the details of the following proof by
contradiction. If r(D) < R(D), then there must exist an effective divisor E of
degree R(D) such that D − E is unwinnable. Now apply Problem 5.2 to the
divisor D − E and obtain a contradiction of the definition of R(D).

(b) To show that r(D) ≤ R(D), start by choosing D′ ∈ [D] and N ∈ N so that
deg+(D′−N) = R(D) + 1. Then write D′−N = E −E′ for effective divisors
E,E′ with deg(E) = R(D) + 1 and show that D − E is unwinnable.

5.4. If D is a divisor on a tree and deg(D) ≥ −1, show that r(D) = deg(D) in two
ways: (i) directly from the definition of rank, and (ii) from Riemann-Roch. (Note
that a graph is a tree if and only if its genus is 0.)

5.5. Let v be a vertex on a graph G of genus g. Show that

r(v) =

{
1 if g = 0, i.e., G is a tree,

0 if g > 0.

5.6. Use the Riemann-Roch theorem to determine the rank of an arbitrary divisor
on the cycle graph with n vertices, Cn.

5.7. Let N denote the set of maximal unwinnable divisors on a graph G, and
let K be the canonical divisor of G. By Corollary 5.11, there is an involution
ι : N → N given by ι(N) = K − N . Illustrate how this involution permutes
the maximal unwinnables for the diamond graph, displayed in Figure 4. List all
maximal unwinnables in q-reduced form.

q

v1

v2

v3

Figure 4. The diamond graph.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 5 87

5.8. Find all effective divisors of degree 2 and rank 1 on the house graph pictured
in Figure 7 in the problems for Chapter 2. Explain how you know your list is
complete.

5.9. The Weierstrass sequence for D ∈ Div(G) at a vertex v ∈ V is the sequence of
ranks

(r(D − kv) : k ∈ N) = r(D), r(D − v), r(D − 2v),

The integer k ≥ 1 is a Weierstrass gap for D at v if r(D − (k − 1)v) 6= r(D − kv).
By Exercise 5.3, we know that for all k ∈ Z,

r(D − (k − 1)v)− r(D − kv) ∈ {0, 1} .
So the sequence starts at r(D), decreases by at most 1 at each step, and is eventually
constant at −1, resulting in r(D) + 1 gaps in total. Let ki be the i-th gap. The
Weierstrass weight for v in D is then

wt(v,D) :=

r(D)+1∑
i=1

(ki − 1),

where wt(v,D) := 0 if r(D) = −1. Thus, the Weierstrass weight is a measure of
how far the Weierstrass sequence differs from

r(D), r(D)− 1, r(D)− 2, . . . , 0,−1,−1, . . .

The vertex v is a Weierstrass point with respect to D or a D-Weierstrass point if
wt(v,D) > 0. Since the rank of a divisor depends only on its linear equivalence
class, it follows that if D ∼ D′ and v ∼ w (in particular if v = w), then wt(v,D) =
wt(w,D′).

(a) Show that if G is a tree, then no divisor on G has Weierstrass points.

(b) Let G be any graph. Show there are g Weierstrass gaps for the canonical
divisor K and that v is a Weierstrass point for K if and only if r(gv) ≥ 1.

(c) Let n ≥ 4. Show that every vertex of the complete graph Kn is a Weierstrass
point for the canonical divisor on Kn.

(d) Now consider the case of the cycle graph Cn with vertices v0, . . . , vn−1 arranged
consecutively. We saw in Problem 1.2 that we have an isomorphism

Z/nZ→ Jac(Cn)

i 7→ i[v1 − v0]

and that i[v1−v0] = [vi−v0] for i ∈ {0, 1, . . . , n− 1}. For each i ∈ {0, 1, . . . , n− 1}
and d ∈ Z, define

Di(d) := (vi − v0) + dv0 = vi + (d− 1)v0.

From Proposition 1.20 it follows that [D0(d)], . . . , [Dn−1(d)] is a complete list

of distinct divisor classes of degree d, i.e., the elements of Picd(Cn).
(i) Let D ∈ Div(Cn) and v ∈ V (Cn). Use the Riemann-Roch theorem to

show that v is a Weierstrass point for D if and only if

deg(D) ≥ 1 and r(D − deg(D)v) = 0.

(ii) Let d ≥ 1. Show the vertex vi is a Weierstrass point for Dj(d) if and
only if j = di mod n.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

88 5. Riemann-Roch

(iii) Show that if d ≥ 1, then each vertex of Cn is a Weierstrass point for a
unique divisor class of degree d.

(iv) Show that every vertex is a Weierstrass point for D0(n) and that Di(n)
has no Weierstrass points if i 6= 0.

The definitions given in this problem come from the theory of Riemann surfaces
via the analogy outlined in Section 5.3. As explained in that section, the complete
linear system of a divisor on a Riemann surface may be used to construct a mapping
of the surface into projective space. Weierstrass points on the surface are those at
which the mapping exhibits “inflectionary” behavior. For more information on
Weierstrass points for graphs, the reader is referred to [7] and [5].

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Part 2

Sandpiles

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Chapter 6

The sandpile group

In Part 1, we interpreted divisors as distributions of wealth in a community repre-
sented by a graph G. This interpretation suggested the dollar game, and ultimately
led to the Riemann-Roch theorem for ranks of divisors on graphs. Along the way, we
uncovered q-reduced divisors and Dhar’s algorithm, and established a tight connec-
tion with acyclic orientations on G. Behind the scenes stood the discrete Laplacian
and its reduced form, together with the associated Picard and Jacobian groups.

In Part 2, we will change our interpretation of divisors from distributions of
dollars to configurations of sand. Instead of regarding G as a community that
lends and borrows, we will think of it as a hillside where sand topples. This new
interpretation will suggest new questions and allow us to view old friends (such as
q-reduced divisors, Dhar’s algorithm, and the Jacobian group) in a new light.

In the next section, we introduce the sandpile interpretation via a simple ex-
ample, before giving the general definitions in Sections 6.2 and 6.3.

6.1. A first example

Let G be the diamond graph pictured in Figure 1. Imagine that grains of sand can

s

v2

v1

v3

Figure 1. The diamond graph.

be piled onto the vertices of G to form a sandpile. Figure 2 shows G with 4 grains of

91

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

92 6. The sandpile group

sand on v1, one grain on each of v2 and v3, and no sand on s. Note that a negative

s

v2

v1

v3

Figure 2. A sandpile on G.

amount of sand doesn’t make much sense, so unlike in the dollar game (where we
interpret negative numbers as debt), we allow only nonnegative amounts of sand at
each vertex. If a vertex gets too much sand, it becomes unstable, at which point
it may fire or topple, sending grains of sand to its neighboring vertices. The other
vertices may also be unstable or may become unstable due to the toppling of its
neighbors. Thus, dropping a single grain of sand onto an existing sandpile can lead
to an avalanche of firings.

How much sand does it take to make a vertex unstable? There is some choice
here, but we will always use the following rule: a vertex is unstable if it has at least
as many grains of sand as its degree. Recall that by the degree of a vertex, we mean
the number of edges emanating from that vertex. Thus, a vertex v is unstable if it
has enough sand to send a grain along each edge to its neighbors. (This corresponds
to a lending move by v in the dollar game, except that v is now forbidden to lend
if it will be in debt afterwards.)

If sand were conserved, then configurations with too many grains of sand would
never stabilize: no matter how vertices were fired, there would always be at least one
unstable vertex. To prevent this, we designate s to be the sink vertex, stipulating
that any grains of sand landing on s immediately disappear. Figure 3 shows what
happens to the configuration in Figure 2 when vertex v1 fires. A grain of sand is
delivered to each neighbor, the grain sent to s being lost.

Figure 3. Firing a vertex.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

6.1. A first example 93

Starting with an initial unstable sandpile, what happens if we repeatedly choose
and fire unstable vertices? Whenever a vertex adjacent to the sink fires, a grain
of sand is lost, which tends to make the sandpile more stable. But is it possible
to have a sequence of firings that can be repeated in a never-ending cycle? The
answer is given as the following exercise.

Exercise 6.1. Explain why every initial sandpile on G will, through repeated
firings, eventually stabilize.

Figure 4 shows the stabilization of a sandpile on G. At each step in the sta-

Figure 4. Stabilization.

bilization process observed in Figure 4 there is only one unstable vertex to fire.
Starting with a different sandpile, though, it could easily happen that multiple
vertices would be simultaneously unstable. A choice would then be required as to
which vertex to fire first. The question naturally arises: would these choices make
a difference in the end? The answer is the first pleasant coincidence in the subject,
accounting for the word “abelian” in the abelian sandpile model. We leave it, at
this point, as the following (perhaps premature) exercise.

Exercise 6.2. Explain why the choice of ordering in which to fire unstable vertices
has no effect on the eventual stabilization of a sandpile.

In light of Exercises 6.1 and 6.2, by firing unstable vertices, every sandpile c
on G eventually reaches a unique stable state. We denote the stabilization of c
by c◦ and write

c c◦.

Here and in the remainder of the book, we use the jagged arrow to distinguish
legal sequences of unstable vertex firings from more general processes that might in-
volve firing stable vertices; these more general processes will generically be denoted
by c→ c′.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

94 6. The sandpile group

6.1.1. Additive structure. Identify each sandpile on G with a 3-tuple c =
(c1, c2, c3) of integers by letting ci be the number of grains of sand on vertex vi.
Using this notation, the stabilization in Figure 4 could be written

(4, 1, 1)
v1 (1, 2, 2)

v3 · · · v3 (1, 2, 0)

or, for short,

(4, 1, 1) (1, 2, 0).

Let Stab(G) denote the collection of the 18 (why 18?) stable sandpiles on G.
Define the sum, a ~ b, of two sandpiles a, b ∈ Stab(G) by first adding vertex-wise,
i.e., adding them as integer vectors, then stabilizing:

a~ b := (a+ b)◦.

For example, (2, 1, 1)~ (2, 0, 0) = (1, 2, 0) as illustrated in Figure 5.

(2, 1, 1)

+

(2, 0, 0)

=

(4, 1, 1)

(1, 2, 0)

Figure 5. Stable addition.

Exercise 6.3. Argue that the operation ~ is commutative and associative and
that the zero sandpile, (0, 0, 0), serves as an identity element.

By Exercise 6.3, (Stab(G),~) is almost an abelian group—it only lacks inverses.
Such a structure is called a commutative monoid.

Exercise 6.4. Show that only the zero sandpile has an inverse in (Stab(G),~).
Would this still be true if G were replaced by a different graph?

It turns out that there is a special subset of Stab(G) that does form a group,
which we now describe. By way of motivation, note that in the dollar game on G
starting with a divisor D, there is an explicit objective (to find an effective divisor
E ∼ D), and the vertices v ∈ V are free to perform lending and borrowing moves
to achieve that goal. Indeed, the combination of this freedom and an explicit
goal is what lends that scenario the flavor of a game. For sandpiles, on the other
hand, we constrain the ability of vertices to topple (requiring them to be unstable),
while eliminating the effectivity goal by working from the outset with nonnegative
amounts of sand. Moreover, our decision to include a sink ensures that every
sandpile will stabilize, so there is no longer a game to win or lose. Instead, we
have a model for a simple physical system: beginning with the zero sandpile on G,
drop grains of sand randomly onto the non-sink vertices, producing a sequence of
sandpiles. Whenever we reach an unstable sandpile c, it topples (producing an
avalanche) to yield a stable sandpile c◦. This model is dissipative because sand is
lost into the sink s, and it is slowly-driven because of the ongoing addition of sand
at a rate that allows for stabilization between each additional grain. Such systems

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

6.1. A first example 95

often exhibit the complex behavior of self-organized criticality, a topic that we will
discuss in Section 12.4.

These ideas are implemented in the following experiment: pick a vertex of G
at random; drop a grain of sand on that vertex and stabilize the resulting sandpile;
repeat until 100 grains of sand have been dropped. The results from ten trials of
this experiment are shown in Table 1. Interestingly, there are eight sandpiles that

Sandpile Trials

(0, 0, 0) 0 0 0 0 0 0 0 0 0 0

(0, 0, 1) 0 0 0 1 0 1 0 1 1 0

(0, 1, 0) 0 0 1 0 0 0 1 0 0 1

(0, 1, 1) 0 0 0 0 0 0 0 0 0 1

(0, 2, 0) 0 0 1 0 0 0 1 0 0 0

(0, 2, 1) 11 8 11 11 16 14 13 12 9 16

(1, 0, 0) 1 1 0 0 1 0 0 0 0 0

(1, 0, 1) 0 1 0 0 1 0 0 1 0 0

(1, 1, 0) 0 0 0 1 0 1 0 0 1 0

(1, 1, 1) 0 0 0 0 1 0 0 0 0 0

(1, 2, 0) 12 14 13 15 9 11 10 12 18 15

(1, 2, 1) 16 14 16 12 13 7 13 12 12 13

(2, 0, 0) 1 0 0 0 0 0 0 0 0 0

(2, 0, 1) 15 11 9 16 8 17 7 10 10 15

(2, 1, 0) 7 12 15 13 11 16 16 17 9 11

(2, 1, 1) 17 15 13 10 7 15 14 15 6 8

(2, 2, 0) 6 11 9 12 16 12 12 10 21 10

(2, 2, 1) 14 13 12 9 17 6 13 10 13 10

Table 1. Number of sandpiles formed by randomly dropping one grain of

sand at a time and stabilizing.

appear more than once in each trial (cf. Figure 6). These are the recurrent sandpiles
for G, denoted S(G). As we will see in general later, they form a group under the

(0, 2, 1), (1, 2, 0), (1, 2, 1), (2, 0, 1), (2, 1, 0), (2, 1, 1), (2, 2, 0), (2, 2, 1).

Figure 6. Recurrent sandpiles for G.

operation inherited from Stab(G). This group, S(G), is our central object of study.
You might be asking yourself: how could S(G) be a group if it does not contain
the zero sandpile, (0, 0, 0)? The answer is that S(G) has an identity, but it is not
the identity of Stab(G). In other words, S(G) is not a submonoid of Stab(G) even
though they share the same operation.

Exercise 6.5. Create the addition table for S(G). What is the identity element?
(See Section 6.5.1 for comments about identity elements in sandpile groups.)

Exercise 6.6. Compute the Jacobian group, Jac(G), and show that it is isomorphic
to S(G).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

96 6. The sandpile group

6.2. Directed graphs

In Part 1, we restricted attention to undirected multigraphs. Ultimately, this was
because our goal was the Riemann-Roch theorem for graphs, which doesn’t hold in
general for directed multigraphs. However, the abelian sandpile model works nicely
in the directed context, and we introduce the relevant definitions here.

From now on, a graph will be a finite, connected, multidigraph. Thus, a graph
is an ordered pair G = (V,E) where V is a finite set of vertices and E is a finite
multiset of directed edges. Each element of E is an ordered pair e = (u, v) ∈ V × V
where u and v are the tail and head of e, respectively. We use the notation e− = u
and e+ = v and say e emanates from u. We will sometimes write uv ∈ E to indicate
the directed edge (u, v). If u = v, then e is a loop. These are allowed but, we will
see, do not add much to the theory of sandpiles.

The “multi” part of “multidigraph” indicates that E is a multiset, so that an
edge may occur multiple times. Thus, each edge e = (u, v) ∈ E has an integer
multiplicity, mult(e) ≥ 1. Figure 7 illustrates our conventions for drawing graphs.
Edges are labeled by their multiplicities. An unlabeled edge like (u, s) is assumed
to have multiplicity 1. The undirected edge between v and s represents the pair of
directed edges, (v, s) and (s, v), each with multiplicity 2.

u

v

s

5
3 2

Figure 7. A graph.

There are several different notions of connectedness for a digraph. For us,
connected will mean what is sometimes called weakly connected: we assume that
the underlying undirected graph for G is connected. (This undirected graph has the
same vertex set as G and an edge {u, v} for each directed edge (u, v) or (v, u) of G.)
Usually, in fact, we will impose an even stronger condition than connectedness on G.
This condition—the existence of a globally accessible vertex—is described in the
next section.

The outdegree of a vertex v of G is

outdeg(v) = |{e ∈ E : e− = v}|,
where each edge is counted according to its multiplicity. Similarly, the indegree of v
in G is

indeg(v) = |{e ∈ E : e+ = v}|.
For the graph in Figure 7, we have outdeg(v) = 5 and indeg(v) = 7.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

6.3. Sandpile graphs 97

Let u, v ∈ V . A path of length k from u to v is an ordered list of edges, e1, . . . , ek
such that (1) e−1 = u, (2) e+

i = e−i+1 for i = 1, . . . , k − 1, and (3) e+
k = v. The

distance from u to v is the minimum of the lengths of all paths from u to v, denoted
d(u, v). If there is no path from u to v, take d(u, v) =∞. If d(u, v) <∞, we say v
is accessible from u. For the graph in Figure 7, we have d(s, u) = 2 and d(u, s) = 1.

Undirected graphs (without loops) provided the context for the dollar game in
Part 1. By replacing each undirected edge {v, w} by a pair of directed edges vw
and wv, we may think of an undirected graph as a special type of directed graph.
In terms of sandpiles, we might think of an undirected graph as a flat field where
sand topples in all directions. We could then interpret directed graphs as hillsides,
where the edges emanating from a vertex point “downhill.” Note that according
to the above procedure, an undirected loop serves to increase the stability of the
corresponding vertex by adding 2 to its outdegree.

6.3. Sandpile graphs

A sandpile graph is a triple G = (V,E, s) where (V,E) is a graph, also referred to
as G, and s ∈ V is the sink. Normally, calling a vertex in a directed graph a “sink”
would mean that its outdegree is zero. But that is not what we mean here. Instead,
for a sandpile graph we require the designated sink vertex to be globally accessible.
That is, there is some directed path from each vertex to s. Edges emanating from s
are allowed (though for much of what we do, there would be no harm in deleting
these outgoing edges).

Notation. We let Ṽ denote the non-sink vertices:

Ṽ := V \ {s}.

Let G be a sandpile graph with sink s. A configuration of sand on G is an
element of the free abelian group on its non-sink vertices:

Config(G, s) := Config(G) := ZṼ := {
∑
v∈Ṽ c(v)v : c(v) ∈ Z for all v}.

If c is a configuration and v ∈ Ṽ , then c(v) will always denote the coefficient of v
in c. We think of c(v) as the number of grains of sand sitting on vertex v, even
though this number might be negative. That is, we use the term configuration
in the same way as we did in the context of divisors in Part 1. The reason for
introducing configurations here is that, despite our true interest in nonnegative
configurations, for which we reserve the suggestive term sandpile, our analysis will
often require the consideration of general configurations. We let 0 :=

∑
v∈Ṽ 0 · v

and 1Ṽ :=
∑
v∈Ṽ v, the zero and all ones configurations, respectively. Of course,

these two configurations are sandpiles.

The degree of a configuration c is the net amount of sand in c:

deg(c) =
∑
v∈Ṽ

c(v) ∈ Z.

Define a partial order on the group of configurations: if a, b ∈ ZṼ , then a ≤ b

if a(v) ≤ b(v) for all v ∈ Ṽ , and a � b if a ≤ b and a 6= b. In terms of this partial

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

98 6. The sandpile group

order, a configuration c is a sandpile if 0 ≤ c. We also sometimes use the adjective
nonnegative to indicate that a given configuration is a sandpile.

6.3.1. Vertex firing. Let c be a configuration on G, and let v ∈ Ṽ . Firing or
toppling v from c produces a new configuration c′ by the rule

c′ = c− outdeg(v) v +
∑

vw∈E:w 6=s

w,

and we write

c
v−→ c′.

Note that loops vv ∈ E have no effect.

A vertex firing is pictured in Figure 3. We think of firing v as sending one
grain of sand along each of the edges emanating from v. If the head of e happens

to be the sink vertex, then that sand disappears. The vertex v ∈ Ṽ is stable in the
configuration c if c(v) < outdeg(v); otherwise, it is unstable. For instance, if c(v) is
negative, then it is stable. If each vertex is stable in c, then c is stable; otherwise,
it is unstable.

If v is unstable in c, we say that firing v is legal for c; this means that the
amount of sand on v after firing v would be nonnegative. We use a jagged arrow

to emphasize the legality of a vertex firing, writing c
v
 c′. Firing a sequence of

non-sink vertices v1, . . . , vk from c = c(1) produces a sequence of configurations

c(1) v1−→ c(2) v2−→ . . .
vk−→ c(k).

We say v1, . . . , vk is a legal firing sequence for c if firing vi from c(i) is legal for all
i.

If c′ is reached from c after a sequence σ = v1, . . . , vk of vertex firings, we write

c
σ−→ c′,

sometimes omitting the label, σ. If σ is a legal firing sequence, we may write c
σ
 c′.

Further, if c′ is stable, it is called a stabilization of c. As a consequence of the least
action principle described below, we shall see that every configuration has a unique
stabilization. So we can speak of the stabilization of a configuration c, denoted c◦.

Vertex firing corresponds exactly with the notion of vertex lending for con-
figurations in the context of the dollar game of Part 1. For sandpiles, what we
called a borrowing move in the dollar game is now called a reverse-firing. Thus,
if c, c′ ∈ Config(G), then c′ is obtained from c by firing vertex v if and only if c
is obtained from c′ through a reverse-firing of v. More generally, a mix of vertex

firings and reverse-firings constitutes a firing script, σ : Ṽ → Z. These are elements

of the abelian group M̃(G) introduced in Chapter 2.

A sequence of vertex firings and reverse-firings determines a firing script, al-
though a given firing script will generally arise from many different sequences. Just
as in Part 1, the configuration resulting from a sequence of vertex firings is inde-
pendent of the ordering of the sequence, since these firings just involve addition
and subtraction in the abelian group Config(G). So we have the abelian property

for vertex firing just as we did for divisors in Part 1: if c ∈ Config(G) and v, w ∈ Ṽ ,
then there is a commutative diagram:

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

6.3. Sandpile graphs 99

c

c′ c′′

c′′′

v w

w v

.

Further, if v and w are both unstable in c, then both firing sequences,

c
v−→ c′

w−→ c′′′ and c
w−→ c′′

v−→ c′′′,

are legal. That’s because firing a vertex never removes sand from another vertex
and hence can never stabilize another vertex. This stronger version of the abelian
property is sometimes referred to as the local confluence property or diamond prop-
erty of the sandpile model. Nevertheless, not all rearrangements of a legal firing
sequence will be legal.

It turns out that legal firing sequences are distinguished by an efficiency prop-
erty with respect to stabilization—this is the least action principle described in the
next section.

6.3.2. Least action principle. Figure 8 depicts a sequence of vertex firings on

the triangle graph

s

v2v1

. The vertex v1 is legal for c, and firing it produces

c

03 v1

c′

11 v1
2−1 v2

c̃

00

Figure 8. Vertex firings, not all legal.

the stable configuration c′. But note that the non-legal firing sequence v1, v1, v2

transforms c into the zero configuration, c̃ = 0, which is also stable. This example
shows that, in general, there may be many stable configurations reachable from a
given configuration through a sequence of vertex firings. However, the following
theorem shows that, just as in this example, the shortest sequence leading to a
stable configuration will be legal.

Theorem 6.7 (Least action principle). Let c ∈ Config(G), and suppose σ, τ ≥ 0

are firing scripts such that σ arises from a legal firing sequence for c and c
τ−→ c̃

with c̃ stable. Then σ ≤ τ .

Proof. Let v1, . . . , vk be a legal firing sequence corresponding to σ, so that σ =∑
i vi. The proof goes by induction on k, with the base case k = 0 being obvious.

Suppose k > 0. Since v1 is unstable in c, the only way that v1 could be stable in c̃
is if it fired at least once according to τ—it could not have become stable through
the firing of other vertices alone. Thus τ(v1) > 0. Fire v1 to get a configuration c′,

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

100 6. The sandpile group

and let τ ′ := τ − v1. Then v2, . . . , vk is a legal firing sequence for c′, and c′
τ ′−→ c̃.

By induction, σ − v1 ≤ τ ′, and the result follows:

σ ≤ τ ′ + v1 = τ. �

Corollary 6.8 (Uniqueness of stabilization). Let c be a configuration and σ, σ′ ≥ 0

firing scripts corresponding to legal firing sequences for c. Suppose that c
σ
 c̃ and

c
σ′

 c̃′, with c̃ and c̃′ both stable. Then σ = σ′ and c̃ = c̃′.

6.3.3. Existence of stabilizations. The previous corollary shows that stabi-
lizations, if they exist, are unique. In this section, we show existence: every config-
uration can be transformed into a stable configuration through a sequence of legal
vertex firings.

To do this we define an order relation on ZṼ in which first, a configuration is
judged to be large if it has lots of sand, and second, in the case of two configurations
with the same amount of sand, the smaller is the one with more sand near the sink.
(This mimics the tree orderings used to prove existence and uniqueness of q-reduced
divisors in Chapter 3.)

Definition 6.9. Let u1, . . . , un be an ordering of the non-sink vertices of G such
that i < j if d(ui, s) < d(uj , s), i.e., if ui is closer to the sink. The sandpile ordering

of Config(G) = ZṼ is the total ordering ≺ defined as follows. Given distinct
configurations a, b, let c := a− b =

∑n
i=1 ci ui. Then a ≺ b if

(1) deg(a) < deg(b), or

(2) deg(a) = deg(b) and ck > 0 for the smallest k such that ck 6= 0.

Given a sandpile ordering ≺, we employ the usual conventions: writing a � b
means a = b or a ≺ b; writing a � b means b ≺ a; and so on. In particular, u1 ≺
· · · ≺ un. Be careful not to confuse ≺ with the partial ordering of configurations, <,
defined at the beginning of Section 6.3. One may easily check the following:

Exercise 6.10.

(1) Find configurations a ≺ b and infinitely many c such that a ≺ c ≺ b.
(2) Prove the following:

Property 1. If a, b, c are configurations and a ≺ b, then a+ c ≺ b+ c.

Property 2. If c is a configuration with 0 ≤ c, then 0 � c, and there are only
finitely many configurations c′ such that 0 ≤ c′ and c′ � c.

Lemma 6.11. Let ≺ be a sandpile ordering, and let c, c̃ ∈ ZṼ . If c → c̃ via a
sequence of vertex firings, then c̃ ≺ c.

Proof. We may assume that c
v−→ c̃ for some vertex v. If (v, s) ∈ E, then when

v fires, some sand is lost to the sink. So in that case c̃ ≺ c since deg(c̃) < deg(c).
Otherwise, since the sink is globally accessible, there exists (v, u) ∈ E for some
vertex u closer to the sink than v, i.e., u ≺ v. When v fires, the vertex u receives
sand and no vertex besides v loses sand. Hence, c̃ ≺ c since c̃ has more sand closer
to the sink. �

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

6.4. The reduced Laplacian 101

Theorem 6.12 (Existence). Every configuration has a stabilization (unique by
Corollary 6.8).

Proof. Fix a sandpile ordering. If c is a sandpile, i.e., if c ≥ 0, then the fact
that c has a stabilization follows immediately from Lemma 6.11 and Property 2 of
sandpile orderings, above.

Given an arbitrary configuration c, define the sandpile c+ by

c+(v) = max {0, c(v)}

for each v ∈ Ṽ . We have just seen that c+ is stabilizable. Further, by the least
action principle, every legal firing sequence for c+ is finite. Since every legal firing
sequence for c is also a legal firing sequence for c+, it follows that c has no infinite
legal firing sequence, and is therefore stabilizable. �

Corollary 6.13. Let c be a configuration, and suppose σ and τ are two legal firing
sequences for c resulting in the same configuration c̃:

c
σ
 c̃ and c

τ
 c̃.

Then σ and τ are rearrangements of each other.

Proof. By Theorem 6.12, there is a legal firing sequence µ stabilizing c̃. Then the
concatenated sequences σ, µ and τ, µ are both legal firing sequences stabilizing c.
By Corollary 6.8, these two concatenated sequences are rearrangements of each
other; therefore, the same holds for σ and τ . �

6.4. The reduced Laplacian

Just as for the divisor-theory in Part 1, the theory of sandpiles is really the study

of the reduced Laplacian L̃, which we now recall and extend to the context of

directed sandpile graphs. If σ : Ṽ → Z is any firing script, then the net effect of
implementing σ is to replace a configuration c by a new configuration c′ given by

c′ = c−
∑
v∈Ṽ

σ(v)

outdeg(v) v −
∑

vw∈E:w 6=s

w


=: c− L̃(σ),

where L̃ : M̃(G)→ ZṼ is defined implicitly via the sum in the first line. Ordering

the non-sink vertices, Ṽ = {v1, . . . , vn}, identifies ZṼ with Zn:
n∑
i=1

civi ∈ ZṼ ←→ (c1, . . . , cn) ∈ Zn.

Consider the basis {χ1, . . . , χn} for the group of firing scripts M̃(G) that is dual

to the basis {v1, . . . , vn} for ZṼ :

χj(vi) :=

{
1 if i = j

0 otherwise.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

102 6. The sandpile group

Then in terms of the bases {χj} and {vi}, the reduced Laplacian L̃ becomes an
n× n integer matrix:

L̃ij = L̃(χj)i =

∑
v∈Ṽ

χj(v)

outdeg(v) v −
∑

vw∈E:w 6=s

w


i

=

outdeg(vj) vj −
∑

vjw∈E:w 6=s

w


i

=

{
outdeg(vi)−#(loops at vi) if i = j

−(# edges from vj to vi) otherwise.

Let õut(G) = diag(outdeg(v1), . . . , outdeg(vn)) be the diagonal matrix of non-

sink vertex outdegrees, and let Ã be the (reduced) adjacency matrix for the sandpile

graph G, where Ãij is the number of edges from vi to vj . Then

L̃ = õut(G)− Ãt.

Of course, the definition of the reduced Laplacian depends on the sink vertex,
which is part of the structure of the sandpile graph G = (V,E, s). But the graph
(V,E) has a full Laplacian L : M(G)→ ZV given in matrix form by

L = out(G)−At,
where out(G) is the (n + 1) × (n + 1) diagonal matrix of all vertex outdegrees,
and A is the full adjacency matrix of the graph (V,E). As in Part 1, the reduced

Laplacian L̃ is obtained from the Laplacian L by removing the row and column
corresponding to the sink vertex, s.

Example 6.14. The Laplacian for the graph G from Figure 7,

u

v

s

5
3 2

with vertex order u, v, s is

L = out(G)−At =

 6 0 0
0 5 0
0 0 3

−
 0 3 0

5 0 2
1 2 1



=

 6 −3 0
−5 5 −2
−1 −2 2

 .

Fixing s as the sink vertex, the reduced Laplacian for G is

L̃ =

(
6 −3
−5 5

)
.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

6.4. The reduced Laplacian 103

Definition 6.15. The Laplacian lattice L and the reduced Laplacian lattice L̃ are
the subgroups formed by the images of the Laplacian and reduced Laplacian, re-
spectively:

L = imL ⊆ ZV and L̃ = im L̃ ⊆ ZṼ .

In the context of the Laplacian, we will usually abuse notation and write the

vertex v when we really mean the firing script χv. Thus, if v ∈ Ṽ , then

L̃v = outdeg(v) v −
∑

vw∈E:w 6=s

w.

As an immediate consequence of the above discussion, we have the following propo-
sition and its corollary.

Proposition 6.16. The configuration c′ is obtained from the configuration c by

firing v ∈ Ṽ if and only if c′ = c − L̃v. Equivalently, c is obtained from c′ by

reverse-firing v if and only if c = c′ + L̃v.

Corollary 6.17. The configuration c′ is obtained from c through a sequence of
vertex firings and reverse-firings if and only if

c = c′ mod L̃.

Example 6.18. Continuing with the graph from Figure 7 and Example 6.14 with
vertex order u, v, s, consider the configuration c = 2u+ 7v = (2, 7). Fire vertex v:

c = (2, 7)
v−→ (5, 2).

The corresponding calculation via Proposition 6.16 is(
5
2

)
=

(
2
7

)
−
(

6 −3
−5 5

)(
0
1

)
.

6.4.1. Uniqueness of the firing script. By the matrix-tree theorem (Theo-
rem 9.3) or the fact that the reduced Laplacian is an M -matrix (cf. Section 12.3),
we will see that the reduced Laplacian for a sandpile graph is invertible. As a
consequence we have the following result.

Proposition 6.19. Let c, c′ ∈ Config(G) with c = c′ mod L̃. Then there exists a

unique firing script σ such that c
σ−→ c′.

Proof. The firing script is L̃−1(c− c′). �

Thus, if c = c′ mod L̃, it makes sense to refer to the firing script for the ordered

pair (c, c′). For each v ∈ Ṽ , the v-th component of this firing script records the net
number of times v fires in any sequence of firings and reverse-firings leading from c
to c′. Negative components correspond to reverse-firings.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

104 6. The sandpile group

6.5. Recurrent sandpiles

In Section 6.1 we repeatedly dropped grains of sand onto randomly chosen vertices of
a graph, one at a time, allowing the sandpile to stabilize after each added grain. We
observed that some stable configurations appeared many times and others appeared
at most once (cf. Table 1). In this section, we explain this phenomenon.

Definition 6.20. A configuration c on G is recurrent if

(1) c is a sandpile, i.e., c ≥ 0,

(2) c is stable,

(3) for every configuration a, there exists a configuration b ≥ 0 such that c =
(a+ b)◦, the stabilization of a+ b.

The collection of all recurrent elements of G—the recurrents of G—is denoted S(G).

Condition 3 says that starting from any configuration a, we can get back to
any given recurrent configuration by adding an appropriate amount of sand and
stabilizing. Note that it would make no difference to the definition if we insisted
that a ≥ 0 (Problem 6.4). By the end of this section (cf. Definition 6.32), the set of
recurrents will be endowed with a group structure, and S(G) will be used to denote
this group.

Usually, it is not easy to explicitly describe the recurrent configurations of a
graph. For instance, how would one have known, a priori, that the eight configura-
tions in Figure 6 are recurrent? In general, there is only one recurrent configuration
that is immediately recognizable: the maximal stable configuration.

Definition 6.21. The maximal stable configuration on G is

cmax :=
∑
v∈Ṽ

(outdeg(v)− 1) v.

It is clear that cmax is stable and that cmax ≥ c for all stable configurations c.
It is also not hard to see that cmax is recurrent. Indeed, given any configuration a,
let b = cmax − a◦. Let σ be a legal firing sequence that stabilizes a. Then b ≥ 0

and σ is a legal firing sequence for a + b. But (a + b)
σ
 (a◦ + b) = cmax, which

shows that (a+ b)◦ = cmax. In fact, the following result shows that cmax is the key
to finding all the recurrent configurations.

Proposition 6.22. A configuration c is recurrent if and only if there exists a
configuration b ≥ 0 such that c = (cmax + b)◦.

Proof. Problem 6.5. �

Exercise 6.23. Consider the sequence of stable sandpiles produced by repeatedly
dropping a grain of sand on a vertex chosen uniformly at random and stabilizing.
Why do you expect to eventually reach a recurrent sandpile? Show that from that
point on, every sandpile in the sequence is recurrent (thus accounting for what we
observed in Table 1).

The zero configuration, 0 :=
∑
v∈Ṽ 0 · v, is recurrent only under very special

circumstances. The graph G is acyclic if it has no cycles, i.e., there does not exist

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

6.5. Recurrent sandpiles 105

a sequence of edges e1, . . . , ek with e+
i = e−i+1 for i = 1, . . . , k− 1 and e+

k = e−1 . We
say G is s-acyclic if its only cycles are ones that pass through the sink, s.

Proposition 6.24. The following are equivalent for a sandpile graph G.

(1) The zero configuration is recurrent.

(2) Every stable sandpile is recurrent.

(3) The graph G is s-acyclic.

Proof. Problem 6.6. �

Definition 6.25. The stable addition of sandpiles a and b, denoted a~b, is defined
as ordinary addition of group elements followed by stabilization:

a~ b := (a+ b)◦.

Stable addition is clearly commutative with the zero configuration serving as
an identity element.

Proposition 6.26. Stable addition of sandpiles is associative.

Proof. The result follows by uniqueness of stabilization, Corollary 6.8. Let a, b, c
be sandpiles. Since c ≥ 0, the firing sequence that stabilizes a + b is still legal
for a+ b+ c, so

a+ b+ c (a+ b)◦ + c ((a+ b)◦ + c)◦ = (a~ b)~ c.

Similarly, the sequence that stabilizes b+ c is legal for a+ b+ c, and we have

a+ b+ c a+ (b+ c)◦ (a+ (b+ c)◦)◦ = a~ (b~ c).

By uniqueness of stabilization, it follows that

(a~ b)~ c = (a+ b+ c)◦ = a~ (b~ c).

�

Definition 6.27. The sandpile monoid is the set of nonnegative, stable configura-
tions Stab(G), with the operation of stable addition.

We now come to a central result for the abelian sandpile model. Recall that L̃
denotes the image of the reduced Laplacian (Definition 6.15).

Theorem 6.28. The set of recurrents, S(G), is a group under stable addition, and

S(G)→ ZṼ /L̃(6.1)

c 7→ c+ L̃
is an isomorphism of groups.

The proof of this theorem is approached through several lemmas. For that
purpose, consider 1Ṽ :=

∑
v∈Ṽ v, the all ones configuration, and define the two

configurations

cbig := cmax + 1Ṽ =
∑
v∈Ṽ outdeg(v) v

cnull := cbig − c◦big.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

106 6. The sandpile group

The configuration cnull has two useful properties: cnull = 0 mod L̃ and cnull ≥ 1Ṽ .

Lemma 6.29. Each element of ZṼ /L̃ is represented by a recurrent configuration.

Proof. Given any configuration c, take k � 0 so that

c+ kcnull ≥ cmax.

Working modulo L̃,
(c+ kcnull)

◦ ≡ c+ kcnull ≡ c,
and (c+kcnull)

◦ is recurrent since it can be formed by adding (a nonnegative amount
of) sand to cmax and stabilizing:

(c+ kcnull)
◦ = (cmax + (c+ kcnull − cmax))◦.

�

Lemma 6.30. If c is recurrent, then (cnull + c)◦ = c.

Proof. Let c be recurrent. From Proposition 6.22, there exists a sandpile b ≥ 0
such that (b+ cmax)◦ = c. Setting a = b− 1Ṽ , it follows that (a+ cbig)◦ = c. Then

a+ cbig + cnull (a+ cbig)◦ + cnull

= c+ cnull (c+ cnull)
◦,

and

a+ cbig + cnull = a+ cbig + cbig − c◦big

 a+ cbig + c◦big − c◦big

= a+ cbig

 (a+ cbig)◦ = c.

The result follows by uniqueness of stabilization. �

Lemma 6.31. There is a unique recurrent configuration in each equivalence class

of ZṼ modulo L̃.

Proof. By Lemma 6.29 there exists at least one recurrent configuration in each

equivalence class of ZṼ modulo L̃. Suppose c′ and c′′ are recurrents and that

c′ = c′′ mod L̃. Then
c′ = c′′ +

∑
v∈Ṽ

nv L̃v

for some nv ∈ Z. Let J− := {v : nv < 0} and J+ := {v : nv > 0}, and define

c := c′ +
∑
v∈J−

(−nv)L̃v = c′′ +
∑
v∈J+

nv L̃v.

Take k � 0 so that for every v ∈ Ṽ ,

(c+ kcnull)(v) ≥ max
w∈Ṽ
{|nw| outdeg(w)}.

Thus, each vertex v of c+ kcnull can be legally fired |nv| times. Therefore,

c+ kcnull = c′ +
∑
v∈J−

(−nv)L̃v + kcnull c′ + kcnull c′,

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

6.5. Recurrent sandpiles 107

the last step following from repeat applications of Lemma 6.30. Similarly, we have
c+ kcnull c′′. By uniqueness of stabilization, c′ = c′′. �

We now prove Theorem 6.28.

Proof. The mapping

S(G)→ ZṼ /L̃

c 7→ c+ L̃
respects addition by Proposition 6.16. It is surjective by Lemma 6.29 and injective
by Lemma 6.31. �

Definition 6.32. The sandpile group of G, denoted S(G), is the set of recurrent
configurations with stable addition.

As a consequence of Theorem 6.28, we can determine the structure of S(G) by

computing the Smith normal form of L̃. Details appear in Chapter 2. The size of
the sandpile group may be calculated as follows.

Proposition 6.33.

| S(G)| = |det(L̃)|.

Proof. The proof given for Proposition 2.37 holds equally well here, for directed
graphs. �

Remark 6.34. As pointed out after Proposition 2.37, det(L̃) is the number of
spanning trees (in this case directed, rooted spanning trees into the sink), and
hence positive. Thus we actually have

| S(G)| = det(L̃).

Exercise 6.35. Let G be a triangle with an edge of multiplicity 3 to the sink, s.

u v

s

(1) Find the number of elements in S(G) using Proposition 6.33.

(2) Find all the recurrents on G.

6.5.1. The identity. We saw in Proposition 6.24 that the zero configuration
is rarely recurrent. Hence, even though (0 + c)◦ = c for all configurations c, it is
seldom the case that 0 is the identity of the sandpile group. And if the identity is
not 0, then what is it? That’s an unusual question to ask about a group! A glance
at the images of identity elements on grid graphs in Section 6.6 indicates some of
the complexity.

We at least have a way of calculating the identity:

Proposition 6.36. The identity of S(G) is

(2 cmax − (2 cmax)◦)◦.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

108 6. The sandpile group

Proof. The displayed element is recurrent since

(2 cmax − (2 cmax)◦)◦ = (cmax + (cmax − (2 cmax)◦)︸ ︷︷ ︸
≥0

)◦,

and as an element of ZṼ /L̃ it is equal to (the equivalence class of) 0, the identity

of ZṼ /L̃. This completes the proof since the isomorphism S(G)→ ZṼ /L̃ of (6.1)
preserves the identity. �

Example 6.37. Let G be the diamond graph pictured in Figure 1 (reproduced
below) with vertex order v1, v2, v3, s.

v3

v1 v2

s
.

Fig. 1

Then cmax = (2, 2, 1). One may check that

2 cmax = (4, 4, 2) (2, 2, 0) = (2cmax)◦,

with firing script (3, 3, 4), and

2 cmax − (2 cmax)◦ = (2, 2, 2) (2, 2, 0) = (2, 2, 0)◦.

Hence, the sandpile identity for G is (2, 2, 0). Note that

(2, 2, 0) = L̃(2 v1 + 2 v2 + 2 v3),

confirming that (2, 2, 0) = 0 mod L̃.

6.6. Images of sandpiles on grid graphs

The m× n sandpile grid graph has non-sink vertices

Ṽ :=
{

(i, j) ∈ Z2 : 1 ≤ i ≤ m, 1 ≤ j ≤ n
}

with edges between horizontal and vertical neighbors: (i, j), (i′, j′) ∈ Ṽ are adjacent
if

|i− i′|+ |j − j′| = 1.

Vertices on the boundary are connected to the sink vertex s. So if i ∈ {1,m}
or j ∈ {1, n}, then (i, j) is adjacent to the sink. Further, each of the four corner
vertices, (1, 1), (1, n), (m, 1), and (m,n), is connected by an extra edge to the sink
(two in total). Thus, every non-sink vertex has degree 4. Figure 9 shows the 4× 4
sandpile grid graph.

Sandpiles on grids display conveniently on computer screens. Each pixel is
taken to represent a vertex, and the color of a pixel represents the number of grains
of sand on the corresponding vertex. See Figure 10 for images of the identity
elements for various sandpile grid graphs.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

6.6. Images of sandpiles on grid graphs 109

Figure 9. The 4×4 sandpile grid graph. The dashed boundary edges connect
to the sink vertex, which is not pictured.

One may consider more general sandpile grid graphs. We could change the
boundary, for instance: Cut out a connected region of the integer lattice Z2 con-
taining a finite number of points (i, j). Points in the interior have edges to their
horizontal and vertical neighbors, and points on the boundary have edges to the
sink so that each non-sink vertex has degree 4. Figure 11 displays identity elements
for grid graphs with diamond (rotated square) and circular boundaries, respectively.
Another possible generalization is to consider non-rectangular grids. Figure 13 dis-
plays the identity element on a hexagonal grid for which each vertex now has 6
neighbors.

Figure 12 represents the stabilization of a sandpile initially consisting of 224

grains of sand in the center of an enormous rectangular grid graph—large enough
so that no grain falls into the sink during stabilization.

6.6.1. Patterns. People are just beginning to understand the patterns in these
sandpiles. For instance, generalizing Figure 12, imagine placing n grains of sand on
a single vertex of an enormous grid graph and stabilizing. As n grows, rescale (by
a factor of

√
n) so that the image of the resulting sandpile does not change size.

Pegden and Smart ([76]) have shown that these scaled sandpiles approach a limit
as n → ∞. Patterns in the limit persist and, in fact, are parametrized by a space
related to Apollonian circle packings ([67], [68])!

In some of the images we’ve discussed above, there are thin filaments—patterns
of thin line segments. For example, look inside the curved triangles in the identity
element for the 4000× 4000 grid in Figure 10. If you do a web search for images of
“tropical curves”, you will see a similarity. Tropical curves are discrete versions of
Riemann surfaces (a graph, as studied in Part 1 of this text, being an even “more
discrete” version). A concrete connection between these patterns in sandpiles and
tropical curves has been forged by Kalinin and Shkolnikov ([61]).

There are many open problems concerning these patterns. One is the follow-
ing: characterize the large rectangle of vertices containing 2 grains of sand inside
the identity element for an m × n sandpile grid graph, and prove that it exists
(cf. Figure 10).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

110 6. The sandpile group

4000× 4000

grains: 0 = , 1 = , 2 = , 3 = .

4× 4 16× 16 50× 50 100× 100

Figure 10. The identity elements for the sandpile group of several rectangu-

lar grid sandpiles. The existence of the interior rectangle of height 2 for all
rectangular grid graphs is an open problem.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

6.6. Images of sandpiles on grid graphs 111

Figure 11. Identity elements on sandpile grid graphs with a diamond (a
square rotated with respect to the underlying grid) or circular boundary. Color

coding as in Figure 10.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

112 6. The sandpile group

Figure 12. The stabilization of 224 grains of sand placed on a single vertex
in a grid graph without boundary. Color coding as in Figure 10. (Image due
to Wesley Pegden.)

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Notes 113

Figure 13. The identity element for a hexagonal grid graph shown in three
dimensions with heights smoothed.

Notes

The idea underlying the abelian sandpile model, in which firing rules are determined
by the Laplacian, is something of a folk science, having roots spreading in many
directions. We will not attempt to summarize the history here. The point of view
presented in this chapter comes from Dhar ([34]), who was inspired by Bak, Tang,
and Wiesenfeld’s work ([4]) on self-organized criticality (cf. Section 12.4). Some
of the other earlier work that has informed our understanding of the fundamentals
is by: Biggs ([14], [13]); Björner, Lovàsz, and Shor ([17], [18],); Cori, Rossin,
and Salvy ([28], [29]); and Lorenzini ([69], [70]). We are also much in debt to
the paper Chip-firing and rotor-routing on directed graphs, by Holroyd, Levine,
Mészáros, Peres, Propp, and Wilson ([56]).

The images of sandpile identities were created using software available at [44]
and [55].

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 6

6.1. Let G = (V,E, s) be an undirected sandpile graph. Use the greedy lending algo-
rithm described at the end of Section 5.4 to give an alternate proof of Corollary 6.8
in the undirected case.

6.2. This problem gives an alternate proof of Theorem 6.12, the existence of a
stabilization. Let c be a configuration, and let η = v1, v2, . . . be any legal sequence

of vertex firings for c. Given v ∈ Ṽ , choose a directed path e1, . . . , ek from v to the
sink, s. Argue that the most number of times that v can appear in η is strictly less
than

(deg(c) + 1)
k∏
i=2

outdeg(e−i).

6.3. Let a and b be configurations.

(a) Give an example showing that (a+ b)◦ is not necessarily equal to (a◦ + b◦)◦.

(b) Show that if a and b are both sandpiles, then (a+ b)◦ = (a◦ + b◦)◦.

6.4. Show that a configuration c is recurrent if and only if for each nonnegative
configuration a, there exists a configuration b ≥ 0 such that (a+ b)◦ = c.

6.5. Prove Proposition 6.22.

6.6. Prove Proposition 6.24.

6.7. Prove that a recurrent configuration must have at least one grain of sand on
each directed cycle not containing the sink vertex.

6.8. Find the recurrent configurations for the graph in Figure 1 but with v1 taken
as the sink vertex rather than s.

6.9. Let e be the identity for the sandpile group for a sandpile graph G, and let c
be a sandpile on G. Show that c is recurrent if and only if (e+ c)◦ = c.

6.10. If c ∈ S(G) and k is a positive integer, as usual, define

kc := c~ · · ·~ c︸ ︷︷ ︸
k times

= (c+ · · ·+ c︸ ︷︷ ︸
k times

)◦.

[If k = 0, then kc is defined to be the identity of S(G), and for k < 0, define
kc := −k(−c), where −c is the inverse of c in S(G).] The order of c ∈ S(G) is the
least positive integer k such that kc is the identity.

(a) Prove that the order of c is the least common multiple of the denominators of

the entries of L̃−1c.

(b) Illustrate this with the recurrent element (1, 1, 1) on the cycle graph with 4
vertices, C4.

6.11. Describe an algorithm for computing the inverse of an element c ∈ S(G).

6.12. Let L̃ be the reduced Laplacian of the following sandpile graph G with sink s:

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 6 115

v3

v1 v2

s

2 2

(a) By hand, find 3 × 3 integer matrices U and V , invertible over the integers,

such that UL̃V = D where D is the Smith normal form of L̃.

(b) Use the computation you just made to give an explicit isomorphism

Z3/L̃ ≈ Z/d1Z× Z/d2Z× Z/d3Z

for some integers di satisfying d1|d2|d3.

6.13. Compute the invariant factors for the sandpile group of the complete
graph Kn.

6.14. This problem presents a characterization of recurrent configurations due to
Babai and Toumpakari ([1]). A semigroup is a set N with an associative binary
operation. A monoid is a semigroup with an identity element. The product of
subsets A,B ⊆ N is defined as it is for groups: AB := {ab : a ∈ A, b ∈ B}. A
nonempty subset I ⊆ N is an ideal if IN = NI = I. An ideal is minimal if the
only ideal it contains is itself. The intersection of all ideals of N is either empty or
the unique minimal ideal of N .

Let M be a finite commutative monoid. Prove the following:

(a) M has a unique minimal ideal S.

(b) c ∈ S if and only if for all a ∈M, there exists b ∈M such that c = ab.

(c) S is an abelian group. (Hint: Take a ∈ S and consider the sequence a, a2, . . .
Finiteness implies there exists i < j such that ai = aj , i.e., ai = aiaj−i. Define
e := ai(j−i) and argue that e is an idempotent of S, meaning e2 = e. This e
will be the identity for the group.)

(d) Suppose M is the sandpile monoid for a graph G. Then,
(i) S = S(G), the sandpile group;

(ii) S(G) is a principal ideal in the sandpile monoid, i.e., S(G) = Mc for
some sandpile c.

6.15. Computing with sandpiles. Consider the following sandpile on a long path
graph:

. . .
1 1 1 0 2 1 1 1

. . .

There is a single unstable vertex, having 2 grains of sand. When that vertex topples,
the resulting sandpile is essentially the same but shifted to the right one vertex.
We regard the traveling 0-2 pair as a signal propagating along a wire.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

116 6. The sandpile group

Next, Figure 14 shows how to combine a “red” and a “blue” copy of this wire to
create a new kind of wire capable of sending information. The underlying graph G
is a pair of long path graphs. The figure shows two sandpiles on G, each having a
pair of unstable vertices. Simultaneously firing these vertices produces essentially
the same configurations but translated one step to the right, as before. One can
image Alice starting with the all ones configuration on G. To encode a bit of
information, she picks up a grain of sand on each of the wires and displaces these
to the right. This information then travels rightward down the wire to Bob who
can decode it based on the order in which the 0-2 pairs arrive.

. . .
1 1 0 2 1 1 1 1

. . .

. . .
1 1 1 1 0 2 1 1

. . .0

. . .
1 1 1 1 0 2 1 1

. . .

. . .
1 1 0 2 1 1 1 1

. . .1

Figure 14. Encoding bits of information in a sandpile. The underlying graph

is a pair of long path graphs.

We would now like to apply logical operations to the information traveling in
our wires. Figure 15 shows two types of logic gates. At the top is a not-gate. It is
shown with the bit 0 encoded on the left. After passing through the gate, the bit
is changed to a 1. Conversely, if the bit had started as a 1, it would become a 0
after traveling through the gate.

The bottom of Figure 15 shows an or-gate. Its input on the left is a pair of
(encoded) bits. In general, the gate transforms the pair of bits x, y to 0 if x = y = 0
and otherwise it transforms the pair to 1. The input of 0 and 1 shown in the figure
will emerge from the gate as a 1.

(a) Verify that the or-gate pictured in Figure 15 actually works. (You will notice
that bits in the two incoming wires must be synchronized.)

(b) An and-gate would take bits x and y and output a 1 if and only if x = y = 1.
Explain how to construct an and-gate from not-gates and an or-gate.

(c) Create a more elegant and-gate by slightly modifying the or-gate of Figure 15.

(d) Create a “splitter”. One wire comes into the splitter from the left and two
leave to the right. An incoming bit x is split into two (synchronized) copies
of x leaving to the right.

After seeing these logic gates, readers familiar with the theory of computation
might expect that these wires could be used to construct a Turing machine (an
idealized computer), and indeed that it that case. See [48]—from which the ideas

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 6 117

. . .
1 0 2 1 1 1 1 1 1

. . .

. . .
1 1 1 0 2 1 1 1 1

. . .0 1

NOT

OR

. . .
1 0 2 1 1 1

. . .
1 1 1 0 2 1

. . .
1 1 1 0 2 1

. . .
1 0 2 1 1 1

1 1 1
. . .

2 1 1
. . .

0

1

1

Figure 15. Sandpile logic gates.

for this problem were derived—for details. For an extension of the sandpile model
to a model of computation in a network, see [21].

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Chapter 7

Burning and duality

How would you determine if a sandpile c on a sandpile graph is recurrent? One way
would be to start generating all of the recurrents—say, by systematically dropping
grains of sand onto the maximal stable sandpile and stabilizing—checking whether c
appears. Another way is to check whether (e + c)◦ = c where e is the identity
element of the sandpile group (cf. Problem 6.9). However, it may take a long time
to compute e if the graph is large. The good news is that each graph has a burning
sandpile, quickly computed, that can be substituted for e in the above test. That
is, a sandpile c is recurrent if and only if adding the burning sandpile to c and
stabilizing returns c.

As an example, consider the sandpile graph G of Figure 1 with sink s and
vertex order v1, v2, v3, s. (The edge from v1 to v3 has multiplicity 2.) The burning

v3

v1 v2

s

2

Figure 1. Sandpile graph G.

sandpile for G is b = (1, 0, 1) = v1 + v3. Thus, one may test if a sandpile on G
is recurrent by adding a grain of sand to vertices v1 and v3 and stabilizing. For
instance, if c = (0, 1, 2), then (b + c)◦ = (2, 2, 1) 6= c. So c is not recurrent. On the
other hand, (b + (2, 2, 1))◦ = (2, 2, 1), and hence, (2, 2, 1) is recurrent. Further, it

turns out that here, as in general, b ∈ L̃, the image of the reduced Laplacian, and
hence, (2, 2, 1) = (c+ 2b)◦ is the unique recurrent obtainable from c via firings and
reverse-firings (cf. Theorem 6.28).

119

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

120 7. Burning and duality

Exercise 7.1. Let G be the graph in Figure 1.

(1) Prove that b = (1, 0, 1) ∈ L̃.

(2) Show that (2, 2, 1) is recurrent by finding a sandpile a such that (2, 2, 1) =
(cmax + a)◦.

As hinted at by this example, not only does the burning sandpile provide a
test for recurrence, it also allows us to construct the recurrent equivalent to a given

configuration c modulo L̃: starting at c construct a sequence of configurations by
continually adding the burning sandpile and stabilizing. Eventually, the sequence
becomes constant at a recurrent sandpile.

We will present an algorithm for constructing the burning sandpile, b, but for
an undirected graph, it is easy to describe: just fire the sink. So in that case, b(v)

is the number of edges from v to the sink for each v ∈ Ṽ .

7.1. Burning sandpiles

Let G = (V,E, s) be a sandpile graph with sink s. If W ⊆ V and v ∈ V , we define
the indegree of v with respect to W to be

indegW (v) = |{w ∈W : (w, v) ∈ E}|.

Definition 7.2. A vertex v ∈ Ṽ = V \ {s} is selfish if indegṼ > outdeg(v).

Graphs with no selfish vertices are particularly amenable to the methods we are
about to introduce. These graphs include undirected or, more generally, Eulerian
graphs (see Appendix A, Definition A.28 and Proposition A.29). In fact, if G has
no selfish vertices, then it is essentially Eulerian in the following sense: by adjusting
the number of edges emanating from the sink, we can form an Eulerian graph G′

on the same vertex set as G with the property that the mapping c 7→ c gives an
isomorphism of sandpile groups, S(G) ≈ S(G′) (Problem 7.1).

Definition 7.3. The support of a configuration c on G is

supp(c) := {v ∈ Ṽ : c(v) 6= 0}.
The closure of the support of c, denoted supp(c), is the set of non-sink vertices
accessible from supp(c) via a directed path in G that avoids the sink.

Definition 7.4. A nonnegative configuration b on G is a burning sandpile if

(1) b ≡ 0 mod L̃, and

(2) supp(b) = Ṽ .

If b is a burning sandpile, we call σb := L̃−1b its (burning) script.

Theorem 7.5. Let b be a burning sandpile for G with burning script σb. Let e be
the identity of S(G). Then

(1) (kb)◦ = e for some k � 0.

(2) A sandpile c is recurrent if and only if (b+ c)◦ = c.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

7.2. Existence and uniqueness 121

(3) A sandpile c is recurrent if and only if the firing script for the stabilization
(b+ c) (b+ c)◦ is σb.

(4) σb ≥ χṼ where χṼ is the firing script corresponding to firing all non-sink
vertices.

(5) Suppose c is a stable configuration and β is the firing script for (b+c) (b+c)◦.
Then β ≤ σb.

Proof. (1) By choosing k large enough and selectively firing unstable vertices,
property 2 of the definition of a burning sandpile says kb c + cmax for some
sandpile c. Thus, (kb)◦ is recurrent since it can be obtained from cmax by adding

sand and stabilizing. The unique recurrent configuration equal to 0 modulo L̃ is
the identity element. Hence, (kb)◦ = e.

(2) (⇒) If c is recurrent, then so is (b+ c)◦. However, since c ≡ (b+ c)◦ mod L̃, we
conclude c = (b+ c)◦ by uniqueness of recurrent representatives, as just above.

(⇐) Suppose c = (b+ c)◦. Using part (1), fix k � 0 so that (kb)◦ = e. Then

c = (kb+ c)◦ = (e+ c)◦.

Since e is recurrent, so is c.

(3) Let φ be the firing script for b+ c (b+ c)◦. Then

c is recurrent⇐⇒ (b+ c)◦ = c

⇐⇒ b+ c− L̃ φ = c

⇐⇒ b = L̃ φ

⇐⇒ φ = L̃−1b = σb.

(4) Since cmax is recurrent, the firing script for

(b+ cmax) (b+ cmax)◦ = cmax

is σb by part (3). Let v ∈ Ṽ . Since b is a burning sandpile, there exists w ∈ supp(b)
and a directed path v1, v2, . . . , vm in G with w = v1 and vm = v. Then v1, . . . , vm
is a legal firing sequence for b + cmax. Recall that the firing script is independent
of any particular firing sequence. Thus, each non-sink vertex fires at least once in
the stabilization of b+ cmax. So σb ≥ χṼ .

(5) Suppose c is a stable configuration. Let β be the firing script for the stabilization
of b+c, and let F be a sequence of legal vertex firings stabilizing b+c. Then F is also

a legal sequence of firings for b+cmax, yielding the configuration a := b+cmax−L̃ β.

Let γ be the firing vector for the stabilization of a. Since b ≡ 0 mod L̃ and cmax

is recurrent, the stabilization of a is cmax and the firing script for the stabilization
of b+ cmax is σb. By uniqueness of the firing script for a stabilization, σb = β + γ.
Since γ ≥ 0, it follows that β ≤ σb. �

7.2. Existence and uniqueness

Theorem 7.6. There exists a unique burning sandpile b for G with minimal script

σb = L̃−1b: if σb′ is the script for another burning sandpile b′, then σb′ ≥ σb.
Henceforth, we call b the burning sandpile and σb the burning script for G. For b,

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

122 7. Burning and duality

(1) for all v ∈ Ṽ , we have b(v) < outdeg(v) unless indegṼ (v) = 0, (i.e., not
counting edges from the sink, v is a source), in which case b(v) = outdeg(v);

(2) σb ≥ χṼ with equality if and only if G has no selfish vertices.

Proof. We create σb and b = L̃σb with a greedy algorithm. Start by defining

σ0 = χṼ and b0 = L̃ σ0 (the superscript is just an index), then proceed to build

a sequence of scripts σi and configurations bi. For i ≥ 0, if bi ≥ 0, stop, letting
b = bi and σb = σi. Otherwise, choose a vertex w such that bi(w) < 0 and define

σi+1 := σi + w and bi+1 := bi + L̃ w = L̃σi+1.

In other words, bi+1 is obtained from bi by reverse-firing w.

Since b0(v) = outdeg(v)−indegṼ (v) for all v, it follows for all i by induction that

bi(v) ≤ outdeg(v) with equality if and only if indegṼ (v) = 0. Thus, part 1 follows
once we prove that the process halts. Part 2 is then immediate by construction.

To show that the process halts, define a sequence of configurations ci :=
cmax − bi, and note that bi is nonnegative if and only if ci is stable. Moreover,
the greedy algorithm that constructs the sequence bi corresponds to the greedy
toppling algorithm that stabilizes c0 = cmax− b0. Since stabilizations exist and are
unique, we see that the process does halt at some uniquely determined sandpile b

as claimed. Since b = L̃σb ∈ L̃, we just need to show that supp(b) = Ṽ , and that
σb′ ≥ σb for any other burning sandpile b′.

We show that the closure of the support of b is all of Ṽ by contradiction. So

suppose that W := Ṽ \supp(b) 6= ∅, and let L̃W denote the square matrix obtained

from L̃ by retaining only the rows and columns labeled by vertices in W . If we

order the vertices Ṽ so that those in W appear first, then the reduced Laplacian L̃
has the block form:

L̃ =

[
L̃W 0
? ?

]
.

The upper right block is 0 because, by assumption, there are no directed edges
pointing from a vertex of supp(b) into W :

supp(b) W
.

Moreover, L̃W is itself the reduced Laplacian matrix of the sandpile graph obtained

from G by identifying all vertices in supp(b) with the sink of G. Therefore, L̃W is
invertible.

Write bW and σb,W for the subvectors of b and σb, respectively, with com-
ponents indexed by W . Since W ∩ supp(b) = ∅, we see that bW = 0 . Looking

at the W -rows of the equation b = L̃σb, we see that 0 = bW = L̃Wσb,W , which

implies that σb,W = 0 by the invertibility of L̃W . But this contradicts the fact that

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

7.3. Superstables and recurrents 123

σb ≥ χṼ . Thus we see that W = ∅ and supp(b) = Ṽ , so b is a burning sandpile as
claimed.

Finally, let b′ be another burning sandpile for G. We have σb′ ≥ χṼ by Theo-
rem 7.5 (4), so τ ′ := σb′ − χṼ ≥ 0. Now note that

c0 − L̃τ ′ = cmax − L̃χṼ − L̃(σb′ − χṼ) = cmax − b′

which is stable. But τ := σb − χṼ comes from a legal firing sequence for c0, so
by the least action principle (Theorem 6.7) we have τ ≤ τ ′, which implies that
σb ≤ σb′ as required.

�

Remark 7.7 (Burning script algorithm). The proof of Theorem 7.6 provides an
algorithm for computing the burning sandpile and its script. Briefly, the procedure

is as follows: Let b be the sum of the columns of the reduced Laplacian, L̃. If

b(v) < 0 for some vertex v, update b by adding in the v-th column of L̃. Continue

until b first becomes nonnegative. Keeping track of which columns of L̃ were added
to get the burning sandpile gives the burning script.

Example 7.8. The reduced Laplacian of the graph in Figure 1 with respect to the
vertex order v1, v2, v3 is

L̃ =

 4 −1 −1
−1 3 −1
−2 −1 2

 .

Adding its columns gives b = (2, 1,−1). Since b(v3) < 0, add the third column of L̃
to b to get b = (1, 0, 1). Since b is now nonnegative, it is the burning sandpile. To

form b we first added the columns of L̃, then added in the third column; so the
burning script is (1, 1, 2).

Example 7.9 (Undirected graphs). If G is an undirected sandpile graph with
sink s, then the algorithm for constructing the burning sandpile halts immediately
with burning script σb = χṼ . The burning sandpile is

b =
∑

v∈Ṽ : vs∈E

v.

It is the configuration that would be produced on G by firing the sink vertex. Thus,
if all edges in G have multiplicity 1, to test if a configuration c is recurrent, add one
grain to c at each vertex connected to the sink and stabilize. Then c is recurrent if
and only if the stabilization is c or, equivalently, if and only if each non-sink vertex
fires exactly once during the stabilization.

7.3. Superstables and recurrents

As defined in Section 3.3, a configuration c on an undirected graph is superstable
if c ≥ 0 (i.e., c is a sandpile) and c has no legal set-firings. We now make the
appropriate generalization for directed graphs (cf. Remark 7.13 (3)).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

124 7. Burning and duality

Let c ∈ Config(G). Then script-firing by the script σ ∈ ZṼ results in the

configuration c′ = c− L̃ σ. If c is a sandpile, we say the script-firing is legal for c if
c′ ≥ 0; in other words, after the script is fired, no vertices have a negative amount
of sand. Note that this is weaker than our earlier notion of a firing script arising
from a legal sequence of vertex firings: a firing script is legal for c provided that
the final configuration is a sandpile—there may be no legal sequence of firings that
implements the script. We say a sandpile c has no legal script-firings if there is no
firing script σ
 0 that is legal for c.

Definition 7.10. A sandpile c is superstable if it has no legal script-firings.

Exercise 7.11. Give an example of a stable sandpile that is not superstable.

Theorem 7.12. The following are equivalent for a sandpile c:

(1) c is recurrent.

(2) cmax − c is superstable.

(3) c+ L̃σ is unstable for all σ
 0.

(4) c+ L̃σ is unstable for all 0 � σ ≤ σb.

Remark 7.13.

(1) Theorem 7.12 implies a duality between recurrents and superstables:

c is recurrent if and only if cmax − c is superstable.

Note that it easily follows that c is superstable if and only if cmax−c is recurrent,
as well.

(2) From part 3, we see that a sandpile is recurrent if and only if performing a
sequence of reverse firings always results in a configuration with an unstable
vertex.

(3) In the case of an undirected graph, σb = χṼ (Example 7.9). So from part 4:

c is superstable⇐⇒ cmax − c is recurrent

⇐⇒ cmax − c+ L̃χW is unstable for all ∅ 6= W ⊆ Ṽ

⇐⇒ c− L̃χW 6≥ 0 for all ∅ 6= W ⊆ Ṽ
⇐⇒ c has no legal set firings.

Thus, our definition of superstable generalizes that given in Part 1 for undi-
rected graphs.

Lemma 7.14. If L̃σ ≥ 0, then σ ≥ 0.

Proof. Suppose L̃σ ≥ 0. Let N := {v ∈ Ṽ : σ(v) < 0} and assume that N 6= ∅.
Since L̃ is nonpositive off the diagonal and σ(w) ≥ 0 for w /∈ N ,

0 ≤
∑
v∈N

(L̃σ)(v) =
∑
v∈N

∑
w∈Ṽ

L̃vw σ(w)

≤
∑
v∈N

∑
w∈N

L̃vw σ(w)

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

7.4. Forbidden subconfigurations 125

=
∑
w∈N

(∑
v∈N

L̃vw

)
σ(w).

However, since the sum of the elements in any column of L̃ is nonnegative and

positive elements occur only along the diagonal, if w ∈ N , then
∑
v∈N L̃vw ≥ 0. So

the above calculation implies that
∑
v∈N L̃vw = 0 for all w ∈ N . It follows that no

vertex in N is connected to a vertex not in N , including the sink vertex. Since s is
globally accessible in G, this is a contradiction. So we must have N = ∅. �

Remark 7.15. To appreciate the significance of the previous lemma in a larger
context, see Section 12.3, which describes a class of M -matrices possessing nice
properties for chip-firing, thereby generalizing the class of reduced Laplacians.

Proof of Theorem 7.12. [(1) ⇒ (2)] Suppose that c is recurrent, and for the
sake of contradiction, suppose that cmax − c is not superstable. Then there exists

σ
 0 such that cmax − c − L̃σ ≥ 0. By the definition of recurrent, there exists a
sandpile m ≥ cmax such that m (m)◦ = c. Letting τ be the corresponding firing
script, we have

0 ≤ cmax − c− L̃σ = cmax − (m− L̃τ)− L̃σ = cmax −m+ L̃(τ − σ).

It follows that L̃(τ − σ) ≥ m − cmax ≥ 0, and hence, by Lemma 7.14, τ − σ ≥ 0.

Moreover, we see that cmax ≥ m− L̃(τ −σ), so m− L̃(τ −σ) is stable. By the least
action principle (Theorem 6.7), we have τ − σ ≥ τ , yielding σ ≤ 0, a contradiction.

[(2) ⇒ (3)] If cmax − c is superstable and σ
 0, then firing σ must produce a

negative vertex: (cmax − c− L̃σ)(v) < 0 for some v ∈ Ṽ . It follows that cmax(v) <

(c+ L̃σ)(v); so v is unstable in c+ L̃σ.

[(3) ⇒ (4)] Obvious.

[(4) ⇒ (1)] Suppose c is a nonrecurrent sandpile. Let b be the burning sand-
pile for G with burning script σb. Let v1, . . . , vk be a legal firing sequence that
stabilizes c+ b:

c+ b (c+ b)◦.
v1,...,vk

Then σ :=
∑k
i=1 vi 6= σb since c is not recurrent. Define τ := σb−σ, and note that

0 � τ ≤ σb by Theorem 7.5 (5). However,

c+ L̃τ = c+ L̃σb − L̃σ = (c+ b)◦,

which has no unstable vertices. �

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

126 7. Burning and duality

0

u

1

v

0

w

Figure 2. A forbidden subconfiguration.

7.4. Forbidden subconfigurations

It is sometimes possible to determine that a configuration is not recurrent by look-
ing locally. For instance, Figure 2 displays a portion of a configuration c on an
undirected graph. We will see shortly that simply by looking at this portion of c,
one can tell it is not recurrent.

Let G = (V,E, s) be a sandpile graph with sink s.

Definition 7.16. Let c be a configuration on G and let W be a nonempty subset

of Ṽ . The subconfiguration of c corresponding to W is

c|W :=
∑
w∈W

c(w)w.

The subconfiguration c|W is a forbidden subconfiguration (FSC) if

c(v) < indegW (v) := | {w ∈W : (w, v) ∈ E} |

for all v ∈W .

Proposition 7.17. If c is recurrent, then it has no FSC.

Proof. Suppose that c is recurrent, and let W be a nonempty subset of Ṽ . Let b
be the burning sandpile for G, and pick a firing sequence F = u1, u2, . . . for the
stabilization b + c c. By Theorem 7.5 (4), each non-sink vertex appears in F ,

possibly multiple times. For each u ∈ Ṽ , let `(u) be the last time u appears in F ,
i.e., `(u) is the largest index i such that ui = u. Let v be the element of W with
smallest `-value, i.e., `(v) < `(w) for all w ∈W \{v}. In F , after v fires for the last
time, c + b will have partially stabilized. The amount of sand on v at that point
is nonnegative and will get no smaller as the firing sequence proceeds. However,
all the other vertices of W will fire, adding indegW (v) grains of sand to v. Thus,
after F has fired, c + b has stabilized to c, and c(v) ≥ indegW (v). So c|W is not
an FSC. �

Example 7.18. The set W = {u, v, w} is an FSC for the configuration pictured
in Figure 2. Hence, the configuration cannot be recurrent.

Example 7.19. There is no converse to Proposition 7.17 for directed graphs, in
general. For instance, consider the graph in Figure 3 with sink s and edge (u, v) of
multiplicity 2. The configuration c = 1 · u+ 0 · v is stable, is not recurrent, and has
no FSC.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

7.5. Dhar’s burning algorithm for recurrents. 127

s
u v

Figure 3. Path graph with an extra edge.

Theorem 7.20. Let G = (V,E, s) be a sandpile graph with no selfish vertices.
Then a stable sandpile on G is recurrent if and only if it has no forbidden subcon-
figurations.

Proof. Let c be a stable sandpile on G. We have just seen that if c is recurrent,
then it has no FSC. For the converse, suppose that c has no FSC, and let b be the
burning sandpile for G. By Theorem 7.6 (2), the burning script for b is σb = χṼ ,
and thus for each non-sink vertex v,

(7.1) b(v) = outdeg(v)− indegṼ (v).

To show that c is recurrent, we will show that every non-sink vertex fires as b + c
stabilizes; we already know that each vertex fires at most once (Theorem 7.5).

Set V1 := Ṽ . Since V1 is not an FSC, the following set is nonempty:

B1 = {v ∈ V1 : c(v) ≥ indegV1
(v)}.

By (7.1), B1 contains exactly the unstable vertices of b + c. Continue, recursively,
as follows: as long as Vi 6= Bi, define

Vi+1 = Vi \Bi = Ṽ \ (B1 ∪ · · · ∪Bi),
Bi+1 = {v ∈ Vi+1 : c(v) ≥ indegVi+1

(v)}.
Now, Bi is empty if and only if Vi is an FSC. So given our assumptions, no Bi is

empty. The recursion is finite, producing a partition B1, . . . , Bk of Ṽ . For i ≥ 2,
each Bi is the set of non-sink vertices that become unstable after firingB1∪· · ·∪Bi−1

from b + c . In detail, since b = L̃χṼ , the configuration obtained from b + c after
firing the these vertices is

b+ c− L̃χB1∪···∪Bi−1
= L̃χṼ + c− L̃χB1∪···∪Bi−1

= L̃χVi
+ c.

The amount of sand on v ∈ Vi in this configuration is outdeg(v)− indegVi
(v)+c(v),

which is unstable exactly when c(v) ≥ indegVi
(c), i.e., when v ∈ Bi. Proceeding, we

see that ordering the elements of each Bi arbitrarily, the concatenation B1 · · ·Bk
is a legal firing sequence for b + c consisting of all the non-sink vertices. �

7.5. Dhar’s burning algorithm for recurrents.

The word “burning” used in this chapter comes from the original version of a test
for recurrence due to Dhar. In his words ([36]):

Given a configuration [on an undirected graph], at first all the sites are
considered unburnt. Then, burn each site whose height is larger than the
number of its unburnt neighbors. This process is repeated recursively,
until no further sites can be burnt. Then, if all the sites have been burnt,
the original configuration was recurrent, whereas if some unburnt sites

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

128 7. Burning and duality

were left, then the original configuration was transient, and the remaining
sites form an FSC.
. . . We also see that if there are no greedy sites, the burning test is a
necessary and sufficient test for recurrence even for unsymmetrical [i.e.,
directed] graphs.

A minor technical point concerning the above quote: Dhar is assuming a firing
rule by which a vertex becomes unstable when the amount of sand on it is strictly
greater than its outdegree. So we would replace his “larger than the number of its
unburnt neighbors” by “at least as large at the number of its unburnt neighbors”.

The reader should consider how Dhar’s algorithm is expressed in the proof
of Theorem 7.20. Burning sites based an a comparison of heights and unburnt
neighbors is another way of thinking about vertices firing in the stabilization of
a configuration after adding the burning sandpile. Here is an implementation of
Dhar’s algorithm—generalized to work for all sandpile graphs—in light of Theo-
rem 7.5 and the proof of Theorem 7.20:

Algorithm 6 Dhar’s burning algorithm for recurrents.

1: input: A sandpile c on a sandpile graph G.
2: – Compute the burning sandpile, b (Remark 7.7).
3: – Stabilize b+ c, and set W equal to the set of unfired non-sink vertices. (The firing

script for the stabilization is bounded above by the burning script, σb.)
4: output: Return W . If W = ∅, then c is recurrent. Otherwise, c is not recurrent, and

further, if G has no selfish vertices, then c|W is an FSC.

Remark 7.21.

• We sometimes take Dhar’s burning algorithm to mean Theorem 7.5 (2) or (3),
which are also tests for recurrence but with no reference to FSCs.

• Problem 7.6 asks for an implementation of the burning algorithm that more
closely follows the description in the quotation (cf. Algorithm 7 in Chapter 9).

Exercise 7.22. For an undirected graph, explain how Dhar’s algorithm for recur-
rents is the “dual” of the version given in Chapter 3 for superstables (which is then
applied to computing q-reduced divisors).

Example 7.23. There are sandpile graphs with selfish vertices yet, nonetheless, a
stable sandpile on the graph is recurrent if and only if it has no FSC. For instance,
let G be any directed acyclic graph with a selfish vertex. Each stable configuration
on G is recurrent and hence has no FSC.

Exercise 7.24. Show that for the graph in Figure 3, a stable sandpile is recurrent
if and only if it has no FSC, even though v is selfish.

Notes

The burning script algorithm (Remark 7.7) for directed graphs comes from the
work of Speer ([84]). For the original version of Dhar’s algorithm, see [34], [36],
and [37].

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 7

7.1. Let G = (V,E, s) be a sandpile graph with no selfish vertices, so indegṼ (v) ≤
outdeg(v) for all v ∈ Ṽ . Show that it is possible to form a new graph G′ by
starting with G and adding or removing edges emanating from the sink to achieve

indegV (v) = outdeg(v) for all v ∈ Ṽ where the indegree is with respect to all of the
vertices now. Hence, G′ has the same vertex set as G and the same edges except
possibly for edges of the form (s, v). Explain why G′ is actually Eulerian and the
mapping c 7→ c gives an isomorphism of sandpile groups, S(G) ≈ S(G′).

7.2. Consider the following sandpile graph with sink s:

v4 v1

v7 v3

v5

s

v6

v2

(a) Find the (minimal) burning sandpile and its script.

(b) Apply Dhar’s algorithm to the sandpile c = (1, 1, 1, 1, 1, 1, 1) to find a forbid-
den subconfiguration (and thus demonstrate that c is not recurrent).

7.3. Let G = (V,E, s) be an undirected, simple sandpile graph. (Simple means each
edge has weight 1.) Show that cmax − 1Ṽ is not recurrent.

7.4. Let e be an edge of an undirected sandpile graph G. For each of the following
graphs G′ (i) describe (with proof) the relationship between superstables on G and
on G′, and (ii) describe (with proof) the corresponding isomorphism of sandpile
groups, S(G) ≈ S(G′).

(a) Suppose e is a bridge, i.e., deleting e disconnects G. Let G′ := G/e, the graph
obtained by contracting e, i.e., by deleting e and identifying its vertices.

(b) Suppose e is a loop, and let G′ := G \ e, the graph obtained from G by
deleting e.

7.5. Let G be the m × n sandpile grid graph, described in Section 6.6, and let ~k
denote the sandpile on G having k grains of sand on each vertex. Use the theory
of forbidden subconfigurations to show the following:

(a) ~1 is not recurrent.

(b) ~2 is recurrent.

7.6. Give pseudocode for an implementation of Dhar’s burning algorithm that
closely follows the statement of the algorithm in the quotation at the beginning
of Section 7.5. (Algorithm 7 in Chapter 9 is a variant that produces a bijection
between recurrents and spanning trees.)

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Chapter 8

Threshold density

In Section 6.1, we discussed an experiment where grains of sand are dropped ran-
domly onto the vertices of a sandpile graph, with time allowed for stabilization
between each additional grain. We saw that only certain stable sandpiles appear
more than once, which led us to the definition of recurrent sandpiles and the sub-
sequent theory of the sandpile group.

One could also consider the same experiment conducted on a graph with no sink
vertex. Drop a grain of sand on a randomly chosen vertex, stabilize, and repeat.
This time, since there is no sink, enough sand will eventually accumulate so that
the system cannot be stabilized: no matter how many times we fire, there will
always be an unstable vertex. We will call the first unstabilizable state reached in
this manner the threshold state. Since this is a probabilistic system, the threshold
state may change on each run of the experiment.

Example 8.1. Let G = C3 be a triangle, and start at the state (0, 0, 0). Suppose
we happen to randomly pick the first vertex three times in a row. The system then
evolves as follows:

(0, 0, 0)
(v1)−−→ (1, 0, 0)

(v1)−−→ (2, 0, 0)◦ = (0, 1, 1)
(v1)−−→ (1, 1, 1).

(We use the notation (v1) instead of v1 to distinguish adding a grain at v1 and
attempting to stabilize from simply firing v1.) From (1, 1, 1), no matter where a
grain of sand is dropped, the system will be unstabilizable. For instance, if the
second vertex is chosen, we arrive at the threshold state, (1, 2, 1).

Exercise 8.2. Let G = C3, as above, and start at the state (0, 0, 0). If vertices
are chosen uniformly at random, how many grains of sand do you expect to drop
before the threshold state is reached? (Draw out all possible routes to a threshold
state. What is the average number of steps in these routes?)

One can further generalize this sinkless version of the experiment by trying to
take into account the starting state of the system. For instance, how many steps
will it take to reach threshold in the previous example if we start at (1, 0, 0) or if

131

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

132 8. Threshold density

we start at (−10, 0, 0)? For the latter, we need to imagine “negative” amounts of
sand, or perhaps switch our metaphor back to dollars, as in the first part of this
book.

In order to study the dynamics behind these types of experiments, we formalize
them as examples of Markov chains. Our ultimate goal is Theorem 8.48, the thresh-
old density theorem, due to Levine ([66]), characterizing the expected number of
grains of sand per vertex at the threshold state in the limit as the amount of sand
in the starting state goes to −∞. Along the way, we will also see in Theorem 8.29
that the inverse of the reduced Laplacian of the graph encodes the expected number
of firings in the stabilization of a randomly chosen recurrent configuration caused
by dropping a grain of sand at a specific vertex.

8.1. Markov Chains

Definition 8.3. A finite Markov chain consists of the following data:

(1) A finite set of states, Ω.

(2) A function P : Ω×Ω→ [0, 1] with the property that for all x ∈ Ω, the function
P (x, ·) is a probability distribution on Ω:∑

y∈Ω

P (x, y) = 1.

The function P is called the transition matrix of the Markov chain.

(3) A sequence of random variables (X0, X1, X2, . . .) satisfying the law of the chain:
for all t ≥ 0,

P(Xt+1 = y | Xt = x) = P (x, y).

We interpret a Markov chain as an evolving system, with the random vari-
able Xt giving the state of the system at time t. The system evolves in discrete
time steps via an update rule defined by the transition matrix: if the system is in
state x at time t, then it will move to state y at the next time t+ 1 with probabil-
ity P (x, y). Note that the transition probabilities only depend on the current state,
not the previous history of the system or the time—this is the Markov property.

It is often helpful to visualize a finite Markov chain as a directed graph with
the states as vertices and a directed edge from x to y if and only if P (x, y) > 0.
Then the evolution of the Markov chain may be thought of as a random walk on
the associated directed graph, where at each time step the system moves from its
current state to a neighboring state by choosing an outgoing edge according to the
probabilities given by P .

Example 8.4. Suppose that Ω = {A,B,C,D,E, F} and P is given by the following
matrix, with rows and columns listed in alphabetical order:

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

8.1. Markov Chains 133

P =


0 0 1 0 0 0
0 0 0.7 0.3 0 0
0 0 0 0.5 0.5 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

 .

A

B

C

D

E

F

A B C D E F

The associated directed graph is pictured in Figure 1. When the chain is at B, it
will move to C with probability 0.7 and to D with probability 0.3. When the chain
is at C, it will move to either D or E with equal probability.

A

B

C

0.7

1

0.3

0.5

0.5

1

1

1
D

F

E

Figure 1. Directed graph associated to a Markov chain on the 6 states
{A,B,C,D,E, F}.

The next example shows that the experiment from Section 6.1 is a finite Markov
chain.

Definition 8.5 (Abelian sandpile model). Let G = (V,E, s) be a sandpile graph,
and choose any probability distribution α : V → [0, 1] on the vertices of G. Assume
that α(v) > 0 for all v ∈ V , so there is a positive probability of dropping a grain
of sand on every vertex (including the sink). The abelian sandpile is the Markov
chain with state space Ω = Stab(G), the finite set of stable sandpiles, and transition
matrix

P (c, c′) =
∑

v∈V : (c+v)◦=c′

α(v).

If there is no vertex v such that (c + v)◦ = c′, then P (c, c′) = 0. Moreover, we
define (c + s)◦ = c for all stable c. Starting with a stable sandpile c0, define a
sequence of random variables by ct+1 = (ct + vt)

◦ where the vertices v0, v1, v2, . . .
are independent random draws from α. The sequence (c0, c1, c2, . . .) clearly satisfies

the law of the chain. Notation: We write ct−1
(vt)−−→ ct, using parentheses, to

distinguish the evolution of the chain from our earlier notation for firing a vertex,

c
v−→ c− L̃v.

Example 8.6. For example, consider the abelian sandpile model on the triangle C3

for which the probabilities of picking the first, the second, and the sink vertices are
α1, α2, and α3, respectively. The states are Stab(C3) = {(0, 0), (1, 0), (0, 1), (1, 1)},
only 3 of which are recurrent. The associated directed graph for the Markov chain
appears in Figure 2.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

134 8. Threshold density

(0, 0)

(1, 0)

(0, 1)

(1, 1)α3

α1

α2

α3

α2

α1

α3

α2

α1

α3

α2

α1

Figure 2. The abelian sandpile model for the triangle graph.

Suppose that (Ω, P, (Xt)) is a finite Markov chain. We are interested in the long
term behavior, and a basic question is the following: suppose that π0 : Ω→ [0, 1] is
a probability distribution on the set of states, describing probabilities for various
initial conditions of the system. What is the probability distribution πt for the
state of the system at some later time t? Note that for each y ∈ Ω, we have

π1(y) = P(X1 = y) =
∑
x∈Ω

P(X1 = y | X0 = x)P(X0 = x)

=
∑
x∈Ω

P (x, y)π0(x)

= (π0P)(y),

where we view π1 and π0 as row vectors and P as a matrix. By induction, it follows
that for all t ≥ 1:

πt(y) = P(Xt = y) =
∑
x∈Ω

P(Xt = y | Xt−1 = x)P(Xt−1 = x)

=
∑
x∈Ω

P (x, y)πt−1(x)

= (πt−1P)(y)

= (π0P
t−1P)(y)

= (π0P
t)(y).

Thus, the probability distribution πt is obtained from the initial probability distri-
bution π0 via right-multiplication by P t, the t-th power of the transition matrix.
Note that the probability of the chain moving from state x to state y in exactly n
steps is given by the matrix element Pn(x, y).

Definition 8.7. Suppose that x and y are states of a Markov chain (Ω, P, (Xt)).
We say that y is accessible from x if there is a positive probability of moving from x
to y in a finite number of steps: there exists n ≥ 0 such that Pn(x, y) > 0. If in
addition, x is accessible from y, then we say that x and y communicate. The Markov
chain is irreducible if every state communicates with every other state.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

8.1. Markov Chains 135

Exercise 8.8. Show that communication is an equivalence relation on the set of
states in a Markov chain.

In the Markov chain of Figure 1, the communicating classes are {A}, {B}, {C},
{D,E, F}. Note that D,E, F are accessible from all states, C is accessible from A
and B, while A and B are each accessible only from themselves. Only states D,E,
and F are essential in the sense of the next definition.

Definition 8.9. A state x of a Markov chain is essential if the communicating
class of x consists of all states y that are accessible from x. States that are not
essential are called inessential.

Exercise 8.10. Show that being essential is a property of communicating classes
in a Markov chain: if x and y communicate, then x is essential if and only if y is
essential.

Exercise 8.11. In the context of the abelian sandpile model, show that there is a
unique essential communicating class, represented by cmax.

In the experiment of Section 6.1, we saw that some sandpiles—the recurrents—
appeared many times, while others appeared at most once. The next definition
formalizes this distinction for a general Markov chain.

Definition 8.12. Suppose that (Ω, P, (Xt)) is a Markov chain. A state x ∈ Ω
is recurrent if, starting from x, the chain will return to x with probability 1. A
non-recurrent state is called transient.

Exercise 8.13. Show that recurrence is a property of communicating classes in
a Markov chain: if x and y communicate, then x is recurrent if and only if y is
recurrent.

Note that if x is a recurrent state of a Markov chain, then starting from x,
the chain will return to x infinitely many times: each time the chain is in state x,
it will return to x with probability 1. On the other hand, if x is transient, then
starting from x, the chain will return to x only finitely many times: each time the
system is in state x, there is a positive probability that it will never return to x. In
particular, every finite Markov chain has at least one recurrent element—otherwise
each of the states would be visited only finitely many times, leaving nowhere for
the chain to go! Moreover, this implies that no matter where a finite Markov chain
starts, it will reach a recurrent state after finitely many steps.

Proposition 8.14. Suppose that (Ω, P, (Xt)) is a finite Markov chain. Then a
state x ∈ Ω is essential if and only if it is recurrent. In particular, every finite
Markov chain has at least one essential state. Moreover, if z is an inessential
state, then there exists an essential state x that is accessible from z.

Proof. First suppose that x is recurrent. Then if y is accessible from x, it must be
that x is accessible from y, else the chain could never return to x once it reached y.
Thus, x is essential. Note that this direction does not require that the set of states
be finite.

Now suppose that x is essential. Then the restriction of P to the communicating
class [x] defines an irreducible finite Markov chain on [x], which must have at

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

136 8. Threshold density

least one recurrent element. By irreducibility, every element of [x] is recurrent,
including x.

Finally, suppose that z is inessential. Then it is also transient, so that if the
chain starts at X0 = z, it will reach a recurrent/essential state x after finitely many
steps. Thus, there exists an n > 0 such that Pn(z, x) > 0, so that x is accessible
from z. �

Example 8.15. Suppose that G = (V,E, s) is a sandpile graph. We wish to
show that the recurrent sandpiles (in the sense of Definition 6.20) are exactly the
recurrent states of the abelian sandpile model Markov chain. First note that the
recurrent sandpiles (in the sense of Chapter 6) form the communicating class [cmax],
which is the unique essential class in the chain. By the previous proposition, [cmax]
is also the unique recurrent class.

Return now to a general finite Markov chain (Ω, P, (Xt)) and the probability
distributions πt = π0P . Do these probability distributions converge to a limiting
distribution, π? We will later (in Theorem 8.27) state conditions that guarantee the
existence of a limiting distribution, and we will prove its uniqueness (i.e., indepen-
dence of the initial distribution π0) in Proposition 8.22. For now, we simply assume
the existence of the limit π = limt→∞ πt, and investigate its properties. Taking the
limit of the identity πt = πt−1P immediately yields the equation π = πP , showing
that if the system begins in the probability distribution π, it will stay there forever.
For this reason, a distribution π satisfying π = πP is called a stationary distribution
for the Markov chain.

Proposition 8.16. If π is a stationary distribution of the finite Markov chain
(Ω, P, (Xt)), then π(x) = 0 for all inessential states x.

Proof. Since the chain is finite, it must have at least one essential communicating
class C by Proposition 8.14. The restriction of P to any such C defines an irreducible
Markov chain (C, P, (Xt)). We compute∑

y∈C
(πP)(y) =

∑
y∈C

∑
x∈Ω

π(x)P (x, y)

=
∑
y∈C

∑
x∈C

π(x)P (x, y) +
∑
x6∈C

π(x)P (x, y)


=
∑
x∈C

π(x)
∑
y∈C

P (x, y) +
∑
y∈C

∑
x6∈C

π(x)P (x, y)

=
∑
x∈C

π(x) +
∑
y∈C

∑
x6∈C

π(x)P (x, y),

where we use the fact that
∑
y∈C P (x, y) = 1 for any x ∈ C. Since π is stationary,

it follows that
∑
y∈C(πP)(y) =

∑
x∈C π(x), so that π(x)P (x, y) = 0 for all y ∈ C

and x 6∈ C.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

8.1. Markov Chains 137

Now suppose that x0 is an inessential state. Then by Proposition 8.14, there
exists an essential state y that is accessible from x0. Therefore, there is a fi-
nite sequence x0, x1, . . . , xn−1, xn = y, with P (xk−1, xk) > 0 for all k and xk
inessential for 0 ≤ k < n. Setting C = [y] in the previous paragraph, we see that
π(xn−1)P (xn−1, y) = 0, which implies that π(xn−1) = 0. Moreover, note that if
π(xk) = 0 for some k, then by stationarity we have

0 = π(xk) = (πP)(xk) =
∑
z∈Ω

π(z)P (z, xk),

so that π(z)P (z, xk) = 0 for all states z. Since P (xk−1, xk) > 0 by assumption,
this shows that π(xk−1) = 0. By backwards induction along the sequence starting
with xn−1, we see that π(x0) = 0 as required. �

In light of this proposition, we may restrict attention to the essential states of
a finite Markov chain for the purposes of studying stationary distributions.

For the abelian sandpile model, we have seen that there is a unique essential
communicating class [cmax] consisting of the recurrent sandpiles. Moreover, from
Chapter 6, we know that [cmax] = S(G) is an abelian group under the operation of
stable addition. Hence, the restriction of the abelian sandpile model to the essential
states yields an irreducible Markov chain on the sandpile group. More precisely,
this is an example of a random walk on a group.

Definition 8.17. Let H be a finite group and γ : H → [0, 1] a probability distri-
bution on H. Then the random walk on H with respect to γ is the Markov chain
on Ω = H defined by the transition matrix

P (h, h′) := γ(h′h−1).

Note that this does define a transition matrix, since for all h ∈ H we have∑
h′∈H

P (h, h′) =
∑
h′∈H

γ(h′h−1) =
∑
h′∈H

γ(h′) = 1.

Starting at a group element X0 = h0 ∈ H, define a sequence of random variables
by Xt+1 = htXt, where the group elements h0, h1, h2, . . . are independent random
draws from γ. In words: at each time t pick a random element ht ∈ H according
to the distribution γ, and then update the system by multiplying the current state
on the left by ht.

Exercise 8.18. When is a random walk on a group irreducible?

Example 8.19. We now show that the abelian sandpile model (restricted to the
essential states) is a random walk on the sandpile group. For every non-sink vertex

v ∈ Ṽ , denote by rv ∈ S(G) the unique recurrent sandpile that is equivalent to v

modulo the reduced Laplacian lattice L̃. For the sink vertex s, define rs := e, the
identity of S(G). Then transfer the probability distribution α on V to a probability
distribution on S(G) by defining

γ(c) :=
∑

v∈V : rv=c

α(v).

The transition matrix for the random walk on S(G) with respect to γ is given by
P (c, c′) = γ(c′ ~ c−1) for all c, c′ ∈ S(G).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

138 8. Threshold density

Now recall the update rule for the abelian sandpile model: at each time t,
choose a random vertex vt ∈ V according to α and update the system by dropping
a grain of sand on vt and stabilizing: ct+1 = (ct+vt)

◦. But in terms of the sandpile
group we have

(ct + vt)
◦ = ct ~ rvt = rvt ~ ct,

which is the update rule for the random walk on S(G) with respect to the probability
distribution γ.

Exercise 8.20. Consider the graph G with three undirected edges and two directed
edges pictured below:

s

v1

v2

v3

Take s as the sink vertex, and order the remaining vertices v1, v2, v3.

(1) Show that

S(G) = {(1, 0, 1), (1, 0, 0), (1, 1, 1), (0, 0, 1), (1, 1, 0), (0, 1, 1)}
with (1, 0, 1) the identity element.

(2) Show that rv2 = (1, 1, 1), and hence, using the notation from Example 8.19,
the probability distribution γ is given by the following table:

recurrent (1, 0, 1) (1, 0, 0) (1, 1, 1) (0, 0, 1) (1, 1, 0) (0, 1, 1)
γ α(s) α(v1) α(v2) α(v3) 0 0

(3) Compute the transition matrix for the abelian sandpile model on G restricted
to the recurrents, and draw the corresponding directed graph.

The next proposition shows that the uniform distribution is a stationary dis-
tribution for any random walk on a group.

Proposition 8.21. Let H be a finite group, and choose any probability distribution
γ : H → [0, 1]. Denote by u : H → [0, 1] the uniform distribution on H, defined as
u(h) = 1

|H| for all h ∈ H. Then u is a stationary distribution for the random walk

on H with respect to γ.

Proof. We just need to check that uP = u:

(uP)(h) =
∑
k∈H

u(k−1h)P (k−1h, h) =
1

|H|
∑
k∈H

γ(k) =
1

|H|
= u(h).

�

Returning to the abelian sandpile model, we have established the existence
of a stationary distribution: the uniform distribution on recurrent sandpiles. But
the question remains: is this the unique stationary distribution, and if so, will
the chain always converge to the uniform distribution, independent of the initial

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

8.1. Markov Chains 139

distribution π0? As the next proposition shows, the irreducibility of a Markov chain
guarantees the uniqueness of its stationary state.

Proposition 8.22. Suppose that (Ω, P, (Xt)) is an irreducible finite Markov chain
and that π and µ are stationary distributions. Then π = µ.

Proof. The stationary condition π = πP shows that the row rank of the matrix
P − I is at most |Ω| − 1. Since π and µ are both probability distributions, in order
to show that π = µ, we just need to show that the row rank is exactly |Ω| − 1.
Since row rank equals column rank, it will suffice (by rank-nullity) to show that
the kernel of P − I is one-dimensional. In fact, we will show that the kernel of
P − I consists of the constant vectors. First, note that the all one’s column vector
is contained in the kernel: for all x ∈ Ω,

(P~1)(x) =
∑
y∈Ω

P (x, y) = 1 =⇒ (P − I)~1 = 0.

Now suppose that a function f : Ω → R is in the kernel of P − I, where we
view f as a column vector. Choose a state x where f attains a maximum, and let
y ∈ Ω be an arbitrary state. We wish to show that f(y) = f(x). By irreducibility,
there exists a sequence x = x0, x1, . . . , xn−1, xn = y with P (xk−1, xk) > 0 for all k.
Note that

(Pf)(x) =
∑
z∈Ω

P (x, z)f(z) ≤ f(x)
∑
z∈Ω

P (x, z) = f(x),

with equality if and only if f(z) = f(x) for all z ∈ Ω such that P (x, z) > 0. Since
(Pf)(x) = f(x) by assumption, the equality obtains, so that we have f(x1) = f(x).
But then the same argument applied to the computation of (Pf)(x1) shows that
f(x2) = f(x1) = f(x). By induction, we see that f(y) = f(x) as claimed. �

Exercise 8.23. Show that if π and µ are stationary distributions for a finite Markov
chain with a unique essential communicating class, then π = µ.

Definition 8.24. Let (Ω, P, (Xt)) be a finite Markov chain. For any state x, define
T (x) := {n ≥ 1 : Pn(x, x) > 0}. This is the set of positive times when it is possible
for the chain to return to x, starting at X0 = x. The period of the state x is defined
to be the greatest common divisor of the set T (x), provided T (x) is nonempty,
otherwise, the period is not defined.

In the Markov chain of Figure 1, we have T (A) = T (B) = T (C) = ∅, while
T (D) = T (E) = T (F) = {3k : k ≥ 1}. Hence, states D,E, and F each have
period 3, while A,B,C have no period.

Exercise 8.25. Show that if x and y communicate, then they have the same period.
Hence, we may speak of the period of a communicating class.

Definition 8.26. Suppose that (Ω, P, (Xt)) is an irreducible Markov chain. We
say that it is aperiodic if every state x ∈ Ω has period 1. By the previous exercise,
this is equivalent to the existence of a state with period 1.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

140 8. Threshold density

Theorem 8.27. Suppose that (Ω, P, (Xt)) is an irreducible finite Markov chain.
Then there exists a unique stationary distribution π satisfying π = πP . If the chain
is also aperiodic, then given any initial distribution π0 on Ω, the chain converges
to the stationary distribution: π = limt→∞ π0P

t.

Proof. See Proposition 1.14 and Theorem 4.9 in [65]. �

Recall that for the abelian sandpile model, we assumed that the probability
distribution α on V satisfied α(v) > 0 for all v ∈ V . In particular, α(s) > 0, so there
is a positive probability of dropping a grain of sand on the sink at each time step.
But (c+s)◦ = c for all stable c, since we ignore sand on the sink. It follows that each
stable sandpile has period 1, so that the abelian sandpile model is aperiodic. Hence,
if π0 is an arbitrary initial distribution on S(G), we see that limt→∞ π0P

t = u, the
uniform distribution on the sandpile group. Moreover, since cmax is accessible from
every stable sandpile, if we start the chain at any c0 ∈ Stab(G), it will reach the set
of recurrents in finite time. From that point on, the chain will never leave the set of
recurrents, and it will converge to the uniform distribution on S(G). Thus, in the
long-run, the abelian sandpile model spends equal amounts of time in each recurrent
sandpile, independent of the initial sandpile or the probability distribution α on V .
To formally summarize this discussion:

Corollary 8.28. The abelian sandpile model is a finite aperiodic Markov chain. If
restricted to the sandpile group, it is also irreducible. In either case, the stationary
distribution is the uniform distribution on the sandpile group.

Knowing the long-run, stationary distribution of the abelian sandpile model
allows us to answer questions such as the following. For any recurrent sandpile c
and any pair of vertices v, w ∈ V , let n(v, w; c) denote the number of times that
vertex w topples in the stabilization of c+v. For fixed v and w, what is the expected
value of n(v, w; ·) when the system is in the stationary (uniform) distribution?

Theorem 8.29. Let G = (V,E, s) be a sandpile graph, and let u denote the uniform
distribution on the sandpile group, S(G), which is the stationary distribution for
the abelian sandpile model on G. Then in the stationary distribution, the expected

number of topplings at w ∈ Ṽ induced by the addition of a single grain of sand at

v ∈ Ṽ is given by the wv matrix element of the inverse of the reduced Laplacian:

1

| S(G)|
∑

c∈S(G)

n(v, w; c) = (L̃−1)wv.

Proof. Define a |Ṽ | × |Ṽ | matrix N by setting the vw entry equal to the average
toppling number:

Nvw :=
1

| S(G)|
∑

c∈S(G)

n(v, w; c).

We wish to show that NL̃t = I, the identity matrix. For any recurrent sandpile c,
we have

(c+ v)◦(w) = c(w) + v(w)−
∑
z∈Ṽ

n(v, z; c)L̃wz,

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

8.2. The fixed-energy sandpile 141

where v is thought of as a configuration, (hence, v(w) is 1 if w = v and 0, otherwise).
Now average over the recurrent sandpiles:

1

| S(G)|
∑

c∈S(G)

(c+ v)◦(w) =
1

| S(G)|

 ∑
c∈S(G)

c(w)

+ v(w)

− 1

| S(G)|
∑
z∈Ṽ

∑
c∈S(G)

n(v, z; c)L̃wz.

Note that (again denoting the recurrent equivalent to v by rv ∈ S(G)),∑
c∈S(G)

(c+ v)◦(w) =
∑

c∈S(G)

(c~ rv)(w) =
∑

c∈S(G)

c(w).

Hence, the first sums on each side of the average cancel, and we are left with

v(w) =
∑
z∈Ṽ

1

| S(G)|
∑

c∈S(G)

n(v, z; c)L̃wz

= (NL̃t)vw

This shows that the matrix elements of the inverse transpose of the reduced Lapla-
cian are given by the average toppling numbers, as claimed. �

8.2. The fixed-energy sandpile

We now consider the abelian sandpile but without a sink vertex. At each step, a
grain of sand is dropped on a random vertex. If the vertex is still stable, the chain
continues as usual; otherwise, we attempt to stabilize by repeatedly firing unstable
vertices. We can imagine that at first, when there is just a small amount of sand
on the graph, short sequences of topplings suffice to stabilize the system. However,
since there is no sink, as time goes on, sand accumulates and the system tends to
take longer to settle down. Eventually it reaches a threshold at which stabilization
is no longer possible—the system is “alive”.

To formalize these ideas, recall from Part 1 that a divisor on the graph G =
(V,E) is just an element of the free abelian group Div(G) := ZV . For consistency,
in this chapter we will interpret a divisor as assigning an amount of sand, rather
than dollars, to each vertex. A negative amount of sand may be interpreted as a
‘hole’ that must be filled before a positive amount of sand can accumulate.

If D ∈ Div(G), then we have the usual definitions of stable and unstable vertices
for D and the toppling or firing of vertices (Definition 5.21). The toppling of an
unstable vertex is called a legal toppling. Although we allow negative sand in D,
a legal toppling does not create or deepen any holes. Recall that D is linearly
equivalent to D′, written D ∼ D′, if D′ is obtainable from D through a sequence
of (not necessarily legal) topplings or reverse topplings. Equivalently, there exists
a firing script σ : V → Z such that D′ = D−Lσ, where L is the Laplacian of G, in

which case we write D
σ−→ D′.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

142 8. Threshold density

To attempt to stabilize D, we sequentially topple unstable vertices:

D
v1−→ D′

v2−→ D′′
v3−→ · · · .

The resulting chain of topplings is called an avalanche. An avalanche either ends in
a stable divisor, in which case we say D is stabilizable, or it goes on forever, in which
case, we sayD is unstabilizable or alive. A finite avalanche has a corresponding firing
script σ : V → Z recording the number of times each vertex has fired.

To address the question of existence and uniqueness of stabilizations, we gen-
eralize Proposition 5.27 from Part 1 to the case of directed graphs. The key idea
is the least action principle for divisors, whose proof is just as in the earlier least
action principle for configurations, Theorem 6.7.

Theorem 8.30 (Least action principle). Let G be a directed graph, and let D ∈
Div(G). Suppose σ, τ ≥ 0 are firing scripts such that σ arises from a sequence of

legal topplings and that D
τ−→ D′ with D′ stable. Then σ ≤ τ .

As an immediate corollary we get the following:

Corollary 8.31. Let D ∈ Div(G). If D is stabilizable, then every avalanche for D
is finite and has the same firing script.

In this chapter, the words “alive” and “unstabilizable” mean there is no se-
quence of legal vertex-topplings that leads to a stable divisor. “Stabilizable” means
some—and hence, by the preceding corollary, every—sequence of legal topplings
leads to a (linearly equivalent) stable divisor. This usage differs from that in
Part 1, in which all graphs are undirected and where “alive” means that every
linearly equivalent divisor is unstable. For directed graphs, there is a difference
between these two definitions (cf. Problem 8.2). However, for a certain class of
graphs, which includes undirected graphs and, more generally, the Eulerian graphs
with which we are primarily concerned in this chapter, the following proposition
shows there is no difference. We say a directed graph is strongly connected if for
all vertices u, v, there is a directed path from u to v. Equivalently, each vertex is
globally accessible.

Proposition 8.32. If G is strongly connected, then D ∈ Div(G) is stabilizable if
and only if there is a stable divisor linearly equivalent to D. Equivalently, D is alive
if and only if every linearly equivalent divisor is unstable.

Proof. If D is stabilizable, then a sequence of (legal) topplings leads to a linearly
equivalent stable divisor.

For the converse, supposeD′ is a stable divisor linearly equivalent toD. SinceG
is strongly connected, for each vertex v, there is at least one spanning tree rooted
at v. So by Theorem 9.14, the kernel of the Laplacian of G is spanned by an integer
vector ρ whose coordinates are all positive. Given any firing script τ such that

D
τ−→ D′, we may assume τ ≥ 0 by adding multiples of ρ, if necessary. The least

action principle then implies D is stabilizable. �

We are now ready to define the fixed-energy sandpile, a Markov chain on G.
The name comes from the physics literature in which the total number of grains of
sand is a measure of the energy of the system, and topplings model energy transfer.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

8.2. The fixed-energy sandpile 143

Thus, a fixed-energy sandpile is a Markov chain in which each state has a fixed
amount of “energy” which cannot dissipate through topplings.

Choose a probability distribution α : V → [0, 1] (as before, we assume that
α(v) > 0 for all v ∈ V). For the set of states, we take Ω := Div(G). The transition
function P : Ω× Ω→ [0, 1] is defined by

P (D,D′) :=

{
α(v) if D′ = D + v and D′ is alive∑
v∈V : (D+v)◦=D′ α(v) otherwise.

For each v ∈ V , define an operator av on Div(G) by

avD :=

{
D + v if D + v is alive

(D + v)◦ otherwise.

The sequence of random variables (Dt) is defined as follows: starting with an initial
divisor D0, define

Dt+1 := avt+1
Dt

where the vertices v1, v2, v3, . . . are independent random draws from α. In words:
the chain evolves from an initial divisor by randomly dropping single grains of sand
on V and stabilizing if possible. Notation: as with the abelian sandpile, we write

Dt−1
(vt)−−→ Dt,

with parentheses around vt, to denote the evolution of the chain in order to avoid

confusion with our earlier notation for firing a vertex: D
v−→ D − Lv.

Note that although the set of states Ω = Div(G) is countably infinite, the
transition function P is locally finite in the sense that for every state D, there exist
at most |V | other states D′ such that P (D,D′) > 0. Hence, for each D, the sum∑
D′∈Ω P (D,D′) = 1 has only finitely many nonzero terms.

8.2.1. Threshold density. Since the amount of sand in the fixed-energy sand-
pile continually increases, there are no essential or recurrent states, and hence
there is no stationary distribution. Instead, we are interested in the threshold for
the fixed-energy sandpile, defined as the random time

τ := τ(D0) = min{t ≥ 0 : Dt is alive}.

The probability that τ assumes a certain value t is

PD0
(τ = t) =

∑ t∏
i=1

α(vi),

where the sum is over all strings v1 · · · vt of vertices such that Dt is the first alive
divisor in the corresponding sequence of states,

D0
(v1)−−→ D1

(v2)−−→ D2
(v3)−−→ · · · (vt)−−→ Dt.

=

av1D0

=

av2D1

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

144 8. Threshold density

Starting from an initial state D0, which may be highly stable (e.g., D0 � 0),
our system evolves toward an unstabilizable threshold state Dτ , obtained from a
last stable state Dτ−1 by randomly adding a grain of sand. The probability Dτ is a

given divisor D is PD0
(Dτ = D) =

∑∏t
i=1 α(vi), where the sum is over all strings

v1 . . . vt of all lengths t ≥ 1 such that D0
(v1)−−→ D1

(v2)−−→ · · · (vt)−−→ Dt with Dt = D
and such that D is the first alive divisor in the sequence.

The random vertex vτ that causes the system to first reach a threshold state is
called the epicenter. In detail, the probability a particular vertex v is the epicenter
is PD0

(vτ = v) =
∑∏t

i=1 α(vi), this time the sum being taken over all strings
v1 . . . vt for all t ≥ 1 ending with vt = v and such that the corresponding sequence
of states first reaches threshold at Dt.

We can now define the main statistic of interest and precisely state the questions
motivating this chapter:

Definition 8.33. The threshold density of the fixed-energy sandpile with initial
state D0 is the expected number of grains of sand per vertex in the threshold state:

ζτ (D0) := ED0

deg(Dτ)

|V |
.

Questions:

• What is the threshold density for a given system? Or, what amounts to the same
thing: how much sand is expected on the graph at threshold?

• What is PD0(degDτ = k) for each k?

• What is PD0(vτ = v) for each v ∈ V ?

We are able to answer these questions for the class of Eulerian graphs, which in-
cludes undirected graphs (see Appendix A, Definition A.28 and Proposition A.29).
Note that, for a vertex v in an Eulerian graph G, we can define degG(v) :=
indegG(v) = outdegG(v).

8.2.2. Comparison with the abelian sandpile. To answer our questions, we
first need to understand the relationship between the abelian sandpile and the
fixed-energy sandpile.

IfG is Eulerian, then by Theorem 7.6, its burning script is χṼ , the characteristic
function of the non-sink vertices, and hence its burning sandpile is obtained by firing
the sink vertex. So one way to create an alive divisor is to start with a recurrent
sandpile c and add just enough sand to the sink so that the sink is unstable. By
the burning algorithm (Theorem 7.5), toppling the sink then induces an avalanche
in which every non-sink vertex fires exactly once, yielding c again, then repeating.

Definition 8.34. Let G be an Eulerian sandpile graph, and let s be a vertex of G.
A basic alive divisor (with respect to s) or simply a basic divisor is a divisor of
the form c+ degG(s)s for some recurrent c ∈ S(G, s). The collection of basic alive
divisors is denoted B(G, s) or just B(G) if s is clear from context.

In what follows, by relabeling recurrents with their corresponding basic alive
divisors, we often identify the abelian sandpile with a Markov chain on B(G). In

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

8.2. The fixed-energy sandpile 145

detail, if B = c + degG(s)s ∈ B(G) and v ∈ V is drawn at random, then the
transition from B is

c+ degG(s)s
(v)−−→ (c+ v)◦ + degG(s)s ∈ B(G).

Lemma 8.35 (Basic decomposition). Let G = (V,E) be an Eulerian graph and
D ∈ Div(G). For each s ∈ V , there is a unique triple (B, e, σ), where B ∈ B(G, s)
is a basic alive divisor, e ∈ Z, and σ : V → Z is a firing script with σ(s) = 0, such
that

D = B + es− Lσ,
where L is the Laplacian of G. Moreover, D is alive if and only if e ≥ 0.

Proof. Let c ∈ S(G, s) be the unique recurrent sandpile equivalent to the config-

uration D|Ṽ modulo the reduced Laplacian lattice L̃ with respect to the chosen

sink, s. This means that (as configurations on Ṽ := V \ {s})

D|Ṽ = c− L̃σ

for some firing script σ : Ṽ → Z. This firing script is unique since L̃ is invertible.
Extend σ to a script on all of V by letting σ(s) = 0, and define the basic alive
divisor B := c + degG(s)s. Since D and D − Lσ are equal except possibly at the
sink, we have

D = B + es− Lσ,
where e = deg(D) − deg(B) since deg(Lσ) = 0. The uniqueness of the decompo-
sition follows immediately from the uniqueness of the recurrent sandpile c and the
toppling script σ.

Next, note that B + es is alive if and only if e ≥ 0 by Theorem 7.5. The same
holds for D by Proposition 8.32 since D ∼ B+es and G is Eulerian, hence strongly
connected. So e is the excess sand, over that required for D to be alive. �

Definition 8.36. Using the notation of Lemma 8.35, let Bs(D) := B and let
Rs(D) := c to define mappings

Bs : Div(G)→ B(G, s) and Rs : Div(G)→ S(G, s)

for each s ∈ V .

Thus, the basic decomposition of D ∈ Div(G) with respect to s has the form

D = Bs(D) + es− Lσ = (Rs(D) + degG(s)s) + es− Lσ,
Note that Rs(D) = Rs(B).

Now suppose we drop a grain of sand on the vertex v and then stabilize D+ v
(if possible, otherwise do nothing) as well as stabilize Rs(D) + v with respect to a
chosen sink s (which is always possible, yielding another recurrent). Lemma 8.40
below implies that this process commutes with the mapping Rs. That is, the update
rules for the fixed-energy sandpile and the abelian sandpile model are intertwined:

Rs(avD) = (Rs(D) + v)◦.

For the purposes of the upcoming lemma and for later results, we will need
to keep track of the amount of sand that goes into the sink s in each step of the

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

146 8. Threshold density

abelian sandpile Markov chain. Recall that for each non-sink vertex v, we defined rv
to be the unique recurrent sandpile equivalent to v modulo the reduced Laplacian

lattice L̃ and defined rs to be the identity of the sandpile group.

Definition 8.37. Let G be a sandpile graph with sink s, and let c ∈ S(G) with
corresponding basic alive divisor B = c+degG(s)s. Fixing a vertex v, let c̃ := r−1

v ~c
so that c̃ is the unique recurrent sandpile such that (c̃+ v)◦ = c. The burst size is
the number of grains of sand that fall into the sink as the abelian sandpile moves
from state c̃ to state c upon the addition of a grain of sand at v:

βv(B) := βv(c) := deg(c̃)− deg(c) + 1.

In particular, βs(B) = βs(c) = 1.

Thus, βv((c + v)◦) is the amount of sand that falls into the sink as the chain
moves from state c to (c+ v)◦.

Exercise 8.38. Consider the complete graph K4 with ordered list of vertices
s, v1, v2, v3 and sink s.

(1) Show that r−1
v1 = (1, 2, 2) = v1 + 2v2 + 2v3.

(2) Verify the burst sizes in Table 1.

recurrents βs βv1 βv2 βv3
(0,1,2) 1 1 2 3
(0,2,2) 1 1 0 0
(1,1,2) 1 0 0 3
(1,2,2) 1 0 0 0
(2,2,2) 1 0 0 0

Table 1. Up to symmetry, all recurrents on K4 and their burst sizes.

It will be useful to have formal notation for the firing script of a stabilization:

Definition 8.39. The odometer function,

odo: Config(G)→ M̃(G)

c 7→ L̃−1(c− c◦),
assigns to each configuration c the firing script for its stabilization. Thus, odo(c)
records how many times each vertex fires as c c◦ through legal vertex firings.

As usual, we consider each configuration as a divisor with no sand on the sink,

in other words, through the natural inclusion ZṼ ⊂ ZV . Every script σ : Ṽ → Z,
such as that given by the odometer function, is naturally considered as a script
σ : V → Z by letting σ(s) = 0.

Lemma 8.40. Fix v ∈ V . Suppose that D = B + e s− L(σ) is the basic decompo-
sition of a divisor D where Rs(D) =: c ∈ S(G) so that Bs(D) = B = c+ degG(s)s
is the corresponding basic divisor. Then the basic decomposition of avD is

avD = (c+ v)◦ + (e+ degG(s) + β)s

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

8.2. The fixed-energy sandpile 147

− L(σ − odo(c+ v) + µ− µ(s)),

where β := βv((c+v)◦) is the burst size, µ is the toppling script for the stabilization

of D+v as a divisor (µ = 0 if D+v is alive), and µ(s) is the constant script µ(s)·~1.

Proof. We have

avD = D + v − Lµ
= c+ v + (e+ degG(s))s− L(σ + µ)

= c+ v − L odo(c+ v) + (e+ degG(s))s

− L(σ + µ− odo(c+ v)).

In the stabilization c + v → (c + v)◦, the amount of sand going into the sink is
β = βv((c+ v)◦) (with β = 1 if v = s). Therefore,

avD = (c+ v)◦ + (e+ degG(s) + β)s− L(σ + µ− odo(c+ v))

= (c+ v)◦ + (e+ degG(s) + β)s

− L(σ − odo(c+ v) + µ− µ(s))

where in the last step we have subtracted the constant function µ(s), which is in
the kernel of L, in order to ensure that the firing script vanishes at the sink. �

Now suppose that we run the fixed-energy sandpile starting at the initial
state D0 and that we simultaneously run the abelian sandpile starting at state
c0 = Rs(D0). At each time step, we make a random draw from the probability dis-
tribution α on V and use the result to update both Markov chains. The previous
lemma implies that for every time t,

Rs(Dt+1) = Rs(avtDt) = (Rs(Dt) + vt)
◦ = (ct + vt)

◦ = ct+1.

Hence, the evolution of the abelian sandpile Markov chain is completely determined
by the evolution of the fixed-energy sandpile Markov chain.

8.2.3. Stationary density. Fixing any sink vertex s, the threshold state of the
fixed-energy sandpile will be linearly equivalent to a basic alive divisor B ∈ B(G)
with excess sand e ≥ 0 at the sink: B + es = c+ (degG(s) + e)s where c ∈ S(G) is
some recurrent for the abelian sandpile. Since the abelian sandpile Markov chain
evolves towards the uniform distribution among the recurrents, we might guess that
the average density of the basic divisors is relevant to understanding the threshold
density of the fixed-energy sandpile.

Definition 8.41. The stationary density of the abelian sandpile model is

ζst :=
1

| S(G)|
∑

B∈B(G)

degB

|V |

=
degG(s)

|V |
+

1

| S(G)|
∑

c∈S(G)

deg(c)

|V |
.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

148 8. Threshold density

Now think of the abelian sandpile model (restricted to the sandpile group) as
a Markov chain on B(G) by relabeling each recurrent sandpile by its corresponding
basic divisor. The stationary density is then the average amount of sand per vertex
in the stationary distribution of the chain.

When G is Eulerian, the following theorem shows that the basic stationary
density is independent of the choice of sink vertex. So in that case, the basic
stationary density is really a property of the graph; we may refer to it simply as
the stationary density and write ζst = ζst(G).

Theorem 8.42. If G is Eulerian, then for all n ≥ 0 the following quantities are
independent of the choice of sink vertex s:

(1) |{c ∈ ZṼ : c is superstable, deg(c) = n}|,
(2) | S(G, s)|,
(3) |{B ∈ B(G, s) : deg(B) = n}|.

Proof. Part (1) is an immediate consequence of Merino’s Theorem and its gener-
alization to Eulerian graphs. For a statement and proof of Merino’s Theorem, see
Theorem 14.18. The theorem was generalized to Eulerian graphs in [79] (and then
extended to strongly connected graphs in [25]).

By Theorem 7.12, c is recurrent if and only if cmax − c is superstable, so for
each sink s we have a bijection between superstables and recurrents. By (1), the
total number of superstables is sink-independent, hence so is the total number of
recurrents, which is (2).

Finally, for a fixed sink s, the number of recurrents of degree k is equal to the
number of superstables of degree ms − k, where

ms := deg(cmax) =
∑
v∈Ṽ

(degG(v)− 1) =
∑
v∈V

(degG(v)− 1)− degG(s) + 1.

It follows that ms + degG(s) is independent of the sink s, so for all n ≥ 0, the
following quantity is also sink-independent:

|{c ∈ S(G, s) : deg(c) + degG(s) = n}|.

Since basic divisors have the form c+ degG(s)s, part 3 follows.

�

Remark 8.43. If G is an undirected multigraph, then Merino’s Theorem (Theo-
rem 14.18) leads to a formula for the stationary density in terms of a specialization
of the Tutte polynomial for G. A combinatorial interpretation of the stationary
density in terms of spanning trees and spanning “unicycles” of the graph then fol-
lows. These ideas then lead to a closed form and asymptotics for the stationary
density of the complete graph Kn in terms of Ramanujan’s Q-function. For details,
see Problems 14.10 and 14.11.

The threshold density ζτ (D0) depends on the initial state, D0. For instance,
if D0 is already alive, then ζτ (D0) = deg(D0)/|V |. The case where D0 is stable,
e.g., D0 = 0, is more interesting. Problem 8.5 shows that if G is a tree, then
the threshold density starting from any stable divisor actually coincides with the

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

8.2. The fixed-energy sandpile 149

stationary density. Can the same be said for an arbitrary graph? We consider some
examples.

Example 8.44. The recurrents on the cycle graph Cn consist of the maximal stable
sandpile, cmax, having one grain of sand on each non-sink vertex, and the n − 1
sandpiles of the form cv := cmax − v where v is a non-sink vertex. Adding 2 grains
of sand at the sink to each of these, we see that there is one basic divisor of degree
deg(cmax) + 2 = n + 1, and n − 1 with degree deg(cv) + 2 = n. Therefore, the
stationary density is

ζst =
1

n
· (n+ 1) + (n− 1)n

n
=
n2 + 1

n2
= 1 +

1

n2
.

To compute the threshold density of the fixed-energy sandpile, note that since a
divisor on Cn is stable if and only if the number of grains of sand on each vertex is at
most one, the only stable divisor of degree n is the all ones divisor, 1V :=

∑
v∈V v.

Similarly, a stable divisor of degree n−1 must have the form 1V −v for some vertex v,
i.e., the all ones divisor but with no sand on v. Start the sandpile at an initial stable
state D0. If deg(D0) = n, then D0 = 1V , and the chain reaches threshold at the
next step at a divisor of degree n + 1. Otherwise, the system eventually evolves
to a divisor D = 1V − v of degree n − 1. From that point, if vertices are chosen
uniformly at random, with probability (n − 1)/n the next step results in an alive
divisor, and with probability 1/n, the next step is the stable divisor 1V , followed
by a threshold state. So starting at any stable state with degree at most n− 1, the
expected amount of sand at threshold—the degree of the threshold divisor—is

n− 1

n
· n+

1

n
· (n+ 1) =

n2 + 1

n
.

In sum, starting at a stable state D0,

ζτ (D0) =

1 + 1
n if D0 = 1V ,

1 + 1
n2 = ζst if D0 � 1V .

As a special case, note that limn→∞ ζτ (0) = limn→∞ ζst(Cn) = 1.

Example 8.45. Let B3 be the banana graph consisting of three edges joining two
vertices u and v. Figure 3 shows that fixed-energy sandpile on B3 starting at (0, 0)
and evolving up to threshold. The divisor au + bv is denoted (a, b). Choosing the
second vertex, v, as the sink, the basic divisors for B3 are (0, 3), (1, 3), and (2, 3).
So the stationary density is

ζst =
1

3

(
3 + 4 + 5

2

)
= 2.

Underneath each state in Figure 3 is listed the number of paths to that state
from the starting state, (0, 0). These numbers are easily calculated by recursion:
to find the number of paths to a state, add the corresponding numbers for its
immediately preceding states. Assuming that each vertex is equally likely to be
chosen at each step, we can then calculate the probability of reaching each threshold

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

150 8. Threshold density

(3,2)
6

(3,2)
6

(2,3)
6

(3,1)
3

(2, 2)
6

(1,3)
3

(3,0)
1

(2, 1)
3

(1, 2)
3

(0,3)
1

(2, 0)
1

(1, 1)
2

(0, 2)
1

(1, 0)
1

(0, 1)
1

(0, 0)
1

Figure 3. The fixed-energy sandpile Markov chain for the graph

with initial state (0, 0). The small number appearing just below each state is

the number of paths to that state from (0, 0). Threshold states are in bold.
See Example 8.45.

state. For instance, the probability the threshold state is (3, 1) is 3/24. These
probabilities then determine the threshold density:

ζτ ((0, 0)) =
1

2

(
2 · 1

23
· 3 + 2 · 3

24
· 4 + 2 · 6

25
· 5
)

=
33

16
.

So in this case, the stationary density is a bit smaller than the threshold density.

The key to understanding the discrepancy is to consider the dependence of the
threshold density on the initial state. Using the stationary density as an estimate
of threshold density assumes that the probability the threshold state has degree d
equals the proportion of basic divisors of degree d. For B3, this means that the
threshold degree would be 3, 4, or 5, each with probability 1/3. From the path
counts in Figure 3, the actual probabilities of these degrees for the chain starting at
(0, 0) are 1/4, 3/8, and 3/8, respectively—skewed towards higher threshold degrees
compared with the stationary density estimate. Starting at (2, 2), the effect is even
more pronounced: the corresponding threshold probabilities are then 0, 0, and 1.

Exercise 8.46. Use Figure 3 to verify the entries in Table 2.

What would happen if the chain started at (−100,−100)? Eventually, the
system evolves to a state that is nonnegative, and from that point, the behavior
is accounted for by Figure 3. The table below shows the result of 1000 trials of
a computer simulation in which the Markov chain is started at (−100,−100) and
allowed to evolve to a nonnegative divisor; the number of times each nonnegative
stable divisor is reached is recorded:

divisor (0, 0) (1, 0) (0, 1) (2, 0) (1, 1) (0, 2) (2, 1) (1, 2) (2, 2)
frequency 310 174 186 158 0 172 0 0 0

.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

8.3. The threshold density theorem 151

(0, 0) (1, 0), (0, 1) (2, 0), (0, 2) (1, 1) (2, 1), (1, 2) (2, 2)

3 2
8

2
8

4
8 0 0 0

4 3
8

3
8

2
8

4
8

4
8 0

5 3
8

3
8

2
8

4
8

4
8 1

ζτ
33
16

33
16

30
16

36
16

36
16

40
16

Table 2. The first row lists the possible nonnegative stable initial states for

the fixed-energy sandpile on B3. The columns list the corresponding threshold
densities and probabilities for the various threshold degrees.

Exercise 8.47. Convince yourself that the divisors (1, 1), (2, 1), (1, 2), and (2, 2)
will never occur as the first nonnegative divisor in the chain started at (−100,−100).

Suppose, contrary to the table, that the Markov chain always first reached a
nonnegative state at (0, 0), (1, 0), or (0, 1). Then according to Table 2, we would
have equality between ζτ ((0, 0)) and ζτ ((−100,−100)). Instead, the data show
there is also the possibility of reaching either (2, 0) or (0, 2). Having reached one
of these states, the threshold degree is biased more towards 3, and the expected
density, 30/16, is below the stationary density.

Using Table 2 and the results from the simulation, we get the following estimate
for ζτ (−100,−100):(

(310)
33

16
+ (174 + 186)

33

16
+ (158 + 172)

30

16

)
1

1000
= 2.000625,

which, magically, is close to the stationary density of 2.

Problem 8.10 considers the n-banana graph, Bn, defined by connecting two
vertices by n edges, and requires the reader to show that limn→∞ ζτ ((0, 0))/ζst =
4/3.

8.3. The threshold density theorem

The paper on which this chapter is based, [66], starts with the question: “How much
memory does a critical system retain of its pre-critical past?” The above two exam-
ples show that when the fixed-energy sandpile Markov chain reaches threshold—its
critical state—the density of sand may depend on the initial state: the chain has
some memory of its starting point. Once one realizes this dependence, it becomes
natural to ask what would happen if the chain were allowed to mix for a long time
before reaching threshold, say by starting at a state D0 far from threshold. To help
answer that question, we will compare the fixed-energy sandpile of divisors (having
no sink) with the abelian sandpile of recurrents (having chosen a sink vertex).

In Figure 4, the left-hand side depicts divisors Dt in the fixed energy sandpile
evolving to threshold. As we have seen, these divisors determine a corresponding
evolution of recurrents ct in the abelian sandpile, depicted on the right. Over time,
the ct approach the uniform distribution on the set of recurrents (Corollary 8.28),

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

152 8. Threshold density

and thus, the basic divisors Bt appearing on the left also approach the uniform
distribution. This might lead one to believe that each basic divisor is equally likely
to appear as Bτ in the limit as deg(D0) → −∞. It would then follow that in the
limit the threshold density is the average density of the basic alive divisors, i.e., the
stationary density.

D0 ∼ B0 + e0s c0

D1 ∼ B1 + e1s c1

Dτ−1 ∼ Bτ−1 + eτ−1s cτ−1

Dτ ∼ Bτ + eτs cτ

Rs

(v1) (v1)

(v2) (v2)

(vτ−1) (vτ−1)

(vτ) (vτ)

Figure 4. Evolution to threshold. Divisors and their linearly equivalent basic

decompositions evolving to threshold are on the left, and their corresponding
recurrents are on the right: writing Bt = ct + degG(s)s with ct ∈ S(G), we

have Rs(Dt) = Rs(Bt) = ct.

Theorem 8.48 (Threshold density theorem). Let G = (V,E) be an Eulerian di-
graph. Then in the limit as deg(D0)→ −∞, the threshold density of the fixed-energy
sandpile on G converges to the stationary density of G:

ζτ (D0)→ ζst as deg(D0)→ −∞,

i.e., for all ε > 0, there exists N ∈ N such that |ζτ (D0) − ζst| < ε whenever
deg(D0) < −N .

We are not quite ready to prove the threshold density theorem, for the reasoning
just employed to motivate it is faulty! The basic divisors appearing at threshold are
not uniformly distributed. To understand this, consider the basic decomposition of
a divisor in the chain before threshold,

Dt−1 ∼ Bt−1 + et−1s = (ct−1 + degG(s)s) + et−1s

with et−1 < 0. In the next step in the abelian sandpile, ct−1
(vt)−−→ ct, the amount

of sand going into the sink is the burst size, βvt(Bt) = βvt(ct). In the fixed-energy
sandpile, we have then

Dt ∼ Bt + ets = Bt + (et−1 + βvt(Bt))s,

and threshold is reached if and only if

et−1 + βvt(Bt) ≥ 0.

Thus, a basic divisor with large burst sizes is more likely to appear at threshold.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

8.3. The threshold density theorem 153

Example 8.49. Consider the 3-banana graph of Example 8.45 consisting of two
vertices, u and v, connected by three edges. Take s := v as the sink. The basic
divisors and their burst sizes with respect to the two vertices are given below:

basic divisor burst sizes for u and s, respectively

B := (0, 3) 3, 1
B′ := (1, 3) 0, 1
B′′ := (2, 3) 0, 1.

If the first vertex, u, is the epicenter, then (evolving from a stable initial state)
there are three possibilities for the basic decomposition of the threshold divisor:
B + 0 · s, B + 1 · s, and B + 2 · s, whereas if s is the epicenter, the possibilities are
B+0 ·s, B′+0 ·s, and B′′+0 ·s. As we will see later, it turns out that if vertices are
chosen with equal probabilities, these six possibilities are equally likely, making B
four times more likely to occur at threshold than either B′ or B′′. Nevertheless,
in accordance with the threshold density theorem, averaging these six possibilities
gives a threshold density of 2, which happens to equal the stationary density!

A curious marathon. We’ve just seen that as the fixed-energy sandpile runs
in tandem with the abelian sandpile, the basic divisors and their corresponding
recurrents approach the uniform distribution. However, the basic divisor at the
time of threshold depends on burst sizes, which are functions of both the basic
divisors and the vertices. We construct a new Markov chain to keep track of these
data.

Definition 8.50. Fix a sink vertex s, and consider the directed graph M(G, s)
with vertex set V := V × B(G) and directed edges

E := {((v′, B′), (v,B)) : (v′, B′), (v,B) ∈ V and B′
(v)−−→ B}.

Define the length of each edge by the burst size

`((v′, B′), (v,B)) = βv(B) = deg(B′)− deg(B) + 1.

Next, define the corresponding vertex-divisor Markov chain corresponding toM(G, s)
to have state space V and transition probabilities

P ((v′, B′), (v,B))) =

{
α(v) if B′

(v)−−→ B,

0 otherwise.

Since we are assuming that there is a positive probability of choosing each
vertex in the fixed-energy sandpile (α(v) > 0 for all v ∈ V), it is straightforward
to check that the vertex-divisor chain is irreducible, with stationary distribution π

given by π((v,B)) = α(v)
| S(G)| for all (v,B) ∈M(G, s) (cf. Problem 8.12).

Note that M(G, s) is Eulerian with each vertex having degree |V |. In particular,
for each vertex-divisor pair (v,B), there is a unique basic divisor B′ such that

B′
(v)−−→ B, and thus an edge ((v′, B′), (v,B)) for each v′ ∈ V . Hence, the length of

each incoming edge is βv(B).

Example 8.51. Returning to the banana graph B3 in Example 8.49, Figure 5
displays the graph M(B3, s) with edges labeled by burst size.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

154 8. Threshold density

(u,B) (u,B′)

(u,B′′)

(s,B)

(s,B′)(s,B′′)

0

03

1

1

1

0

0

3

1

11

.

Figure 5. The vertex-divisor digraph M(B3, s) with edges labeled by burst size.

As suggested in [66], we now imagine a “Markov” marathon in a town whose
street map is M(G, s). The intersections in the town are the vertex-divisor pairs
forming the vertices of M(G, s). From each intersection (v′, B′) there is one out-
going (one-way) street for each vertex v of G. The length of the road from (v′, B′)
to (v,B) is the burst size βv(B). The route for the marathon is determined
randomly for each runner in accordance with the Markov chain corresponding
to M(G, s).

To start the marathon, an integer total distance d is decided upon, and runners
are assigned to starting intersections in whatever manner. During the race, when
a runner arrives at an intersection, the out-going road to their next intersection is
chosen at random according to the distribution α for the vertices of the abelian
sandpile on G. A runner finishes at the first intersection at which their cumulative
distance Cd is d or greater. At that point, the runner records the pair (r, Cd − d)
consisting of the finishing road r (an edge of M(G, s)) and the excess distance.

What can we expect for each runner’s record (r, Cd−d) in the limit as d→∞?
Start with the excess distance, ed = Cd − d. If r = ((v′, B′), (v,B)), we must have
0 ≤ Cd − d < βv(B). As we will soon see, it turns out that in the limit, given that
the runner has stopped at (v,B), each of these βv(B) possibilities for the excess
distance is equally likely. (The loops of length 1 in Figure 5 may suggest why this
is true.) And next for the insight which unlocks the threshold density theorem: in
the limit, the triple (v,B, e) where e is any of the possible excess distances at (v,B)
occurs with probability α(v)/| S(G)|. For instance, if α is the uniform distribution,
then all of these triples are equally likely.

Markov renewal. To formalize the marathon just described, let (Ω, P, (Xt)) be
an irreducible finite Markov chain with stationary distribution π, and let E :=
{(x, y) : P (x, y) > 0)} be the edges in the chain’s corresponding digraph. Let
` : E → N be a length function on the edges. The length of a path p is λ(p) =∑
ε∈p `(ε) where the sum is taken over the edges ε ∈ E of p. We assume that ` is

aperiodic in the sense that the gcd of the lengths of the closed paths is one. This

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

8.3. The threshold density theorem 155

means that closed paths of every sufficiently large length may occur. For each d ∈ N
consider the random time τd := min{t : λt ≥ d} where λt :=

∑t
i=1 `((Xi−1, Xi)).

Theorem 8.52. (Markov renewal theorem) Let x0, x, y ∈ Ω be any states, and let
e ∈ N. Then, as d→∞,

Px0
{(Xτd−1, Xτd , λτd − d) = (x, y, e)} −→


1
Z π(x)P (x, y) if 0 ≤ e < `(x, y),

0 otherwise.

with normalization constant Z =
∑

(x,y)∈E π(x)P (x, y)`(x, y).

A proof of the above theorem is beyond the scope of this text. The result
appears as Proposition 11 in [66] where it is noted to be a special case of a more
general Markov renewal theorem due to Kestent ([54]).

We now apply our Markov renewal theorem to the vertex-divisor Markov chain
of Definition 8.50.

Theorem 8.53. Let G be an Eulerian graph, and choose a probability distribution
α : V → [0, 1] such that α(v) > 0 for all v ∈ V . Let (Dt) be the fixed-energy
sandpile on G with threshold time τ = τ(D0) and epicenter vτ . Suppose the basic
decomposition of the threshold divisor with respect to s ∈ V is

Dτ = Bτ + eτs− Lστ .
As deg(D0)→ −∞, the joint probability distribution of the triple (vτ , Bτ , eτ) con-
verges:

PD0
{(vτ , Bτ , eτ) = (v,B, e)} →


α(v)

| S(G)|
if 0 ≤ e < βv(B),

0 otherwise.

Proof. Consider the basic decomposition Dt = Bt + ets−Lσt. Since Dt is alive if
and only if et ≥ 0 (Lemma 8.35), it follows that the threshold time may be written
as

τ = min{t ≥ 0 : et ≥ 0}.
But by Lemma 8.40,

et = et−1 + βvt(Bt) = et−1 + `((vt−1, Bt−1), (vt, Bt)).

Therefore, et = e0 + λt for all t > 0, so that

τ = min{t ≥ 0 : λt ≥ −e0}.

The length function ` for the vertex-divisor chain is aperiodic since for each
basic divisor B we have `((s,B), (s,B)) = 1. So the Markov renewal theorem
applies and, letting d := −e0, it says that in the limit as e0 → −∞,

PD0
{((vτ−1, Bτ−1), (vτ , Bτ), eτ) = ((v′, B′), (v,B), e)}

−→


1

Z

α(v′)

| S(G)|
α(v) if B′

(v)−−→ B and 0 ≤ e < βv(B),

0 otherwise.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

156 8. Threshold density

Here, the normalization constant Z is given by

Z =
∑

((v′,B′),(v,B))∈E

α(v′)

| S(G)|
α(v)βv(B)

=
∑

v,v′∈V
α(v)α(v′)

1

| S(G)|
∑

B∈B(G)

βv(B).

But the inner average of burst sizes must be one by the conservation of sand.
Indeed, for any vertex v ∈ V , the operator c 7→ c ~ rv := (c + v)◦ permutes the
elements of the sandpile group, S(G), and hence,∑

c∈S(G)

βv((c+ v)◦) =
∑

c∈S(G)

deg(c)−
∑

c∈S(G)

deg(c~ rv) + | S(G)|

= | S(G)|.

Substituting, we see that Z =
∑
v,v′∈V α(v)α(v′) =

(∑
v∈V α(v)

)2
= 1. Our the-

orem now follows by summing the earlier convergence statement over the pairs
(v′, B′) and noting that e0 → −∞ if and only if degD0 → −∞. �

To appreciate the clarity the previous theorem brings to the nature of the
threshold state, the reader is encouraged to try the following exercise.

Exercise 8.54. Let G be the path graph on three vertices but with one doubled
edge:

v1 v2 v3

.

Take α to be the uniform distribution on the vertices. There are seven possible
threshold divisors (assuming a stable initial state), which we group below according
to linear equivalence classes:

(0, 3, 0) ∼ (0, 2, 1) ∼ (2, 1, 0) ∼ (2, 2,−1)

(1, 3, 0) ∼ (1, 2, 1)

(2, 2, 0).

For the following exercises, take “at threshold” to mean “at threshold in the limit
as D0 → −∞”. For each of the three choices of sink vertex:

(1) Compute the two basic divisors and their burst sizes with respect to all three
vertices.

(2) For each of the seven possible threshold divisors D, write D ∼ B+ ev where B
and e come from the basic decomposition. (There are really just three cases—
one for each divisor class of a threshold divisor.)

(3) Find the six 3-tuples of the form (v,B, e) where v is a vertex,B is a basic divisor,
and e is a possible excess value (i.e., a nonnegative integer less than βv(B)).
Since α is the uniform distribution, Theorem 8.53 says that each of these tuples
is equally likely to occur at threshold.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

8.3. The threshold density theorem 157

(4) Using the above 3-tuples, compute the probabilities of each of the two basic
divisors occurring in the basic decomposition at threshold. Use these prob-
abilities to show that the threshold density is the stationary density (in the
limit).

(5) Again using the 3-tuples, check that each vertex occurs at threshold with the
same probability.

You should find that in the case of one of the vertices, one basic divisor is five times
more likely to occur than the other at threshold, and in the case of the other two
vertices, one basic divisor is twice as likely to occur.

Why can’t the seven possible threshold divisors be equally likely to occur at
threshold?

Corollary 8.55. Let s, v ∈ V , let B ∈ B(G, s), and let e, n ∈ N. We have the
following in the limit as deg(D0)→ −∞ :

(1)

PD0{Bτ = B} → 1

| S(G)|
∑
v∈V

α(v)βv(B),

(2)

PD0{vτ = v} → α(v),

(3)

PD0
{eτ = e | vτ = v,Bτ = B} →


1

|βv(B)|
if 0 ≤ e < βv(B),

0 otherwise,

(4)

PD0
{deg(Dτ) = n} → |{B ∈ B(G, s) : deg(B) = n}|

| S(G)|
.

Remark 8.56. In words, the first three parts of this corollary say that in the long
run:

(1) The probability of a given basic divisor at threshold is proportional to the
average burst size of that divisor, with proportionality constant 1/| S(G)|.

(2) The probability of a given vertex being the epicenter is just the probability of
drawing that vertex. The paper [66, p. 1007] suggests this result is an instance
of a general principal:

. . . in a system driven slowly to criticality from a highly subcritical ini-
tial state, stress is distributed uniformly in the sense that the probabil-
ity of triggering a system-spanning avalanche by applying additional
stress does not depend on where the additional stress is applied.

(3) Given the epicenter, threshold divisor, and choice of sink vertex, each possibly
occurring amount of excess sand—above that needed to be alive—in the basic
decomposition of the divisor is equally likely.

Proof of Corollary 8.55. Part (1) follows from summing over v and e in Theo-
rem 8.53.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

158 8. Threshold density

For Part (2), we first consider the case where the epicenter is the sink. A divisor
with basic decomposition B + es − Lσ is stabilizable if and only if e < 0. So the
only way for the epicenter to be the sink is if eτ = 0. (Recall that βs(B) = 1
since adding a grain of sand to the sink causes no toppling in the abelian sandpile.)
Therefore,

(8.1) PD0
{vτ = s,Bτ = B} = PD0

{(vτ , Bτ ,mτ) = (s,B, 0)} → α(s)

| S(G)|
by Theorem 8.53. Part (2) follows by taking v to be the sink and summing over B.

Part (3) is an immediate consequence of Theorem 8.53.

For Part (4), we need to consider basic decompositions with respect to various
sinks s ∈ V . So for a given choice of sink s, write the basic decomposition of a
divisor as

Dt = Bst + est s− L(σst).

Then we have deg(Dt) = deg(Bst) + est for all t. As mentioned in the proof of
Part (2), the only way for the epicenter to be the sink, vτ = s, is for esτ = 0, so that
deg(Dτ) = deg(Bsτ). But then conditioning on vτ = s yields

PD0
{deg(Dτ) = n} =

∑
s∈V

PD0
{vτ = s,deg(Dτ) = n}

=
∑
s∈V

PD0{vτ = s,deg(Bsτ) = n}.

By (8.1), above, in the proof Part (2), this sum converges as deg(D0)→ −∞ to∑
s∈V

α(s)

| S(G)|
|{B ∈ B(G, s) : deg(B) = n}|,

Our result follows since |{B ∈ B(G, s) : deg(B) = n}| is independent of s by
Theorem 8.42. �

8.3.1. Proof of the threshold density theorem. Corollary 8.55 (4) immedi-
ately implies Theorem 8.48, which states that the limit of the threshold density as
deg(D0)→ −∞ is the stationary density:

ζτ (D0)→ ζst.

Indeed, we have

ζτ (D0) = ED0

deg(Dτ)

|V |

=
∑
n≥0

PD0
{deg(Dτ) = n} n

|V |

→
∑
n≥0

|{B ∈ B(G, s) : deg(B) = n}|
| S(G)|

n

|V |

=
1

| S(G)|
∑

B∈B(G,s)

deg(B)

|V |

= ζst.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Notes 159

Note that the sum over n is finite since there is an upper bound for the degree of
recurrent sandpiles, hence an upper bound for the degree of basic alive divisors.

Notes

This chapter is an exposition of the main result in the paper Threshold State and a
Conjecture of Poghosyan, Poghosyan, Priezzhev and Ruelle ([66]), by Lionel Levine.
The reader is encouraged to consult that work for further context and history. We
recommend [65] as a compatible reference for the underlying theory of Markov
chains.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 8

8.1. Suppose that (Ω, P, (Xt)) is a finite Markov chain and f : Ω→ R is a function
on the set of states. Thinking of P as a matrix and f as a column vector, show
that the entries of Pf are the expectation values for f at the next time step. That
is, for all states x ∈ Ω,

Pf(x) = EX0=x{f(X1)}.

8.2. Show that Proposition 8.32 is false without the assumption of strong connec-
tivity by giving an example of a sandpile graph G with linearly equivalent divisors
D ∼ D′ for which D is alive (unstabilizable through a sequence of legal topplings)
and D′ is stable.

8.3. By Corollary 5.24, a divisor on an undirected graph is minimally alive if and
only if its degree equals the number of edges of the graph. Give an example of an
Eulerian graph for which this result does not hold.

8.4. Let G be a sandpile graph with sink s. Let c ∈ S(G) and v ∈ V . Show the
following inequalities for burst sizes:

(a) βv(cmax) ≤ βv(c)
(b) βv((cmax + v)◦) ≥ βv(c).

8.5. Let T be a tree with n vertices, and consider the fixed-energy sandpile on T .

(a) Show that the stationary density of T is ζ = 1− 1/n.

(b) Show that for every stable divisor D, the threshold density of the fixed-energy
sandpile with initial state D is equal to the stationary density: ζτ (D) = ζ.

8.6. Let G be the diamond graph (formed by removing an edge from the complete
graph on 4 vertices). Consider the fixed-energy sandpile on G with the uniform
distribution on draws from the vertices.

(a) Compute the stationary density of G directly from the definition.

(b) Compute the threshold density of G starting with D0 = ~0 using the method
of Example 8.45.

8.7. Let G be the house graph (Figure 7 in the Problems section for Chapter 2).
Find a stable divisor D and distinct vertices u and v such that D(u) < 0 but D+ v
is alive.

8.8. Let G be a loopless undirected graph of genus g.

(a) Let c be a recurrent sandpile on G with respect to the sink vertex s. Prove
the following upper bound for burst sizes:

βv(c) ≤ g + 1,

for all vertices v.

(b) Let D be a stable divisor on G, and suppose there exists some v ∈ V such
that F = D + v is alive. Thus, F is a possible threshold divisor for the fixed-
energy sandpile on G. Prove that D(u) ≥ degG(u)− g − 1 for all u ∈ V . (See
Problem 8.7 for an example where the inequality is sharp.) Thus, every divisor

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 8 161

that is the threshold divisor for the fixed-energy sandpile on G can arise from
the chain with initial condition

D0 =
∑
v∈V

(degG(v)− g − 1)v = K + (1− g)1V

where K is the canonical divisor and 1V =
∑
v∈V v.

8.9. Consider the fixed-energy sandpile on K4 in which draws from the vertices are
made uniformly at random. According to Chapter 11, Section 11.1, the recurrent
sandpiles on K4 are the 16 coordinate-wise permutations of the following:

(0, 1, 2), (0, 2, 2), (1, 1, 2), (1, 2, 2), (2, 2, 2).

Exploiting symmetry will help with the following calculations.

(a) Compute the stationary density of K4 directly from the definition.

(b) Compute the threshold density of K4 starting with D0 = ~0 using the method
of Example 8.45. (Warning: this is a fairly long calculation—it might be best
done by dividing the work among a group of people.)

8.10. Let Bn be the n-banana graph consisting of two vertices u, v joined by n edges.
Example 8.45 considers the case where n = 3. Figure 3 should be helpful for this
problem.

(a) Show that the stationary density of Bn is

ζst(Bn) =
3

4
n− 1

4
.

(b) Show that the threshold density for initial state (0, 0) is

ζτ ((0, 0)) =
n

2n

n−1∑
k=0

1

2k

(
n+ k

k

)
.

(c) From the preceding, show

ζτ ((0, 0)) = n

(
1−

(
2n
n

)
4n

)
.

(d) Using Stirling’s approximation, show

ζτ ((0, 0)) ∼ n
(

1− 1√
πn

)
,

where f(n) ∼ g(n) means limn→∞ f(n)/g(n) = 1.

(e) Show

lim
n→∞

ζτ ((0, 0))

ζst(Bn)
=

4

3
.

8.11. We say a divisor D is a potential threshold divisor if it may arise at the
threshold divisor for the fixed-energy sandpile with respect to some stable initial
state. This problem shows that not every potential threshold divisor is a basic alive
divisor with respect to some vertex. Let G be the graph pictured in Figure 6. The
sandpile group for G has order 3, and thus there are 3 basic alive divisors for each
of the 5 vertices of G, accounting for 15 threshold divisors. Find the four remaining
threshold divisors (two of which are nonnegative).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

162 8. Threshold density

v1 v2 v3

v4

v5

Figure 6. Graph for Problem 8.11.

8.12. Show that the vertex-divisor Markov chain of Definition 8.50 is irreducible
and has stationary density π given by π((v,B)) = α(v)

| S(G)| for all pairs (v,B).

8.13. Let Bn be the n-banana graph consisting of two vertics v, s joined by n edges.
Consider the fixed-energy sandpile on Bn with the uniform distribution α(v) =
α(s) = 1/2 on its vertices.

(a) Describe all potential threshold divisors (using the terminology of Problem 8.11)
and their basic decompositions.

(b) For each basic divisor B, compute P(Bτ = B) in the limit as deg(D0)→ −∞.

(c) Prove that, unlike in the case of Exercise 8.54, each potential threshold divisor
is equally likely in the limit.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Part 3

Topics

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Chapter 9

Trees

This chapter provides two proofs of the matrix-tree theorem, which counts the
number of spanning trees of a graph using the Laplacian. The version of the
theorem presented here applies to directed graphs, for which the appropriate notion
of spanning tree is a rooted spanning tree—a subgraph for which each vertex has a
unique directed path to a selected root vertex. For an undirected graph, we may
instead think of a spanning tree as a connected acyclic subgraph containing all of
the vertices.

For us, an important consequence of the matrix-tree theorem is that the number
of elements in the sandpile group of a graph is the number of spanning trees of the
graph (rooted at the sink). For example, Figure 1 displays the eight spanning
trees of the diamond graph, a graph whose sandpile group is isomorphic to Z8.
Section 9.2 presents several corollaries, including the use of rooted spanning trees
to compute the kernel of the Laplacian of a directed sandpile graph.

The remaining sections of the chapter discuss tree bijections and describe the
remarkable rotor-routing process which provides an action of the sandpile group on
the set of spanning trees.

Figure 1. Spanning trees of the diamond graph.

165

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

166 9. Trees

9.1. The matrix-tree theorem

Let G = (V,E) be a directed graph. Recall that for us this has been taken to
mean that V is a finite set of vertices, E is a finite multiset of directed edges,
and G is (weakly) connected. For convenience, however, in this chapter we drop
the last condition and make no connectedness assumption. A subgraph of G is a
directed graph whose vertices and directed edges form sub(multi)sets of V and E,
respectively.

Definition 9.1. A (directed) spanning tree of G rooted at s ∈ V is a subgraph T
such that for all v ∈ V , there exists a unique directed path in T from v to s. The
vertex s is the root or sink of the tree.

If T is a directed spanning tree of G rooted at s, then (cf. Proposition A.26):
(i) T contains all of the vertices of G (hence, the word “spanning”); (ii) T contains
no directed cycles; and (iii) for all vertices v of G, the outdegree of v in T is 0 if
v = s, and is 1, otherwise. In particular, T contains no multiple edges.

Example 9.2. The graph pictured below has three directed edges and one undi-
rected edge:

s

v1

v2

.

The determinant of its reduced Laplacian with respect to s is

det

(
3 0
−2 1

)
= 3,

which is the number of spanning trees rooted at s, as shown below:

s

v1

v2 s

v1

v2 s

v1

v2

.

Note that second two trees are different since the multiple edges of the form (v1, v2)
are counted as distinct.

Let L be the Laplacian matrix of G relative to an ordering of the vertices,
v1, . . . , vn. For each k ∈ {1, . . . , n}, let L(k) denote the (n − 1) × (n − 1) matrix
formed by removing the k-th row and column of L. This is the reduced Laplacian
for G with respect to vk.

Theorem 9.3 (Matrix-tree). The determinant of L(k) is the number of spanning
trees of G rooted at vk.

Proof. Since a permutation of the vertices induces a corresponding permutation
of the rows and columns of L, it suffices to consider the case k = n. For ease

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

9.1. The matrix-tree theorem 167

of notation, we write L̃ := L(n). Letting aij denote the number of times (vi, vj)
appears as an edge of G, we have

L̃ =


∑
i6=1 a1i −a21 −a31 . . . −an−1,1

−a12

∑
i6=2 a2i −a32 . . . −an−1,2

...
...

...
. . .

...
−a1,n−1 −a2,n−1 −a3,n−1 . . .

∑
i6=n−1 an−1,i


where

∑
i6=k aki denotes the sum over i ∈ {1, . . . , n} \ {k}. Each column encodes

the rule for reverse-firing the corresponding vertex.

Let Sn−1 be the permutation group on {1, . . . , n− 1}. Recall that the sign of
σ ∈ Sn−1 is sgn(σ) := (−1)t where t is the number of factors in any expression
for σ as a product of transpositions—it records whether an even or odd number of
swaps is required to create the permutation σ. Let Fix(σ) be the set of fixed points
of σ:

Fix(σ) := {i ∈ {1, . . . , n− 1} : σ(i) = i}.
Then

(9.1) det L̃ =
∑

σ∈Sn−1

sgn(σ)L̃σ(1),1 · · · L̃σ(n−1),n−1,

where

L̃σ(k),k =

{∑
i6=k ak,i if k ∈ Fix(σ)

−ak,σ(k) otherwise.

The idea now is to expand (9.1) into signed monomials in the aij and to think of
each monomial as a directed graph by identifying aij with the directed edge (vi, vj)
labeled with the number of times this edge appears in G, i.e., with aij , itself:

vi vj

aij
.

We then show that after cancellation due to the signs of the permutations, the
remaining monomials correspond exactly to the distinct spanning trees rooted at vn.
Each monomial itself—a product of various aij—is an integer which counts the
number of times its corresponding spanning tree occurs as a spanning tree of G.
(Recall that since G may have repeated edges, a spanning tree may occur more
than once.)

We pause now for an extended example. For those readers wishing to skip
ahead, the end of the example is marked with a line.

Example 9.4. Take n = 10 and σ = (2, 7)(3, 5, 9) ∈ S9. The set of fixed points
is Fix(σ) = {1, 4, 6, 8} and sgn(σ) = sgn((2, 7)) sgn((3, 5, 9)) = (−1) · 1 = −1. The

term in the expansion of det L̃ corresponding to σ is

sgn(σ)L̃σ(1),1L̃σ(2),2 · · · L̃σ(9),9

= (−1)(a1,2 + · · ·+ a1,10)(−a2,7)(−a3,5)(a4,1 + · · ·+ a4,10)′

· (−a5,10)(a6,1 + · · ·+ a6,10)′(−a7,2)(a8,1 + · · ·+ a8,10)′(−a9,3),

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

168 9. Trees

where the prime symbol on a factor indicates the term of the form ai,i should be
omitted from the enclosed sum. Continuing,

= (−1)[

σ(1)=1︷ ︸︸ ︷
(a1,2 + . . .)

σ(4)=4︷ ︸︸ ︷
(a4,1 + . . .)′

σ(6)=6︷ ︸︸ ︷
(a6,1 + . . .)′

σ(8)=8︷ ︸︸ ︷
(a8,1 + . . .)′]

· [(−a2,7)(−a7,2)︸ ︷︷ ︸
(2,7)

(−a3,5)(−a5,9)(−a9,3)︸ ︷︷ ︸
(3,5,9)

].

Question: Which monomials, identified with directed graphs, appear in the ex-
pansion of the above?

Answer: For each fixed point i of σ, we get a choice of any edge of the form

vi vj

aij
where j ∈ {1, . . . , 10} and j 6= i. For each non-trivial cycle of σ, there is

only one choice:

(2,7)

v2

v7

a2,7 a7,2 (3,5,9)

v3

v5

v9

a3,5 a5,9

a9,3

Figure 2 considers three monomials coming from the expansion of the term in

det L̃ corresponding to σ. Each monomial m corresponds to a directed graph Gm.
Column F shows the part of Gm that comes from choices for the fixed points of σ,
and column C shows the part that comes from the nontrivial cycles. Note that, as in
example (c), these two parts may share vertices. There may be an edge connecting
a fixed point vertex to a cycle vertex in Gm. Example (b) shows that it is not
necessary for v10 to occur in Gm. In general, v10 does not appear if and only if each
vertex in Gm has a path to a directed cycle (since the outdegree for each non-root
vertex is 1).

Finally, it is important to determine the sign of each monomial corresponding

to σ in the expansion of det L̃. The sign is determined by sgnσ and by the number
of factors of the form −aij that go into the calculation of the monomial. With
these two considerations in mind, it is straightforward to see that the resulting sign
is (−1)# non-trivial cycles of σ. For instance, consider the monomial in example (a) in

Figure 2. It appears in the expansion of det L̃ in the term

sgn((2, 7)(3, 5, 9)) a1,10a4,8a6,4a8,6︸ ︷︷ ︸
Fix(σ) = {1, 4, 6, 8}

(−a2,7)(−a7,2)︸ ︷︷ ︸
(2, 7)

(−a3,5)(−a5,9)(−a9,3)︸ ︷︷ ︸
(3, 5, 9)

.

Each cycle of σ ultimately contributes a factor of −1:

sgn((2, 7))(−a2,7)(−a7,2) = −1 · a2,7a7,2

sgn((3, 5, 9))(−a3,5)(−a5,9)(−a9,3) = −1 · a3,5a5,9a9,3.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

9.1. The matrix-tree theorem 169

F C monomial

(a)

v1

v10 v4 v6

v8 v2

v7 v3

v5

v9

a1,10 a2,7 a3,5 · · · a9,3

(b)

v4

v1 v6

v8 v2

v7 v3

v5

v9

a1,8 a2,7 a3,5 · · · a9,3

(c)

v4

v6

v10

v1

v5

v8 v2

v7 v3

v5

v9

a1,5 a2,7 a3,5 · · · a9,3

Figure 2. Monomials and corresponding graphs for Example 9.4.

We now return to the proof. The monomials in the expansion of (9.1) cor-
respond exactly with signed, weighted, ordered pairs (F,C) of graphs F and C
formed as follows:

(1) Choose a subset X ⊆ {1, . . . , n− 1} (representing the fixed points of some σ).

(2) Make any loopless, directed (not necessarily connected) graph F with vertices
{1, . . . , n} such that

outdegF (i) =

{
1 if i ∈ X
0 if i /∈ X.

(3) Let C be any vertex-disjoint union of directed cycles of length at least 2 (i.e.,
no loops) such that C contains all of the vertices {1, . . . , n− 1} \X.

Each of these ordered pairs of graphs (F,C) is associated with an element of Sn−1,
with the vertices of outdegree one in F determining the fixed points and with C
determining the cycles. In general, this is a many-to-one relationship, given the
choices in step (2). The weight of (F,C), denoted wt(F,C) is the product of its
labels—those aij such that (vi, vj) occurs in either F or C—multiplied by (−1)γ

where γ is the number of cycles in C. For instance, for each of the three examples
in Figure 2, the number of cycles in C is 2, so the weight is just the listed monomial,
without a sign change. With this notion of weight, it then follows in general that

det L̃ =
∑

(F,C)

wt(F,C).

Let Ω denote the set of ordered pairs (F,C), constructed as above, but such that
either F or C contains a directed cycle. We show that the monomials corresponding
to elements of Ω cancel in pairs in the expansion of (9.1) by constructing a sign
reversing transposition on Ω. Given (F,C) ∈ Ω, pick the cycle γ of the disjoint

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

170 9. Trees

union F tC with the vertex of smallest index. Then if γ is in F , move it to C, and
vice versa. Formally, if the cycle is in F , define F ′ = F \ {γ} and C ′ = C ∪ {γ},
and if it is in C, define F ′ = F ∪{γ} and C ′ = C \{γ}. This defines a transposition
(F,C) 7→ (F ′, C ′) on Ω such that wt(F,C) = −wt(F ′, C ′) since the number of
cycles in C differs from the number of cycles in C ′ by one. See Figure 3 for an
example. It follows that in the sum

∑
wt(F,C), terms paired by the transposition

(F,C) =

(F ′, C ′) =

v4

v1 v6

v8

,

v2

v7 v3

v5

v9

v4

v1

,
v1 v6

v8 v2

v7 v3

v5

v9

Figure 3. Sign reversing transposition.

cancel, leaving only those terms wt(F,C) for which the transposition is undefined,
i.e., those (F,C) such that the graph F t C contains no cycles. In this case, the
corresponding permutation is the identity permutation, C = ∅, and F is a spanning
tree rooted at vn. The weight, wt(F,C), counts the number of times this spanning
tree occurs as a spanning tree of G due to G having multiple edges. �

9.1.1. Matrix-tree through deletion and contraction. This section presents
a second proof of the matrix-tree theorem. If e = (u, v) is a non-loop edge of
G = (V,E), define G − e to be the graph formed from G by removing e (i.e.,
decrease its multiplicity by 1). It has the same vertex set as G, and like G, it is
not necessarily connected. We say G− e is formed from G by deletion of e. Next,
define G e to be the graph formed from G by removing all edges with tail u, i.e.,
all edges of the form (u,w) with w ∈ V , and then identifying the vertices u and v,
naming the resulting vertex v. We say G e is formed from G by contraction of e.1

See Figure 4 for an example.

The following counts are evident for spanning trees rooted at v = e+:

#

(
spanning trees

of G− e

)
= #

(
spanning trees of G not

containing e

)
,

and

#

(
spanning trees

of G e

)
= #

(
spanning trees of G

containing e

)
.

Letting κ denote the number of spanning trees rooted at v, we have

(9.2) κ(G) = κ(G− e) + κ(G e).

1We use the notation G e to distinguish it from the usual contraction, G/e, for undirected graphs,
formed by simply contracting the edge e and not removing additional edges (cf. Chapter 14).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

9.1. The matrix-tree theorem 171

u

v w

s

e

Gu

v w

s

G− e

v
w

s

G e

Figure 4. Deletion and contraction of an edge. Undirected edges represent a

pair of oppositely oriented directed edges.

We now present a proof of the matrix-tree theorem based on deletion and
contraction.

Proof. The proof goes by induction on the number of non-loop edges. To avoid
trivialities, assume that G has at least two vertices. Fix a root vertex v, and
consider all rooted trees and reduced Laplacians with respect to v.

If G has no non-loop edges, then both det L̃G and the number of spanning trees
are 0. More generally, if there is no non-loop edge into the root, v, and hence no

rooted spanning trees, then the sum of the rows of L̃G is zero, hence det L̃G = 0.
So the theorem holds in that case. Otherwise, we may assume there is an edge
e := (u, v) with u 6= v. For the sake of writing down matrices, order the vertices so
that u and v appear first and second, respectively. Comparing Laplacians (in block
form), we have

LG = LG−e +


1 0
−1 0

 .

0

0 0

Hence, for reduced Laplacians:

L̃G = L̃G−e +

 1
 .

0

0 0

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

172 9. Trees

The matrix L̃G e is formed by removing the rows and columns corresponding to u
and to v from LG, which is the same as removing those same rows and columns
from LG−e. Take determinants in the equation displayed above and use multilin-
earity to expand the right-hand side to see that

det L̃G = det L̃G−e + det L̃G e.

The result follows from (9.2) and induction. �

Remark 9.5. Another proof of the matrix-tree theorem in the undirected case is
based on writing the reduced Laplacian as the product of the reduced vertex-edge
incidence matrix with its dual, then expanding the determinant of the product using
the Binet-Cauchy theorem. For further details, see Chapter 9 of [87], for instance.

Remark 9.6 (Generalized weighted version of matrix-tree). In our first
proof of the matrix-tree theorem, we found it useful to think of an edge (vi, vj)
which appears with multiplicity aij as a single edge whose weight is aij . We can
then define the weight, wt(T), of a rooted spanning tree T to be the product of
the weights of its edges. These weights appeared as monomials in the expansion of

det L̃ in the proof. The weight of T then counts the number of times T appears
as a rooted spanning tree in G. We can generalize the matrix-tree theorem by
recognizing that, in fact, in either of our proofs, the weights aij could be replaced
by arbitrary elements in a commutative ring. For instance, one may assume that
the aij are indeterminates in a polynomial ring. The matrix-tree theorem that says
that

det L̃ =
∑
T

wt(T)

where the sum is over the rooted spanning trees of a directed edge-weighted graphG.

9.2. Consequences of the matrix-tree theorem

We now obtain several corollaries of the matrix-tree theorem. We first list a few
immediate corollaries, then present another determinantal formula for counting
trees, and finally consider the kernel of the Laplacian of a (directed) sandpile graph.

Corollary 9.7. Let G be a sandpile graph. Then the order of the sandpile group
of G is the number of directed spanning trees of G rooted at the sink.

Proof. The result follows immediately from Proposition 6.33. �

A tree on n labeled vertices is a connected undirected graph with n labeled
vertices and no cycles.

Corollary 9.8 (Cayley’s formula). The number of trees on n labeled vertices
is nn−2.

Proof. Problem 9.5. �

Let L(ij) denote the matrix obtained from the Laplacian L of G by removing
the i-th row and j-th column.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

9.2. Consequences of the matrix-tree theorem 173

Corollary 9.9. The ij-th cofactor, (−1)i+j detL(ij), of L is the number of directed
spanning trees rooted at the j-th vertex.

Proof. We have (−1)i+j detL(ij) = detL(jj) since the sum of the rows of L is the
zero vector (Problem 9.3). The result then follows from the matrix-tree theorem.

�

Corollary 9.10. Let G be a directed graph with n vertices. Suppose the Laplacian
matrix of G has eigenvalues µ1, . . . , µn with µn = 0. For each vertex v, let κv be
the number of directed spanning trees of G rooted at v. Then,

µ1 · · ·µn−1 =
∑
v

κv.

In other words, the product of these eigenvalues is the total number of rooted trees.

Proof. We may assume the vertex set is 1, . . . , n, with the i-th column of L cor-
responding to vertex i. First note that since L is singular, a zero eigenvalue µn
always exists. Factoring the characteristic polynomial of L, we have

det(L− Inx) = (µ1 − x) · · · (µn − x).

We calculate the coefficient of x in this expression in two ways. Since µn = 0, by
expanding the right-hand side, we see the coefficient is −µ1 . . . µn−1. Now consider
the left-hand side. For each i, let ri denote the i-th row of L, and let ei denote the
i-th standard basis vector. Then

det(L− Inx) = det(r1 − e1x, . . . , rn − enx).

By multilinearity of the determinant, letting L̃i denote the reduced Laplacian with
respect to vertex i, the coefficient of x is

n∑
i=1

det(r1, . . . , ri−1,−ei, ri+1, . . . , rn) = −
n∑
i=1

det(L̃i) = −
n∑
i=1

κi. �

Remark 9.11. If G is undirected, or more generally, if G is Eulerian (cf. Defini-
tion A.28 and Problem 9.4), then the number of spanning trees rooted at a vertex
is independent of the particular vertex. Calling this number κ, Corollary 9.10 says
in this case that

κ =
µ1 . . . µn−1

n
.

9.2.1. Another tree-counting formula. For an Eulerian multigraph (e.g., an
undirected graph), the number of directed trees rooted at any vertex is independent
of the vertex. In this case, we have a matrix-tree-like formula that does not depend
on a choice of vertex.

Proposition 9.12. Let G be an Eulerian multigraph on n vertices. Let L be the
Laplacian matrix of G, and let J be the n × n matrix with all entries equal to 1.
Then the number of spanning trees of G rooted at any vertex is

det(L+ J)/n2.

Proof. Problem 9.7. �

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

174 9. Trees

Exercise 9.13. Use Proposition 9.12 to quickly compute the number of spanning
trees (and hence the size of the sandpile group) of the complete graph, Kn.

9.2.2. Kernel of the Laplacian. Let G = (V,E, s) be a sandpile graph with
sink s, thus ensuring that G has at least one rooted spanning tree. For each v ∈ V ,
let θ(v) be the number of spanning trees of G rooted at v, thus defining a vector
θ ∈ Z|V |. Then let γ := gcd{θ(v)}v∈V , and define τ := θ/γ.

Theorem 9.14. The kernel of the Laplacian of G is generated by τ .

Proof. Order the vertices of G as v1, . . . , vn with vn = s. Define L(ij) and the
cofactors Cij := (−1)i+j detL(ij), as above. Since the sum of the rows of L is zero,
Problem 9.3 says that if we fix j, then Cij is independent of i. Now, fix i and
calculate the determinant of L by expanding along its i-th row:

0 = detL =

n∑
j=1

LijCij

=

n∑
j=1

LijCjj (independence of Cij on i)

=

n∑
j=1

Lij θ(vj) (matrix-tree theorem).

Thus, τ ∈ kerL.

Since G has at least one directed spanning tree into s, the matrix tree theorem
says that L has at least one nonzero (n− 1)× (n− 1) minor; hence, the rank of L
is at least n − 1. Since the rows of L add up to the zero vector, its rank is at
most n − 1. Therefore, kerL consists of all integer multiples of a single nonzero
integer vector. Since θ ∈ kerL, it follows that τ generates the kernel. �

Example 9.15.

(1) If G is undirected, or more generally, Eulerian, the number of trees rooted at
each vertex is independent of the vertex (cf. Corollary 12.3). Hence, γ = 1, and
kerL is spanned by (1, . . . , 1), as we saw earlier by other means.

(2) The graph

u v
p

q

has q trees into u and p trees into v. Hence, the kernel of its Laplacian is

kerL = ker

(
p −q
−p q

)
=
{
k · 1

gcd(p,q) (q, p) ∈ Z2 : k ∈ Z
}
.

Using the notation of Proposition 9.12, we have

det(L+ J)/22 =
p+ q

2
.

Our graph is Eulerian if and only if p = q, in which case, det(L + J)/22 = p
gives the number of spanning trees rooted into either vertex.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

9.3. Tree bijections 175

9.3. Tree bijections

As a consequence of the matrix-tree theorem, Corollary 9.7 says that the set of re-
current sandpiles and the set of spanning trees of a sandpile graph are equinumerous.
In this section, we refine Dhar’s burning algorithm (Algorithm 6, Section 7.5) to
provide an explicit bijection between these sets. In Part 1, we saw a “dual” ver-
sion of Dhar’s algorithm which tested for superstability. Correspondingly, there are
various refinements of Dhar’s algorithm providing bijections between superstables
and spanning trees. We will discuss two of these with the property that under the
bijections, the degree of a sandpile corresponds to an interesting property of its
associated tree.

Since the recurrents form a group, as do the superstables, each of these bi-
jections induces a group structure on the set of spanning trees. One could hope
that there is a natural group structure on the spanning trees, independent of these
bijections. Figure 1 from the beginning of the chapter shows this hope would be
unfounded: each tree in that figure is paired with a distinct symmetric tree; so there
can be no natural choice for the identity element. We could instead ask if there is
a natural action of the sandpile group on the set of spanning trees. Later in this
section, we shall see the elegant and astonishing rotor-router model provides a free
and transitive group action, although it requires adding a bit more structure to the
graph. The rotor-router model has the advantage of applying to arbitrary directed
sandpile graphs whereas the bijections we present based on Dhar’s algorithm apply
only to undirected multigraphs. Finally, we use what we have learned to address
the problem of choosing a random spanning tree.

9.3.1. Dhar’s tree bijection algorithm. Let G be an undirected sandpile graph
with sink s. Multiple edges are allowed, but to avoid trivialities, we assume G has
no loops. Let c ∈ S(G) be a recurrent sandpile. Firing the sink vertex adds sand
to its neighboring vertices and produces the sandpile b + c where b is the burning
sandpile of Chapter 7. By Dhar’s burning algorithm, b+ c stabilizes back to c with
each vertex firing exactly once. Dhar and Majumdar ([38]) imagine this process as
a fire spreading along edges, burning vertices in its path. At time 0, we burn (fire)
the sink, causing a subset B1 of its neighboring vertices to become unstable. At
time 1, we burn (fire) these vertices, causing a new set of vertices B2 to become
unstable. We burn these at time 2, and so on, until every vertex is burnt. Each
vertex u ∈ Bi becomes unstable after firing its neighbors in Bi−1. The trick to
forming a spanning tree is to choose one such neighbor for each u. But how does
one make a choice? The answer in [38] is to initially make an arbitrary choice, once
and for all, for an ordering of the edges of G. Having made that choice, we create
a spanning tree corresponding to each c as follows: For each u ∈ Bi, let Nu be its
set of neighbors in Bi−1. Just after firing Bi−1, say there are k ≥ degG(u) grains of
sand on u. If u is barely unstable, i.e., if k = degG(v), choose the first edge in Nu
to be part of the tree. If k = degG(v) + 1, choose the second edge, instead. In
general, choose the (k − degG(v) + 1)-th edge to be part of the tree.

Example 9.16. The top of Figure 5 depicts a graphG with edge ordering e1, . . . , e9.
Along the bottom, we illustrate the process just described for associating a spanning
tree to the recurrent c = (1, 3, 3, 2).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

176 9. Trees

s v1

v2 v3

v4

e1

e2 e3 e4

e5

e6 e7
e8
e9

G =

— newly burnt

— previously burnt

1

3 3

2

2

5 3

2

0

1 5

3

1

2 0

6

1

3 3

2

Figure 5. Dhar’s tree bijection via vertex firings (cf. Example 9.16).

After firing the sink, s, the vertices v1 and v2 are unstable. There is only one
edge connecting s to v1; so it becomes part of the spanning tree we are constructing.
On the other hand, both e2 and e3 connect s to v2, which means we need to make
a choice. Since v2 has 5 grains of sand, which is one more than needed to make it
unstable, we choose the second of the two, e3. After firing v1 and v2, the vertex v3

becomes unstable with 5 grains of sand, which is just enough to make it unstable.
Therefore, of the two edges, e4 and e5, connecting the vertices v1 and v2 to v3,
we choose the first, e4. Then, firing v3 results in 6 grains of sand on v4. That’s
two more than needed to make v4 unstable, so e9 is selected for the spanning tree.
Finally, firing v4 returns us to the original configuration.

Algorithm 7 is an implementation of Dhar’s tree bijection that closely follows
the original description in [38]. At each stage of the algorithm, the sum of the burnt
and unburnt neighbors of a vertex equals its outdegree. This allows the algorithm
to go forward by counting unburnt neighbors rather than firing vertices, modifying
the starting configuration, and testing for instability, as in Example 9.16.

By Proposition 9.19, below, Algorithms 7 and 8 provide a bijection between
recurrents and spanning trees.

Example 9.17. Let G be the graph in Figure 5 with the displayed edge-ordering.
Figure 6 illustrates Algorithm 7 applied to the recurrent c = (0, 3, 4, 1) on G.

Exercise 9.18. Again consider the graph G from Figure 5 with the given ordering
of edges.

(1) Apply Dhar’s tree bijection algorithm to associate spanning trees with each of
the following recurrents: (1, 1, 4, 2), (1, 0, 4, 2), (1, 1, 4, 0), and (0, 3, 4, 0).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

9.3. Tree bijections 177

Algorithm 7 Dhar’s tree bijection algorithm (recurrent→ spanning tree).

1: input:
G = (V,E) – undirected loopless multigraph with fixed ordering for E
s ∈ V – sink vertex
c ∈ S(G)

2: output: tree – spanning tree of G
3: initialization:

tree = ∅, unburnt = Ṽ := V \ {s}, newly burnt = {s}
4: while unburnt 6= ∅ do
5: burnable = ∅
6: unburnt nbrs = {u ∈ unburnt : u a neighbor of a vertex in newly burnt}
7: for u ∈ unburnt nbrs do
8: ξ = # edges connecting u to a vertex in unburnt

9: if c(u) ≥ ξ then
10: add u to burnable

11: e = [(c(u)− ξ) + 1]-th edge connecting u to a vertex in newly burnt

12: add e to tree

13: remove burnable from unburnt

14: newly burnt = burnable

15: return tree

Algorithm 8 Dhar’s tree bijection algorithm (spanning tree→ recurrent).

1: input:
G, s – as in Algorithm 7
tree – spanning tree of G

2: output: c – recurrent sandpile on G
3: initialization:

c = 0-sandpile, unburnt = Ṽ , newly burnt = {s}
4: while unburnt 6= ∅ do
5: burnable = {u ∈ unburnt : ∃uv ∈ tree with v ∈ newly burnt}
6: for u ∈ burnable do
7: ξ = # edges in G connecting u to a vertex in unburnt

8: F = {e1, e2, . . . } = edges connecting u to a vertex in newly burnt, in order
9: c(u) = ξ + (`− 1) for the unique index ` such that e` ∈ F ∩ tree.

10: remove burnable from unburnt

11: newly burnt = burnable

12: return c ∈ S(G)

(2) Apply Dhar’s tree bijection algorithm to associate recurrents with each of
the following spanning trees: {e1, e2, e5, e9}, {e1, e2, e4, e7}, {e3, e4, e6, e8}, and
{e2, e4, e5, e6}.

Proposition 9.19. Algorithm 7 defines a bijection from recurrent sandpiles to
spanning trees with inverse defined by Algorithm 8.

Proof. For each stable sandpile c on G, let B0 = B0(c) := {s} and, for i ≥ 1,
let Bi = Bi(c) be the vertices of G that are unstable after firing B0 ∪ · · · ∪ Bi−1

from c. Firing B0 produces the sandpile b+ c, where b is the burning sandpile. By

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

178 9. Trees

0

3 4

1

0

3 4

1

0

3 4

1

0

3 4

1

Figure 6. Another example of Dhar’s tree bijection algorithm (cf. Exam-
ple 9.17).

Theorems 7.5 and 7.6, the Bi are disjoint, and the sandpile c is recurrent if and
only if ∪i≥0Bi = V .

For each tree T of G containing s, let C0 = C0(T) = {s}, and, for i ≥ 1,
let Ci = Ci(T) be vertices of G that are connected by an edge of T to C0∪· · ·∪Ci−1

but are not contained in the set C0 ∪ · · · ∪Ci−1. In other words, Ci(T) is the set of
vertices at distance i from s in T . We have that T is a spanning tree if and only
if ∪i≥0Ci = V .

Consider Algorithm 7 with input c ∈ S(G). The effect of the i-th iteration of
the while-loop is to add a unique edge to tree for each u ∈ Bi which connects u
to a vertex in Bi−1. Thus, each element of Bi has a path in tree back to s, and
cycles are never formed. Since c is recurrent, ∪i≥0Bi = V , and hence the algorithm
terminates with tree a spanning tree of G. Thus, the algorithm determines a
mapping τ : S(G)→ T (G) where T (G) denotes the set of spanning trees of G.

Next, consider Algorithm 8 with input T ∈ T (G). Since T spans G, the
algorithm terminates, and its output is a sandpile which we will denote by ρ(T).
For each u ∈ V and subset W ⊆ V , let n(u,W) be the number of edges of G

connecting u to a point in W . For each i ≥ 1, let Wi = ∪i−1
j=0Cj(T). For u ∈ Ṽ ,

there is a unique i ≥ 1 such that u ∈ Ci(T), and

ρ(T)(u) = n(u,W c
i) + (`− 1).

where 1 ≤ ` ≤ n(u,Ci−1(T)). Since degG(u) = n(u,Wi) + n(u,W c
i), we have

ρ(T)(u) = degG(u) + (`− n(u,Wi))− 1,

and hence, ρ(c) is a stable sandpile.

We now claim Bi(ρ(T)) = Ci(T) for all i. We have B0(ρ(T)) = C0(T) = {s}.
Let i ≥ 1, and by induction suppose that Bj(ρ(T)) = Cj(T) for 0 ≤ j ≤ i − 1.

Take u ∈ Ci(T). Firing Wi = ∪i−1
j=0Cj(T) = ∪i−1

j=0Bj(ρ(T)) adds n(u,Wi) grains of

sand to u, and hence, having started at ρ(T), the net amount of sand on u is

ρ(T)(u) + n(u,Wi) = n(u,W c
i) + (`− 1) + n(u,Wi)

= degG(u) + (`− 1)

≥ degG(u).

Thus, u is unstable. This shows that Bi(ρ(T)) ⊇ Ci(T).

For the opposite inclusion, take v ∈ Bi(ρ(T))). There is a unique k such
that v ∈ Ck(T). If k 6= i, then since the Bj(ρ(T)) are disjoint and Bj(ρ(T)) = Cj(T)

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

9.3. Tree bijections 179

for 0 ≤ j ≤ i− 1, it follows that k > i. By definition,

ρ(T)(v) = n(v,W c
k) + (m− 1)

where 1 ≤ m ≤ n(v, Ck−1(T)). But then, after firing Wi from ρ(T), the amount of
sand on v is

ρ(T)(v) + n(v,Wi) = ρ(T)(v) + n(v,Wk)− n(v,Wk \Wi)

= degG(v) +m− 1− n(v,Wk \Wi).

Since Ck−1(T) ⊆ Wk \Wi, we have m ≤ n(v, Ck−1(T)) ≤ n(v,Wk \Wi). So it
follows that ρ(T)(v) +n(v,Wi) is stable. That’s a contradiction since v ∈ Bi(ρ(T))
means that after firing Wi = ∪i−1

j=0Bj(ρ(T)), the resulting sandpile is unstable at v.
Therefore, it must be that k = i.

We have shown by induction that Bi(ρ(T)) = Ci(T) for all i. One consequence,
since ∪i≥0Ci(T) = V , is that ρ(T) is recurrent. Therefore, Algorithm 8 defines a
mapping ρ : T (G)→ S(G).

Our next goal is to show that τ and ρ are inverses of each other. First,
take c ∈ S(G), and consider ρ(τ(c)). Directly from the construction of τ(c), it fol-
lows that Bi(c) = Ci(τ(c)) for all i ≥ 0, i.e., letting Wi = ∪i−1

j=0Bj(c), the Ci(τ(c))

are exactly those vertices that become unstable after firing Wi. Let u ∈ Ṽ and
select the unique i ≥ 1 for which u ∈ Bi(c). Let F = {e1, e2, . . . } be the ordered
list of edges connecting u to a vertex in Bi−1(c). Then by line 11 of Algorithm 7,
we have e` ∈ τ(c) where ` = c(u)− n(u,W c

i) + 1. So by line 9 of Algorithm 8,

ρ(τ(c))(u) = n(u,W c
i) + (`− 1) = c(u).

Hence, ρ(τ(c)) = c for all c ∈ S(G).

Now let T ∈ T (G), and consider τ(ρ(T)). We saw above that Bi(ρ(T)) = Ci(T)
for all i ≥ 0. Let e ∈ T . Then there exists a unique i ≥ 1 such that e = {u, v} with
u ∈ Ci(T) and v ∈ Ci−1(T) ⊆Wi = ∪i−1

j=0Cj(T). Say e is the `-th edge connecting u

to a vertex in Ci−1(T). Then

ρ(T)(u) = n(u,W c
i) + (`− 1).

Now apply Algorithm 7 to ρ(T). We have u ∈ Bi(ρ(T)) and v ∈ Bi−1(ρ(T)). So
during the i-th iteration of the while-loop, the vertex u is considered as an element
of unburnt nbrs with ξ = n(u,W c

i). Edge e = e` is added to tree since at line 11,

(ρ(T)(u)− ξ) + 1 = `.

Hence, e ∈ τ(ρ(T)) and it follows that τ(ρ(T)) ⊇ T . Since every spanning tree of G
has the same cardinality, τ(ρ(T)) = T . �

9.3.2. Tree bijections and external activity. In Part 1, Section 3.4, we pre-
sented Dhar’s algorithm for testing whether a configuration is superstable. There,
a configuration c is imagined as an assignment of c(v) firefighters to each vertex v.
The sink vertex is lit, and fire spreads along incident edges. If at any point in
the burning process, the number of burning edges incident on a vertex is strictly
greater than the number of firefighters there, the firefighters abandon the vertex
and the vertex is burnt. Fire can then spread along edges incident to that vertex.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

180 9. Trees

The configuration c is superstable if and only if in the end, each vertex has been
burnt.

Just as we saw for recurrents, a more controlled burning process yields a tree
bijection algorithm matching superstables with spanning trees. Here, we describe
a slight variation on a superstable-tree algorithm from [8]. Again fix an ordering
of the edges of G once and for all. Assign firefighters to vertices according to a
superstable c, and light the sink. At each step in the algorithm, list the unburnt
edges incident on burnt vertices in order: e1, . . . , ek. Set each of the edges on fire,
one at a time, in reverse order (from largest to smallest), until a first edge ei = {u, v}
is reached which joins a burnt vertex u to an unburnt vertex v such that the
number of already-burnt edges incident on v is equal to c(v). Light ei (which then
overwhelms the firefighters at v) and mark ei. Now repeat. The algorithm halts
when all of the vertices are burnt. At that point the set of marked edges forms a
spanning tree. The formal description of the algorithm in terms of pseudocode is
left to the reader.

1

0 0

2

1

0 0

2

1

0 0

2

1

0 0

2

1

0 0

2

Figure 7. Superstable-tree bijection algorithm (cf. Example 9.20). All red

edges are burnt. The dotted red edges are burnt but not part of the spanning

tree.

Example 9.20. Figure 7 illustrates the superstable-tree bijection algorithm. We
use the notation and edge-ordering displayed in Figure 5. The sink is lit, and fire
spreads along the largest incident edge, e3, to vertex v2. There are no firefighters
at v2, so v2 is burnt, and e3 becomes part of the spanning tree we are constructing.
In the next step, we examine the edges incident to one of two burnt vertices and
to an unburnt vertex: e1, e5, and e6. Of these, e6 = {v2, v4} is the largest, so it
is burnt. There are two firefighters at v4, and thus, v4 is not burnt. We burn the
next smallest edge, e5 = {v2, v3}, and v3 is burnt since there are no firefighters
protecting it. The edge e5 is added to the tree. Continue: in the next step,
we consider edges e1, e4, e7, e8, and e9. Burning edges e9 then e8 overwhelms the
firefighters as v4 and e8 is added to the tree. In the last step, we burn edges e4

and e1 which burns v1, and e1 is added to the tree. At this point, all vertices are
burnt so the algorithm halts. The tree spans G.

External activity. In addition to being a bijection, the algorithm just presented
has an extra, intriguing, property. Having fixed an ordering of the edges of G, there
is a statistic e(T) ∈ N called the external activity associated to each spanning tree T
of G. An edge e is externally active in T if it is not in T and if it is the smallest edge
in the unique cycle formed by adding e to T . Then e(T) is the number edges of
that are externally active in T . External activity will be discussed at length later,
in Section 14.5. We can now state the main theorem:

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

9.3. Tree bijections 181

Theorem 9.21 ([8, 26]). The superstable-tree algorithm gives a bijection between
superstables and spanning trees of G. After running the algorithm on a super-
stable c, the number of unburnt edges is the external activity of the resulting span-
ning tree, T , and we have

(9.3) e(T) = g − deg(c),

where g = |E| − |V |+ 1 is the genus of G.

After running the algorithm on a superstable c, note that each non-sink ver-
tex v accounts for c(v) + 1 burnt edges—just the number needed to overwhelm the

firefighters at v. This means that the number of burnt edges is deg(c) + |Ṽ |. So if
we know that the number of unburnt edges is equal to the external activity of the
resulting spanning tree, equation (9.3) follows.

Example 9.22. In Example 9.20, the two unburnt edges are e2 and e7. Adding e2

to the spanning tree, T , gives a cycle with two edges, e2 and e3. Since e2 is smaller
than e3 in our ordering, it is externally active in T . The story is similar with e7,
but with no other edges. For instance, adding e6 to T produces a cycle with tree
edges e5 and e8, but e5 is smaller than e6. So e6 is not externally active.

Exercise 9.23.

(1) Consider the graph G of Figure 5 with its edge ordering. Let T be the spanning
tree of G pictured in red below:

1

0 0

2

(a) Which edges are externally active?
(b) Find the superstable c corresponding to T under our superstable-tree al-

gorithm and verify that equation (9.3) holds in this instance.

(2) Describe a general algorithm that takes spanning trees to superstables and is
inverse to the superstable-tree algorithm presented in this section.

Exercise 9.24. (Recurrent-superstable duality.)

(1) Describe Algorithm 7 in terms of a controlled burning of edges, analogous to
our superstable-tree bijection algorithm.

(2) A controlled burning of edges can be thought of as a controlled firing of ver-
tices: when an edge burns, a grain of sand is deposited on its newly burnt
vertex. Consider Algorithm 7 when it reaches line 9. The number of unburnt
vertices adjacent to u is ξ. Let β be the number of burnt adjacent vertices.
Then c(u) ≥ ξ if and only if

c(u) + β ≥ β + ξ = degG(u).

Thus, u is an unstable vertex in c after it receives β additional grains of sand,
i.e., after β adjacent edges burn. Recall the duality between recurrents and

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

182 9. Trees

superstables given by c 7→ cmax − c (Theorem 7.12). Show that c(u) ≥ ξ
if and only if (cmax − c)(u) > β (i.e., exactly when the firefighters at u are
overwhelmed).

(3) Modify Algorithm 7 so that the tree T it matches to a recurrent c is the same
as that matched to the superstable cmax − c returned by the superstable-tree
algorithm, and then state a version of Theorem 9.21 (including equation (9.3))
in terms of recurrents.

9.3.3. Tree bijections and tree inversions. The basis for our tree bijection
algorithms has been Theorem 7.5: starting with a recurrent sandpile c and firing the
sink, the resulting configuration stabilizes back to c, and in the process, each vertex
fires exactly once. Our controlled burning of vertices and edges is an expression of
these vertex firings. In the previous section, the rule for burning edges produced
a bijection relating two statistics: the degree of a superstable and the external
activity of its corresponding tree. In this section, we modify the burning rule so
that the resulting bijection involves a different tree statistic called the κ-inversion
number (Definition 9.29). The results described in this section appear in [78], to
which the reader is referred for details and proofs.

In this section G will be a simple, connected, undirected graph with vertex

set V = {0, . . . , n}. Choose any s ∈ V as the sink vertex, and let Ṽ := V \ {s}. (In
all of our examples, we will take s = 0.) To describe our new tree-bijection, take
a superstable configuration c and again think of it as an assignment of firefighters
to vertices. We again light the sink vertex and proceed by burning vertices and
edges in a controlled manner. This time, though, the spreading is determined by a
depth-first search of the vertices of G. In detail: at the beginning of each step of
the algorithm, there will be a currently active burnt vertex i (initially i = s). To
find the next edge to burn, find the maximal (in numerical order) vertex j such
that: (i) j is unburnt, and (ii) {i, j} is an unburnt edge. (We consider the case
there is no such j below.) Burn the edge e := {i, j}. If the number of burnt edges
incident on j is now greater than c(j), then the firefighters at j are overwhelmed
and abandon the vertex. In that case, e is added to the tree we are constructing,
and j is burnt, becoming the active vertex for the next step in the algorithm. If
not, the next step of the algorithm proceeds with i again the active vertex.

If there are no vertices j adjacent to i meeting the two criteria specified above,
the algorithm proceeds by recursively backtracking: the vertex i′ 6= i that was
active just before i became active is set as the active vertex, and the algorithm
proceeds as before. (The vertex i′ will be the unique vertex adjacent to i in the
tree built so far.)

In any event, the algorithm halts as soon as all vertices are burnt, returning
a spanning tree of G. A precise description is provided in Algorithm 9, displayed
below.

Example 9.25. Figure 8 considers the depth-first search algorithm for the super-
stable c = (1, 0, 2, 1) on the complete graph K5. The graph and its vertex labels
appear in the bottom right of the figure. The sink vertex, 0, is lit and its neigh-
bors are probed in reverse numerical order. Firefighters protect vertices 4 and 3,
but there are none at vertex 2. So the edges connecting 0 to these vertices are

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

9.3. Tree bijections 183

Algorithm 9 Depth-first search burning algorithm.

1: input:
G = (V,E) – simple undirected graph with V = {0, . . . , n}
s ∈ V – sink vertex
c ∈ NṼ – sandpile on G with respect to s

2: output: tree – tree of G, a spanning tree iff c is superstable
3: initialization:

burnt vertices = {s}, burnt edges = ∅, tree = ∅
4: execute dfs from(s)
5: return tree

dfs from
6: function dfs from(i)
7: for all j adjacent to i in G, from largest numerical value to smallest do
8: if j /∈ burnt vertices then
9: if c(j) = 0 then

10: append j to burnt vertices

11: append (i, j) to tree

12: dfs from(j)
13: else
14: c(j) = c(j)− 1
15: append (i, j) to burnt edges

burnt. The vertex 2 is burnt and the edge {0, 2} becomes part of the tree. Vertex 2
becomes the active vertex, and the algorithm continues.

The largest unburnt neighbor of 2 is vertex 4, and the single firefighter at
vertex 4 is already occupied with the burnt edge {0, 4}. So that firefighter is
overwhelmed. The edge {2, 4} is burnt and added to the tree. The vertex 4 is
newly burnt and becomes the active vertex. The unburnt edges joining 4 to unburnt

1

02

1
1

02

1 1

02

1 1

02

1

1

02

1 1

02

1

0

1

23

4

K5

Figure 8. The depth-first search algorithm for the superstable c = (1, 0, 2, 1).

See Example 9.25 for details. The red rectangle marks the active vertex, all
red edges are burnt, and solid red edges are tree-edges.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

184 9. Trees

neighbors are {3, 4} and {1, 4}. There are sufficient firefighters to protect vertices 1
and 3. So these edges are burnt but not vertices 1 and 3. We then backtrack:
vertex 2 again becomes the active vertex, and the algorithm continues from there
to completion. In the figure, the edges of the resulting spanning tree are shown in
solid red. Dotted red edges are edges that were burnt but did not become part of
the tree.

Tree inversions. Let T be a tree with vertices V = {0, . . . , n}, and pick a root/sink
vertex s ∈ V . If i, j ∈ V and i is on the unique path from j to s, then i is an ancestor
of j, and j is a descendant if i. If i is an ancestor of j and {i, j} is an edge of T , we
say i is the parent of j and j is a child of i. Each non-root vertex of T has a unique
parent, but vertices may have many children.

Definition 9.26. An inversion of the rooted tree T is an ordered pair (i, j) of
vertices such that: (i) i > j, (ii) i is not the root vertex2, and (iii) i is an ancestor
of j. The number of inversions of T is the inversion number for T .

Example 9.27. In Figure 8, the depth-first burning algorithm produces the fol-
lowing tree rooted at vertex 0:

0

2

3 4

1

This tree has two inversions, (2, 1) and (3, 1), so its inversion number is 2.

Exercise 9.28.

(1) Find all sixteen trees with vertices {0, 1, 2, 3}, or equivalently, the sixteen
spanning trees of the complete graph K4 on this vertex set.

(2) Describe the sixteen superstable sandpiles on K4.

(3) Let τk denote the number of these trees with inversion number k, and let hk
denote the number of superstables on K4 with degree k. Verify the following
table:

k 0 1 2 3
τk 6 6 3 1
hk 1 3 6 6

.

Note that the inversion and degree counts in the table in Exercise 9.28 are the
same but in reverse order. This is indicative of a general phenomenon first proved by
Kreweras ([64]): Let g = n(n−1)/2, the genus of the complete graph Kn+1. Let τk
denote the number of spanning trees on V = {0, . . . , n} with inversion number k,
and let hk be the number of superstables on Kn+1 of degree k. Then,

(9.4) τk = hg−k

for 0 ≤ k ≤ g.

2We will usually choose 0 as the root vertex, in which case condition (i) implies condition (ii).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

9.3. Tree bijections 185

To try to generalize Kreweras’ formula, fix an arbitrary graph G of the type
considered in this section. Let τk be its number of spanning trees with inversion
number k, let hk be the number of superstables of G with degree k, and let g = |E|−
|V |+ 1 be its genus. It turns out that it is sometimes the case that equation (9.4)
continues to hold (cf. Problem 9.9), but not always. For a case where it does not
hold consider the house graph as pictured in Figure 9 with its 11 spanning trees.
The genus of the house graph is 2. The inversion numbers and degree counts for
this graph are:

k 0 1 2 3
τk 4 3 3 1
hk 1 4 6 0

.

The problem is that our notion of an inversion of a spanning tree does not take into
account the structure of G. The appropriate generalization is:

Definition 9.29. Let G be a graph (simple, connected, undirected, with the vertex
set {0, . . . , n} and fixed root/sink vertex s), and let T be a spanning tree rooted
at s. An inversion (i, j) of T is a κ-inversion if the parent of i is adjacent to j in G.
The κ-inversion number, κ(T) = κ(G,T), is the number of κ-inversions of T .

0

1

3

4

2

κ = 0

(0, 0, 1, 1)

2

0

1

3 4

κ = 0

(1, 0, 1, 0)

0

1 2

3

4

κ = 0

(1, 0, 0, 1)

0

1

3

2

4

κ = 0

(0, 1, 0, 1)

3

0

1

2 4

κ = 0

(0, 2, 0, 0)

0

1

3

2

4

κ = 0

(0, 0, 2, 0)

3

0

2

1 4

κ = 1

(0, 0, 0, 1)

2

0

43

1

κ = 1

(0, 0, 1, 0)

0

1

3

4

2

κ = 1

(0, 1, 0, 0)

0

2

4

3

1

κ = 1

(1, 0, 0, 0)

0

2

4

3

1

κ = 2

(0, 0, 0, 0)

4

32

10
G

Figure 9. The 11 superstable sandpiles on the house graph, G, with their κ-
inversion numbers and corresponding spanning trees (via the depth-first search

burning algorithm).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

186 9. Trees

Exercise 9.30. Verify the κ inversion numbers in Figure 9. For instance, the

inversion (3, 2) of the spanning tree 0 1 3 2 4 is not a κ-inversion since the
parent of 3 in the tree is 1, and {1, 2} is not an edge of G. Hence, the inversion
number of T is 1, but κ(T) = 0.

We can now state the main theorem of this section relating the depth-first
search bijection to κ-inversions in the same way that Theorem 9.21 relates the
superstable-tree bijection of the previous section to external activity:

Theorem 9.31 ([78]). The depth-first search algorithm, Algorithm 9, is a bijection
between superstables and spanning trees of G. If T is the spanning tree correspond-
ing to a superstable c, then

κ(T) = g − deg(c).

Exercise 9.32.

(1) Pick any superstable on the house graph G of Figure 9. Use the depth-first
search algorithm to find its corresponding tree, and verify that the formula in
Theorem 9.31 holds.

(2) Let W be the following graph with spanning tree T in blue:

0
1

2

3

4

Let vertex 0 be the root/sink. Find the superstable c that is in bijection with T
via the depth-first search algorithm, and verify the formula in Theorem 9.31
holds in this case.

9.3.4. Rotor-routers. Let G = (V,E) be a sandpile graph, possibly directed,
with sink s. As usual, we may consider an undirected edge as a pair of oppositely
oriented edges. We endow G with some extra structure: at each non-sink ver-
tex v, fix a cyclic ordering3 of the edges e with tail e− = v. Now imagine a rotor
mechanism attached to v pointing along one of these edges (see the blue arrow in
Figure 10). The rotor can be activated if there is sand on v, in which case it first
spins to point along the next edge in the cyclic ordering, then sends a grain of
sand along that edge. If the edge points to the sink, the grain of sand is lost. The
collection of rotors (one for each non-sink vertex v) forms a “machine” on G called
a rotor-router. It is a tool for routing sand along the edges of the graph. A couple
of natural questions: Is it always possible to route all of the sand into the sink? If
the answer is ‘yes’, then will every activation-order of the rotors eventually direct
all of the sand into the sink?

3In the case of a non-simple graph, if there are d distinct edges directed from v to w, then each
must occur separately in the cyclic ordering, but they need not be consecutive.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

9.3. Tree bijections 187

If the rotor at a particular vertex rotates through a complete cycle, back to
its original position, the corresponding redistribution of sand exactly simulates a
vertex firing in the sandpile model. The results stated below will expand upon this
connection between the rotor-router model and the sandpile model.

To discuss the rotor-router model more precisely, define a rotor configuration

to be a function ρ : Ṽ → E such that ρ(v) is an edge emanating from v. Denote
the edge following ρ(v) in the cyclic ordering at v by ρ(v)next. A state of the rotor-
router is a pair (c, ρ) consisting of a sandpile and a rotor configuration. A rotor

firing at v ∈ Ṽ on a state (c, ρ) such that c(v) > 0 produces a new state as follows:

(1) Rotate the rotor, replacing ρ(v) by e := ρ(v)next.

(2) Send a grain of sand along e, replacing c by c− v + e+.

So (c, ρ)
v−→ (c− v + ρ(v)+

next, ρ(v)next). A rotor firing is depicted in Figure 10.

v

ρ(v)

ρ(v)next

v

Figure 10. A rotor firing at the vertex v.

A rotor-router state is stabilized by performing operations until all of the sand
has been routed to the sink. We now state several results for the rotor-router model
without proof; for details, see [56].

Theorem 9.33. Let (c, ρ) be a rotor-router state.

(1) The state (c, ρ) has a stabilization: by repeatedly applying rotor-router opera-
tions, all of the sand is eventually routed to the sink.

(2) The stabilization of (c, ρ) is independent of the order of rotor firings, as is the
number of times each rotor is fired at each vertex in the stabilization process.

Let c(ρ) denote the rotor configuration for the stabilization of the rotor-router
state (c, ρ). The next proposition shows that the sandpile group S(G) acts freely
on the set of rotor-router configurations.

Proposition 9.34. Let a and b be sandpiles, and let ρ be a rotor configuration.
Then,

(1) (a+ b)(ρ) = a(b(ρ)),

(2) a(ρ) = b(ρ) if and only if a = b mod L̃, where L̃ is the reduced Laplacian lattice
for G.

A rotor configuration ρ is acyclic if the set of edges {ρ(v) : v ∈ Ṽ } has no
directed cycles, i.e., if the rotors form a directed spanning tree into the sink.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

188 9. Trees

Proposition 9.35. A rotor configuration ρ is acyclic if and only if it is reachable
from every rotor configuration: for any rotor configuration ρ′ there exists a sand-
pile c such that c(ρ′) = ρ. We say that the acyclic rotors are the recurrent rotors
under the action of the sandpile group.

These two propositions immediately imply:

.

Theorem 9.36. Let A denote the set of acyclic rotor configurations (i.e., the set
of directed spanning trees into s on G). Then the sandpile group for G acts freely
and transitively on A by the action

S(G)×A → A
(c, ρ) 7→ c(ρ).

Figure 11 illustrates what happens when a recurrent sandpile c is placed on a
directed spanning tree and then all of the sand is rotor-routed to the sink. In light
of Proposition 9.34, the resulting rotor configuration would be the same for any

sandpile equal to c modulo L̃, i.e., equal up to vertex firings or reverse firings.

Theorem 9.36 implies that after having made an arbitrary choice of tree to serve
as the identity element, the set of directed spanning trees of G naturally forms a
group isomorphic to the sandpile group. Indeed, if we fix a directed spanning tree
for G and think of it as an acyclic rotor configuration ρ0, then the mapping

S(G) → A
c 7→ c(ρ0)

is a bijection endowing A with the group structure of the sandpile group. In this
way, the set of spanning trees is a group that has forgotten its identity element.
Using language introduced in Section 3.5, the set of spanning trees is a torsor for
the sandpile group, just as the sets Picd(G) are torsors for the Jacobian group as
described in Part 1.

9.3.5. Random trees. A bijection between S(G) and the set of spanning trees
ofG provides a method for choosing a random spanning tree ([8]). Letting s1, . . . , sk
be the invariant factors of S(G) and L̃ the image of the reduced Laplacian, L̃, the
idea is to use the string of isomorphisms:

k∏
i=1

Zsi
∼−−→ Zn−1/L̃ ∼−−→ S(G).

The first isomorphism comes from the computation of the Smith normal form of L̃,

and the second maps an element to the unique equivalent recurrent modulo L̃.

Choosing a random element of
∏k
i=1 Zsi (easy) and using these isomorphisms pro-

duces an element of S(G), and then the tree bijection determines a tree.

In detail, use the methods of Section 2.4.2 to find matrices P and Q, invertible

over the integers, such that PL̃Q = D, where D is a diagonal matrix with the

invariant factors of L̃ along its diagonal. Let j1, . . . , jk be the indices for the columns

of D containing the invariant factors for S(G) (the diagonal entries of L̃ that are

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

9.3. Tree bijections 189

s
v2

v1

v3

v1 v1

v2

v2v3

v3

v1 v2

v1

v2

Figure 11. Rotor-routing. Edges at each vertex are cyclically ordered coun-

terclockwise.

greater than 1). Let R be the (n − 1) × k matrix consisting of columns j1, . . . , jk
of P−1. Then

φ :
k∏
i=1

Zsi → Zn−1/L̃

(a1, . . . , ak) 7→ R(a1, . . . , ak)t.

is a well-defined isomorphism (cf. Problem 9.12). In particular, the columns of R

define generators for Zn−1/L̃. Let c1, . . . , ck ∈ S(G) be the recurrents equivalent
to these generators (cf. Theorem 6.28).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

190 9. Trees

To generate a random tree: (i) pick random integers aj ∈ {0, . . . , sj−1} for 1 ≤
j ≤ k, and (ii) define the sandpile c :=

∑k
j=1 ajcj , (iii) stabilize c to get c◦ ∈ S(G),

and finally, (iv) use a fixed tree bijection to find the tree corresponding to c◦.

In practice, it is probably easier to work with superstable sandpiles rather than
recurrents. In that case, we take c1, . . . , ck to be superstable representatives for

the elements in Zn−1/L̃ corresponding to the columns of R. If G is undirected,
one might use Algorithm 3 for a fast implementation of this step. Then, again
in the undirected case, use any form of Dhar’s bijection between superstables and
spanning trees. For particulars, including a runtime analysis, see [8].

Dhar ([38]) suggested another way in which the sandpile model may be used to
generate random spanning trees: In Chapter 8 we considered the abelian sandpile
model as a Markov chain. The chain evolves from the current state—a recurrent
sandpile—by dropping a grain of sand on a random vertex and stabilizing. We saw
that the stationary distribution for the chain is the uniform distribution on the
set of recurrents (Corollary 8.28). Combining this method of generating a chain
of recurrents with a tree bijection yields a method for sampling from the set of
spanning trees.

Notes

The first proof of the directed version of the matrix-tree theorem is due to Tutte
in [89] using a deletion-contraction argument. The proof presented here using
a sign reversing transposition comes from the beautiful paper by Zeilberger, A
combinatorial approach to matrix algebra [95]. Proposition 9.12 is due to Temperley
in [88]. Each of the tree-bijections in Section 9.3 also constitute proofs of a version
of the matrix-tree theorem. For more on the history of this theorem, see [86], p. 68,
and for a generalization to higher dimensions, see Theorem 15.24.

The free transitive action of the sandpile group on the set of spanning trees
rooted at the sink via rotor-routing appears in the paper ([56], 2008) by Hol-
royd et al. Ellenberg ([43], 2011) asked whether this action is independent of the
chosen sink, and if not, whether there a nice class of graphs for which it is. That
question was answered, for the case of undirected graphs, by Chan et al. ([23],
2015): the action is independent of the sink precisely in the case of planar graphs.
By Corollary 13.23, the sandpile group of a planar graph embedded in the plane
is naturally isomorphic to its dual graph. And it turns out that the rotor-router
action on spanning trees is compatible with this duality ([24, 9]).

Another free transitive action of S(G) on the set of spanning trees comes from
the theory of “break divisors”. Using the language of Part 1 of this book, there
is a natural free transitive action of Pic0(G) on Picg(G) via (D,D′) 7→ D + D′.
Baker et al. ([9, 94]) have described canonical bijections between Picg(G) and the
set of spanning trees of G where g is the genus of G. The action of S(G) then comes
from the isomorphism S(G) ≈ Jac(G) = Pic0(G).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 9

9.1. Prove that an undirected sandpile graph with sandpile group isomorphic to Z2

must have a repeated edge (i.e., an edge of multiplicity greater than one.) Describe
all such graphs.

9.2. Find all undirected, loopless graphs with Jacobian group isomorphic to Z4. (Do
not count graphs obtained from others by attaching a tree at a vertex. In other
words, only consider graphs with no vertices of degree 1.) Why are you sure that
you haven’t missed any such graphs?

9.3. Let M be an n× n matrix, and suppose the row vectors of M sum to the zero
vector. Let M (ij) be the matrix obtained by removing the i-th row and j-th column
from M . Then

(−1)i+j detM (ij) = detM (jj).

9.4. Let G = (V,E) be an Eulerian graph (Definition A.28). Use the matrix-tree
theorem, Problem 9.3, and Theorem 9.14 to show that the number of spanning trees
rooted at v ∈ V is independent of v and thus that the kernel of the Laplacian of G
is Z · ~1. (Hint: Consider the row and column sums of the Laplacian of G. In fact,
by Corollary 12.3, the sandpile group of an Eulerian graph is, up to isomorphism
of groups, independent of the choice of sink, but do not use that result here.)

9.5.

(a) Show by induction the following formula for an m×m determinant:

det


x y y . . . y
y x y . . . y
...

. . .
...

y y y . . . x

 = (x− y)m−1(x+ (m− 1)y).

(b) Use the matrix-tree theorem to prove Cayley’s formula: the number of trees
on n labeled vertices is nn−2. (Note that “tree” in this case means a spanning
tree of Kn, the complete (undirected) graph on n vertices. The labels are
mentioned to distinguish between isomorphic trees, i.e., trees isomorphic as
graphs.)

9.6. Find all directed spanning trees into s in the following graph, checking for
agreement with the matrix-tree theorem. Note that two of the edges have weight 2.

v3

v1 v2

s

2 2

9.7. Let G be an Eulerian multigraph (Definition A.28) with n vertices, and let L
be its Laplacian matrix. Let J be the n× n matrix whose entries are all 1s. Prove
Proposition 9.12 using the hints below.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

192 9. Trees

Let M be any n × n matrix, and let M (ij) be the matrix obtained from M
by removing its i-th row and j-th column. The adjugate of M in the n × n
matrix, adj(M), defined by adj(M)ij := (−1)i+j detM (ji); so the adjugate is
the transpose of the cofactor matrix. Some well-known properties of the adju-
gate are: (i) M adj(M) = (detM)In, and (ii) if N is another n × n matrix,
adj(MN) = adj(N) adj(M).

(a) Prove that

(n In − J)(L+ J) = nL.

(b) Prove that adj(n I − J) = nn−2J .

(c) Prove that n−2 det(L+ J) is the number of spanning trees of G.

(d) Show that, in general, n−2 det(L+ J) does not count directed spanning trees
in the case of a directed multigraph.

9.8. Let Km,n be the complete bipartite graph. Its vertex set is the disjoint union
of two sets, U and V , of sizes m and n, respectively. The edge set consists of all
pairs {u, v} such that u ∈ U and v ∈ V . Show that the number of spanning trees
of Km,n is nm−1mn−1.

9.9. Consider the diamond graph G with sink vertex 0:

0

1

2

3

(a) Find the spanning trees corresponding to each of the 8 superstables of G
under the superstable-tree bijection presented in Section 9.3.2. Verify that
Theorem 9.21 holds in each case.

(b) Find the spanning trees corresponding to each of the 8 superstables of G under
the depth-first search algorithm (Algorithm 9). Verify that Theorem 9.31 holds
in each case. In addition, show that the inversion number for each tree is equal
to its κ-inversion number. (Thus, there is no difference between inversions
and κ-inversions for G. This turns out to be the case for any threshold graph,
of which G is an example (cf. [78])).

9.10. Figure 11 starts with the configuration (2, 1, 0) and an initial tree. By redraw-
ing Figure 11 starting, instead, with the identity configuration, show that the final
tree is the same as the initial tree.

9.11. Consider the following graph G with sink s:

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 9 193

v3

v1 v2

s

(a) Find all recurrent configurations on G, indicating the identity configuration.

(b) Use the matrix-tree theorem to determine the number of directed spanning
trees directed into the sink.

(c) Choose a generator c for the sandpile group of G. The rotor-router action,
T 7→ c(T), permutes the spanning trees of G. Describe this permutation by
drawing a directed graph with the spanning trees of G as vertices and edges
(T, c(T)).

9.12.

(a) Prove that the mapping φ described in Section 9.3.5 is a well-defined isomor-
phism.

(b) Let G be the graph pictured below:

v0

v1

v2 v3 v4

(i) Fixing v0 as the sink, let L̃ be the reduced Laplacian of G. Compute

matrices P and Q, invertible over the integers, such that PL̃Q = D

where D = diag(1, 1, 2, 10) is the Smith normal form of L̃.

(ii) Describe the mapping φ : Z2×Z10 → Z4/L̃ defined in Section 9.3.5. (Your
answer will depend on P , which is not uniquely defined.)

(iii) Find generators for S(G) by identifying recurrents equivalent to φ(1, 0)
and φ(0, 1).

(iv) Using the version of Dhar’s tree bijection implemented by Algorithm 7,
find the spanning tree associated with (1, 2) ∈ Z2×Z10 using the method
described in Section 9.3.5. For the sake of the algorithm, use lexicographic
edge ordering: v0v1, v0v2, v0v3, v0v4, v1v2, v1v3, v1v4.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Chapter 10

Harmonic morphisms

In Part 1 we considered the dollar game and related algebraic structures on a
fixed graph G = (V,E). In this chapter we study mappings between graphs, and
we identify a special class of mappings (called harmonic) that behave well with
respect to the formation of the Picard and Jacobian groups. In Section 10.2 we
continue the analogy with Riemann surfaces described in Section 5.3 by viewing
harmonic mappings between graphs as discrete versions of holomorphic mappings
between surfaces. Finally, in Section 10.3 we provide an interpretation of harmonic
mappings in terms of household-solutions to the dollar game. As in Part 1, by a
graph we mean a finite, connected, undirected multigraph without loop edges.

10.1. Morphisms between graphs

We begin by defining the general notion of a morphism between graphs (see Fig-
ure 1).

Definition 10.1. Suppose that G1 = (V1, E1) and G2 = (V2, E2) are graphs. A
graph morphism, φ : G1 → G2, is a set-function φ : V1 ∪ E1 → V2 ∪ E2 taking
vertices to vertices and preserving incidence (although perhaps contracting edges
to vertices):

φ(v) ∈ V2 for all vertices v ∈ V1,

φ(e) =

{
φ(v)φ(w) ∈ E2 if e = vw ∈ E1 and φ(v) 6= φ(w)
φ(v) ∈ V2 if e = vw ∈ E1 and φ(v) = φ(w).

Any graph morphism φ : G1 → G2 induces a homomorphism φ∗ : Div(G1) →
Div(G2) on the corresponding groups of divisors in the natural way:

φ∗

(∑
avv
)

=
∑

avφ(v).

Note that φ∗ preserves the degree of divisors: deg(φ∗(D)) = deg(D). We would like
this homomorphism to descend to a homomorphism between Picard and Jacobian
groups. Since Pic(G) = Div(G)/Prin(G), this will happen exactly when φ∗ sends

195

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

196 10. Harmonic morphisms

v1

v2

v4

v3

h1

h2

h3

Figure 1. A graph morphism given by vertical projection. The edges incident

to v1 are sent to the edge h1h2, the edges incident to v3 are sent to h2h3, and
the edge v2v4 is contracted to the vertex h2.

principal divisors on G1 to principal divisors on G2. As we will show in Proposi-
tion 10.4, the harmonic condition defined below guarantees that principal divisors
are preserved in this fashion.

Definition 10.2. A graph morphism φ : G1 → G2 is harmonic at a vertex v ∈ V1

if the following quantity is independent of the choice of edge e′ ∈ E2 incident to
φ(v) ∈ V2:

mv := |{e = vw ∈ E1 : φ(e) = e′}|
= # of pre-images of e′ incident to v.

The quantity mv ≥ 0 is called the horizontal multiplicity of φ at v. We say that φ
is harmonic if it is harmonic at all vertices v ∈ V1.

Figure 2 shows examples of harmonic and non-harmonic morphisms.

Remark 10.3. Consider the harmonic morphism φ : G1 → G2 pictured on the
right in Figure 2. To create the mapping in steps, first imagine stacking four
horizontal, disjoint copies of the path graph G2 parallel above G2. Pinch together
the left-hand endpoints of each of the copies to form the vertex v1. Do the same
to the right-hand endpoints to form v3. Next, take the bottom three copies of G1,
and pinch together their middle vertices to form v3. Finally, add the vertical edge
joining v2 and v4. This description generalizes. Nonconstant harmonic mappings
may be formed by (1) creating a graph G1 from several disjoint copies of G2 by
pinching together subsets of corresponding vertices and adding vertical edges, (2)
projecting G1 down to G2 by sending vertices of G1 down to their counterparts
in G2. Figure 4 indicates a further possibility in which an added vertical edge is
subdivided. In fact, one could replace a single vertical edge joining vertices u and v
with any graph containing vertices u and v and declaring all of the edges of that
graph to be vertical for the sake of the mapping.

Proposition 10.4. Suppose that φ : G1 → G2 is a harmonic morphism, and that
div(f) is a principal divisor on G1. Then φ∗(div(f)) is a principal divisor on G2.
It follows that if D ∼ D′ are linearly equivalent divisors on G1, then their images

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

10.1. Morphisms between graphs 197

v1

v2

v4

v3

h1

h2

h3

v1

v2

v4

v3

h1

h2

h3

Figure 2. The morphism on the left is not harmonic at v4 since the edge h1h2

has three preimages incident to v4 while h2h3 has only one. The morphism on
the right is harmonic, with horizontal multiplicities mv1 = mv3 = 4,mv2 = 1,

and mv4 = 3.

φ∗(D) ∼ φ∗(D
′) are linearly equivalent on G2. Hence, φ induces homomorphisms

of the Picard and Jacobian groups:

φ∗ : Pic(G1)→ Pic(G2) and φ∗ : Jac(G1)→ Jac(G2).

Proof. For any vertex v ∈ V1, set h = φ(v) and apply the homomorphism φ∗ to
the principal divisor obtained by firing v:

φ∗(div(χv)) = φ∗

(∑
vw∈E1

(v − w)

)
=

∑
vw∈E1

(φ(v)− φ(w))

=
∑
k∈V2

 ∑
vw∈E1:φ(w)=k

(h− k)


=

∑
hk∈E2

mv(h− k)

= div(mvχh).

Since the principal divisors div(χv) generate the subgroup Prin(G1) ⊂ Div(G1), it
follows that φ∗(Prin(G1)) ⊂ Prin(G2). Two divisors are linearly equivalent if and
only if their difference is principal, so φ∗ preserves linear equivalence. �

To explain the name harmonic for this special class of morphisms, recall the
following notion from Definition 3.24: a function f : V → A from the vertices of a
graph G to an abelian group A is called harmonic if its value at each vertex v is
equal to the average of its values at the neighbors of v:

degG(v)f(v) =
∑
vw∈E

f(w).

As shown in Proposition 3.27, the Abel-Jacobi mapping Sq : V → Jac(G) is univer-
sal for harmonic functions in the sense that the set of harmonic functions f : V → A

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

198 10. Harmonic morphisms

such that f(q) = 0 is in bijection with the set of homomorphisms ρ : Jac(G) → A
via the mapping ρ 7→ ρ ◦ Sq.

Proposition 10.5. Let φ : G1 → G2 be a morphism of graphs, and consider the
induced homomorphism φ∗ : Div(G1) → Div(G2) on divisor groups. Then φ∗ in-
duces a homomorphism on Jacobian groups if and only if the morphism φ pulls back
harmonic functions on G2 to harmonic functions on G1: for all abelian groups A,
if f : V2 → A is harmonic, then f ◦ φ : V1 → A is also harmonic.

Proof. First suppose that φ∗ induces a homomorphism on Jacobian groups. The
diagram below illustrates the network of mappings involved in the ensuing argu-
ment.

V1 Jac(G1)

V2 Jac(G2)

A

Sq1

φ

f̃

φ∗

ρ̃

Sq2

f ∃ρ

.

Pick a vertex q1 ∈ V1 and set q2 = φ(q1) ∈ V2. Suppose that f : V2 → A is

harmonic on G2; we wish to show that f̃ := f ◦ φ : V1 → A is harmonic on G1.
Since constant functions are harmonic, we may replace f by f − f(q2) and f̃ by

f̃ − f̃(q1) and thus assume that f(q2) = f̃(q1) = 0. By Proposition 3.27, there
exists a homomorphism ρ : Jac(G2) → A such that f = ρ ◦ Sq2 . Consider the
homomorphism ρ̃ := ρ ◦ φ∗ : Jac(G1) → A. By Exercise 3.26, the function ρ̃ ◦ Sq1
is harmonic on G1. But this function is just f̃ :

(ρ̃ ◦ Sq1)(v) = ρ(φ∗([v − q1]))

= ρ([φ(v)− q2])

= (ρ ◦ Sq2)(φ(v))

= (f ◦ φ)(v)

= f̃(v).

Conversely, suppose that φ pulls back harmonic functions on G2 to harmonic
functions on G1, and consider the following commutative diagram:

Jac(G1)

V1 Jac(G2)

V2

∃τSq1

φ

Sq2
◦φ= τ◦Sq2

Sq2

.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

10.1. Morphisms between graphs 199

The function Sq2 ◦ φ : V1 → Jac(G2) is harmonic on G1, being the pullback of the
Abel-Jacobi map Sq2 on G2. By Proposition 3.27, there exists a homomorphism
τ : Jac(G1) → Jac(G2) such that τ ◦ Sq1 = Sq2 ◦ φ. Hence, for any vertex v ∈ V1,
we have

[φ(v)− φ(q1)] = [φ(v)− q2] = Sq2(φ(v)) = τ(Sq1(v)) = τ([v − q1]).

It follows that the equivalence class of φ∗(v−q1) = φ(v)−φ(q1) in Jac(G2) depends
only on the equivalence class of v−q1 in Jac(G1), which implies that φ∗ : Jac(G1)→
Jac(G2) is well-defined. �

Corollary 10.6. If φ : G1 → G2 is a harmonic morphism, then φ pulls back har-
monic functions on G2 to harmonic functions on G1

Proof. Since φ is harmonic, it induces a homomorphism φ∗ on Jacobian groups by
Proposition 10.4. �

As the next exercise shows, the harmonic property is a stronger condition on
graph morphisms than the property of pulling back harmonic functions to har-
monic functions (equivalently, inducing a homomorphism on Jacobian groups). As
we will see, harmonic morphisms have many good properties in addition to the
preservation of harmonic functions under pullback, and they have an especially
nice interpretation in terms of the dollar game which we describe in Section 10.3.

Exercise 10.7. Show that the graph inclusion morphism displayed in Figure 3 is
not harmonic but induces an isomorphism on Jacobian groups.

Figure 3. A non-harmonic graph morphism that induces an isomorphism on
Jacobian groups.

As a trivial example of a harmonic morphism, suppose that G1 and G2 are
arbitrary graphs, and pick a vertex h ∈ G2. Then define φ : G1 → G2 by φ(v) =
φ(e) = h for all v ∈ V1 and e ∈ E1. The morphism φ is clearly harmonic, since
mv = 0 for all v ∈ V1. Such morphisms are called constant, since they collapse the
entire graph G1 onto the single vertex h. A less drastic phenomenon occurs when
mv = 0 for some, but not all vertices of G1. In that case, φ sends each vertex v
with mv = 0 to the same place as all of its neighbors, contracting the connecting
edges (see Figure 4). Thus, φ collapses entire neighborhoods in G1 to vertices of G2,

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

200 10. Harmonic morphisms

and we call such morphisms degenerate. Since we will often want to exclude such
degeneracies, we make the following definition.

Definition 10.8. Let φ : G1 → G2 be a harmonic morphism. Then φ is non-
degenerate at a vertex v ∈ V1 if the horizontal multiplicity mv > 0. We say that φ
is non-degenerate if it is non-degenerate at all vertices of G1.

v1

v2

v4

v3
v5

h1
h2

h3

Figure 4. This harmonic morphism is degenerate at the vertex v5.

Exercise 10.9. Prove that if φ : G1 → G2 is a non-constant harmonic morphism,
then φ is surjective on both vertices and edges.

Exercise 10.10. Show that if φ : G1 → G2 is a non-constant harmonic morphism,
then φ∗ : Div(G1)→ Div(G2) is surjective, so that the induced maps on the Picard
and Jacobian groups are also surjective.

Definition 10.11. Suppose that φ : G1 → G2 is a non-constant harmonic mor-
phism. The degree of φ is defined as the number of pre-images of any edge e′ ∈ E2:

deg(φ) := |φ−1(e′)|.
The degree is well-defined by the next proposition.

Proposition 10.12. The degree of a non-constant harmonic morphism is well-
defined, i.e., the previous definition does not depend on the choice of edge e′ ∈ E2.
Moreover, for any vertex h ∈ V2, we have

deg(φ) =
∑

v∈φ−1(h)

mv.

Proof. Suppose that e′ = hk ∈ E2. Then

|φ−1(e′)| =
∑

e∈E1:φ(e)=e′

1

=
∑

v∈φ−1(h)

 ∑
vw∈E1:φ(vw)=e′

1


=

∑
v∈φ−1(h)

mv.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

10.1. Morphisms between graphs 201

This shows that the definition yields the same number for all choices of e′ incident
to the vertex h ∈ V2. Since the graph G2 is connected, it follows that the degree is
well-defined. �

Definition 10.13. Suppose that φ : G1 → G2 is a non-constant harmonic mor-
phism. For each vertex v ∈ V1, define the vertical multiplicity of φ at v to be

vert(v) := # of edges incident to v that are contracted by φ.

Example 10.14. The harmonic morphism shown in Figure 4 has degree 4, since
every edge of the target graph has exactly 4 preimages. The horizontal and vertical
multiplicities are as follows:

mv1 = 4 , vert(v1) = 0

mv2 = 1 , vert(v2) = 1

mv3 = 4 , vert(v3) = 0

mv4 = 3 , vert(v4) = 1

mv5 = 0 , vert(v5) = 2.

Exercise 10.15. Suppose that φ : G1 → G2 is a harmonic morphism and φ(v) = h
for v ∈ V1 and h ∈ V2. Show that

degG1
(v) = degG2

(h)mv + vert(v).

So far we have been studying the push-forward homomorphisms φ∗ (on the
divisor, Picard, and Jacobian groups) induced by a harmonic morphism φ. Note
that the push-forward goes in the same direction as the original morphism φ. That
is,

φ : G1 → G2 =⇒ φ∗ : Pic(G1)→ Pic(G2).

There is also a natural pull-back homomorphism φ∗ going in the opposite direction.

Definition 10.16. Let φ : G1 → G2 be a harmonic morphism. Then define
φ∗ : Div(G2)→ Div(G1) by

φ∗(D′) =
∑
v∈V1

mvD
′(φ(v)) v for all D′ ∈ Div(G2).

Exercise 10.17. Show that if φ : G1 → G2 is a non-constant harmonic morphism,
then deg(φ∗(D′)) = deg(φ) deg(D′) for all D′ ∈ Div(G2). Moreover, show that the
composition φ∗ ◦ φ∗ is simply multiplication by deg(φ) on Div(G2).

Proposition 10.18. Suppose that φ : G1 → G2 is harmonic. Then φ∗ sends prin-
cipal divisors on G2 to principal divisors on G1, thus preserving linear equivalence.
Hence, φ induces homomorphisms of the Picard and Jacobian groups:

φ∗ : Pic(G2)→ Pic(G1) and φ∗ : Jac(G2)→ Jac(G1).

Proof. Let h ∈ V2 be any vertex. We begin by computing the pull-back of the
degree-one divisor h:

φ∗(h) =
∑

v∈φ−1(h)

mvv.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

202 10. Harmonic morphisms

Now suppose that k is a neighbor of h in G2, so that we may fix a particular edge
e′ = hk ∈ E2. Pulling back the degree-zero divisor h− k yields

φ∗(h− k) = φ∗(h)− φ∗(k)

=
∑

v∈φ−1(h)

mvv −
∑

w∈φ−1(k)

mww

=
∑

v∈φ−1(h)

∑
vw∈E1:φ(vw)=e′

v −
∑

w∈φ−1(k)

∑
vw∈E1:φ(vw)=e′

w

=
∑

vw∈E1:φ(vw)=e′

(v − w).

Finally, consider div(χh) =
∑
hk∈E2

(h−k), the principal divisor obtained by firing h
once. Pulling back yields

φ∗(div(χh)) =
∑

e′=hk∈E2

φ∗(h− k)

=
∑

e′=hk∈E2

∑
vw∈E1:φ(vw)=e′

(v − w)

=
∑

v∈φ−1(h)

∑
vw∈E1:φ(w) 6=h

(v − w)

=
∑

v∈φ−1(h)

∑
vw∈E1

(v − w)

=
∑

v∈φ−1(h)

div(χv) ∈ Prin(G1).

Note that the fourth line above is obtained from the third by the inclusion of
contracted edges of the form vv′ for v, v′ ∈ φ−1(h). This is permissible because each
such edge appears twice in the double sum, contributing the two terms v − v′ and
v′−v of opposite signs. Since the principal divisors div(χh) for h ∈ V2 generate the
subgroup Prin(G2), it follows that φ∗ preserves linear equivalence as claimed. �

As a counterpart to Exercise 10.10, we have the following injectivity result for
the pullback homomorphism.

Proposition 10.19. If φ : G1 → G2 is harmonic and non-constant, then the pull-
back φ∗ : Jac(G2)→ Jac(G1) is injective.

Proof. Suppose D is a degree-zero divisor on G2 with F := φ∗(D) ∼ 0, i.e.,
the dollar game F on G1 is winnable. We need to show D is winnable on G2. We
accomplish this through a modified version of the greedy algorithm from Section 3.1
to win both F and D in tandem, as follows. For as long as there exists a vertex u
of G1 with F (u) < 0, let v := φ(u), and perform the borrowing operations

F
−φ−1(v)−−−−−→ F ′, D

−v−−→ D′.

As detailed at the end of the proof of Proposition 10.18, F ′ = φ∗(D′). Replace F
and D by the linearly equivalent F ′ and D′, respectively, and repeat.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

10.1. Morphisms between graphs 203

Restricting our attention to F , if φ is non-degenerate, then our algorithm is an
ordinary implementation of the greedy algorithm. Hence, eventually F is replaced
by 0 ∈ Div(G1), at which point it follows that D is replaced by 0 ∈ Div(G2), and
we are done.

So suppose that φ is degenerate and that at some point in our algorithm we
need to borrow at a fiber S := φ−1(v) containing a point of multiplicity 0. There
will be u ∈ S with F (u) < 0, and hence, D(v) < 0. At each w ∈ S, we have
F (w) ≤ 0 with equality exactly when mw = 0. The ordinary greedy algorithm does
not allow borrowing at S, since some of its members are not in debt. However,
there is a way to perform a sequence of borrowings, allowed by the ordinary greedy
algorithm, whose net effect is borrowing at S: repeatedly, until S = ∅, (i) let T be
the in-debt vertices of S, (ii) borrow at T , and (iii) replace S by S \ T . After thus
borrowing from all vertices in S = φ−1(v), we still have F (w) = 0 for all degenerate
vertices w ∈ S since outdegS(w) = 0. So for the purpose of our algorithm, we may
safely ignore vertices at which φ is degenerate. Our algorithm eventually halts,
winning both dollar games simultaneously. �

We can now state the Riemann-Hurwitz formula for graphs, which provides the
relationship between the genera of graphs connected by a harmonic morphism.

Theorem 10.20. Suppose that φ : G1 → G2 is a non-constant harmonic morphism
between graphs of genera g1 and g2, respectively. Then

2g1 − 2 = deg(φ)(2g2 − 2) +
∑
v∈V1

(2(mv − 1) + vert(v)).

Proof. This result will follow from an investigation of the relation between the
canonical divisor on G1 and the pullback of the canonical divisor on G2 (see Defini-
tion 5.7). Denote the canonical divisors by K1 and K2, respectively. We compute

φ∗(K2) =
∑
h∈V2

(degG2
(h)− 2)φ∗(h)

=
∑
h∈V2

(degG2
(h)− 2)

∑
v∈φ−1(h)

mvv

=
∑
v∈V1

degG2
(φ(v))mvv −

∑
v∈V1

2mvv

=
∑
v∈V1

(degG1
(v)− vert(v))v −

∑
v∈V1

2mvv

=
∑
v∈V1

(degG1
(v)− 2)v −

∑
v∈V1

(2(mv − 1) + vert(v))v

= K1 −
∑
v∈V1

(2(mv − 1) + vert(v))v.

Rearranging and taking degrees now yields the result:

2g1 − 2 = deg(K1)

= deg(φ∗(K2)) +
∑
v∈V1

(2(mv − 1) + vert(v))

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

204 10. Harmonic morphisms

= deg(φ) deg(K2) +
∑
v∈V1

(2(mv − 1) + vert(v))

= deg(φ)(2g2 − 2) +
∑
v∈V1

(2(mv − 1) + vert(v)).

�

Exercise 10.21. Show that if φ : G1 → G2 is a non-constant harmonic morphism,
then g1 ≥ g2, with equality if and only if φ has degree 1. If φ is non-degenerate,
show that g1 = g2 if and only if φ is an isomorphism of graphs.

10.2. Branched coverings of Riemann surfaces

As you might guess from the name, the Riemann-Hurwitz formula for graphs (The-
orem 10.20) is a discrete version of a result about Riemann surfaces, initially used
by Bernhard Riemann in 1857 and proved by Adolf Hurwitz in 1891. In order to
state this classical result, we need to extend the discussion of Section 5.3 to include
holomorphic mappings between Riemann surfaces and the attendant concepts of
branching and ramification.

In Example 5.20, we viewed a meromorphic function f on a Riemann surface S
as a mapping f : S → P1 = C ∪ {∞} to the Riemann sphere. This is a special case
of a holomorphic mapping φ : S1 → S2 between Riemann surfaces. The general
idea is the following: near each point p ∈ S1, an arbitrary mapping φ : S1 → S2

may be expressed as z = φ(w), where w is a local coordinate near p and z is a local
coordinate near φ(p). We say that the mapping φ is holomorphic if (for all points
p ∈ S1) the resulting function z = φ(w) is complex-differentiable.

Using complex analysis, one may establish the following basic facts about any
non-constant holomorphic mapping φ : S1 → S2:

• φ is surjective.

• There exists a positive integer d ≥ 1 such that all but finitely many points
q ∈ S2 have exactly d pre-images under φ; the integer d is called the degree of
the mapping φ.

• The finitely many points q1, q2, . . . , qb for which φ−1(qi) has cardinality less
than d are called the branch points of φ.

• Consider a point p ∈ S1 and its image q = φ(p) ∈ S2. Then there exist local
coordinates w near p and z near q such that φ has the form z = wm for some
integer m ≥ 1; the integer m = mp is called the ramification index of p, and p
is a ramification point if mp > 1.

• For any point q ∈ S2, we have d =
∑
p∈φ−1(q)mp. In particular, there are only

finitely many ramification points for φ, and q ∈ S2 is a branch point if and
only if φ−1(q) contains a ramification point.

To visualize the phenomenon of ramification, first consider a point q ∈ S2 that
is not a branch point. Then q has a small neighborhood V such that φ−1(V) =
U1tU2t· · ·tUd, a disjoint union of d neighborhoods Uj—picture them as a “stack
of pancakes” mapping down to V as in Figure 5. On the other hand, if q is a

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

10.2. Branched coverings of Riemann surfaces 205

branch point, then some of these pancakes “come together” in groups, one for each
preimage of q, so that φ−1(V) = U1t · · · tUn, where n < d is the number of points
in φ−1(q). If Uj corresponds to the point pj with ramification index mj , then Uj
maps to V under the mj-to-1 power mapping w 7→ wmj .

q

p1

p2

p3

p4

p5

p6

q

p1m1 = 3 w 7→ w3

p2m2 = 2 w 7→ w2

p3m3 = 1 w 7→ w

Figure 5. The picture on the left shows the local behavior of a degree-6

holomorphic mapping near a non-branch point q. The picture on the right
shows a possibility for the local picture when q is a branch point: p1 has

ramification index 3, p2 has ramification index 2, and p3 is unramified. In each

picture, the 6 red points upstairs together comprise the preimage of the red
point downstairs. The dotted lines indicate schematically how the 6 pancakes

on the left come together to form only 3 on the right.

In this way, the horizontal ramification indices mv for harmonic graph mor-
phisms are analogues of the ramification indices mp for mappings of Riemann sur-
faces (cf. Remark 10.3). For instance, in Figure 4, the vertex v4 has horizontal
ramification index 3, indicating that near v4 the mapping is 3-to-1 (ignoring the
vertical edge). By contrast, the vertex v2 is horizontally unramified and nearby the
mapping is 1-to-1. Note that there is no analogue of vertical ramification in the
setting of Riemann surfaces.

We are now able to state the classical Riemann-Hurwitz formula. As in the
graph-theoretic case, one may prove this result by comparing the canonical divisor
of S1 with the pullback of the canonical divisor of S2.

Theorem 10.22 (Riemann-Hurwitz). Suppose that φ : S1 → S2 is a non-constant
holomorphic mapping between Riemann surfaces of genera g1 and g2, respectively.
Then

2g1 − 2 = deg(φ)(2g2 − 2) +
∑
p∈S1

(mp − 1).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

206 10. Harmonic morphisms

The Riemann-Hurwitz formula has many important consequences for the theory
of Riemann surfaces. For instance, it may be used to establish the famous Hurwitz
genus bound for the automorphism group of a Riemann surface S: if g = g(S) ≥ 2,
then S has at most 84(g − 1) automorphisms. In fact, there is a graph-analogue
of this result, proved via the the graph-theoretic Riemann-Hurwitz formula (see
Problem 10.5). It concerns so-called harmonic group actions on finite graphs, and
may be stated as follows: if G is a finite graph of genus g ≥ 2 and Γ is a finite group
acting harmonically on G, then |Γ| ≤ 6(g−1). For further details, see [30, 31, 32].

10.3. Household-solutions to the dollar game

Recall the initial discussion of the dollar game in Chapter 1, where we thought
of the multigraph G1 = (V1, E1) as a community, and a divisor D ∈ Div(G1)
as a distribution of wealth. In this section we interpret a non-constant harmonic
morphism φ : G1 → G2 as the creation of households whose members pool their
money in an attempt to solve their debt problems. The harmonic condition for φ
plays the role of a fairness property which ensures that the lending moves available
to the households reflect the structure of the original community represented by G1.
The details of this interpretation are presented in the following paragraphs.

First of all, note that by Exercise 10.9, the non-constant harmonic morphism φ
is surjective. Hence, the collection of sets

H := {φ−1(h) ∩ V1 : h ∈ V2}

forms a partition of the vertex set V1 by non-empty subsets. Identifying each
vertex h ∈ V2 with its set of pre-images, we may thus think of the vertices of G2

as households in the original community G1. In these terms, we may think of the
morphism φ as given on vertices by

φ(v) = unique household in H containing v.

Moreover, the definition of a graph morphism guarantees that every edge between
individuals in G1 is sent to an edge between households in G2 except that edges
between members of the same household are forgotten in the passage to G2.

Roughly speaking, the harmonic condition ensures that each individual v, when
joining her household, reduces the total strength of her bond with each other house-
hold in a fair manner. In detail, for any vertex v ∈ V1, consider the corresponding
household h = φ(v). Then select any edge e′ ∈ E2 incident to φ(v) in G2, say
e′ = hk. By the definition of harmonic morphism, there are exactly mv pre-images
of the edge e′ incident to v in G1, and each of these has the form vw for some
w ∈ φ−1(k). Thus, edges incident to v are identified in groups of size mv with
edges incident to φ(v). This justifies the fairness interpretation: each individual v,
when joining a household, reduces the strength of her relationship with all other
households by the same factor mv. Note in particular that if there are d edges
between φ(v) and k in G2, then there must be exactly dmv edges in G connecting v
to members of the household k.

Now suppose that D is a divisor on G1. When the individuals in G1 form
households according to the harmonic morphism φ, they pool their money/debt.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

10.3. Household-solutions to the dollar game 207

This pooling is exactly what is described by the push-forward homomorphism on
divisor groups: if D =

∑
avv ∈ Div(G1), then

φ∗(D) =
∑
v∈V1

av φ(v) =
∑
h∈V2

 ∑
v∈φ−1(h)

av

h.

In this way, the dollar game on G1 starting with D naturally induces the dollar
game on G2 starting with φ∗(D). Note that the divisor φ∗(D) ∈ Div(G2) has the
same degree as D.

An effective divisor linearly equivalent to φ∗(D) onG2 will be called a household-
solution to the original dollar game starting with D on G1. The next proposition
justifies the hope that forming households may help the community G1 solve its
debt problems:

Proposition 10.23. Let φ : G1 → G2 be a non-constant harmonic morphism.
Let r1 and r2 denote the rank functions for the graphs G1 and G2, respectively.
Then for all divisors D ∈ Div(G1), we have the inequality

r2(φ∗(D)) ≥ r1(D).

Proof. Set R = r1(D). We need to show that φ∗(D) − E′ is winnable for all
effective divisors E′ ∈ Div(G2) of degree R. So let E′ be any such effective divisor
of degree R on G2. By the surjectivity of the push-forward φ∗, there exists an
effective divisor E ∈ Div(G1), also of degree R, such that φ∗(E) = E′. Since the
rank of D is R, there exists an effective divisor F ∈ Div(G1) such that D−E ∼ F .
But φ∗ preserve linear equivalence, so φ∗(D) − E′ = φ∗(D − E) ∼ φ∗(F) ≥ 0.
Hence, φ∗(D)− E′ is winnable as claimed. �

If we drop the requirement that φ be non-constant, then the entire commu-
nity G1 could form into a single household. The corresponding harmonic morphism
φ : G→ ? is the constant map onto the single vertex ?, thought of as a graph with
no edges. The induced map φ∗ on divisors may be identified with the degree map
deg : Div(G)→ Div(?) ' Z. Hence, by forming a giant single household, the com-
munity G automatically solves the induced dollar game on ? starting with φ∗(D)
whenever deg(D) ≥ 0. But this household-solution isn’t very satisfying, which ex-
plains why we have restricted our attention to non-constant harmonic morphisms.

For a slightly less trivial household-solution, pick a vertex q ∈ V1 and consider
the harmonic morphism φ : G1 → P onto the path graph consisting of one edge e′

connecting two vertices h and k:

φ(v) =

{
h if v = q,
k if v 6= q

, φ(e) =

{
e′ if e = qv for some v ∈ V1,
k otherwise.

Now there are two households, one containing only q, and the other containing
everyone else. The harmonic morphism φ is non-constant, sending all edges in-
cident to q in G1 to the unique edge e′ in P and contracting all other edges
to the vertex k. For any divisor D ∈ Div(G1) of nonnegative degree, we have
deg(φ∗(D)) = deg(D) ≥ 0, which means that the total amount of money on the
two vertices of P is nonnegative. If one of these vertices is in debt, then the other

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

208 10. Harmonic morphisms

can perform lending moves until both are debt-free. Thus, the harmonic mor-
phism φ yields a household-solution to all nonnegative dollar games on G1. But
this household-solution is quite drastic in most cases: all individuals in V \ {q}
have forgotten their bonds to each other, and only connections with q are remem-
bered in P . Note that unless every vertex in G1 is connected to q, the morphism φ
will be degenerate. Hence, we may avoid these types of household-solutions by
considering only non-degenerate harmonic morphisms. In terms of households, the
requirement that φ be non-degenerate corresponds to the demand that no indi-
vidual in G1 joins the same household as all of her neighbors. We thus think of
non-degenerate harmonic morphisms as remembering enough of the structure of the
original community G1 to provide interesting household-solutions to dollar games
on G1.

Suppose that φ : G1 → G2 is a non-degenerate harmonic morphism between
graphs of genus g1 and g2, respectively. By the Riemann-Hurwitz Theorem 10.20,
we know that g2 ≤ g1. This should help in the search for household solutions
to the dollar game since Corollary 4.9 guarantees winnability when the degree is
larger than the genus: the dollar game on G2 starting with φ∗(D) is winnable if
g2 ≤ deg(φ∗(D)) = deg(D). So if we want to find household solutions to the dollar
game, we should look for harmonic morphisms with g2 as small as possible.

In particular, for g2 = 0 we obtain non-degenerate household-solutions to all
dollar games on G1 of nonnegative degree. Hence we would like to find non-
degenerate harmonic morphisms φ : G1 → T where the target graph T is a tree.
As mentioned at the end of Section 5.3, these morphisms are the graph-analogues
of branched coverings of the projective line P1 for Riemann surfaces. The next
theorem extends this analogy by demonstrating that harmonic morphisms to trees
are essentially the same as complete linear systems of rank 1.

Theorem 10.24. Suppose that G is d-edge connected with |V (G)| > d ≥ 1. Then
the set of degree-d non-degenerate harmonic morphisms φ : G→ T such that T is a
tree is in natural bijection with the collection of complete linear systems of degree d
and rank 1 on G.

The proof of this theorem requires a few definitions and lemmas.

Definition 10.25. Let D ∈ Div(G). A complete linear system |D| partitions the
graph G, if V (G) is the disjoint union of the supports of the divisors in |D|.

Definition 10.26. A complete linear system |D| is called a grd if deg(D) = d and
r(D) = r.

Lemma 10.27. If G is d-edge connected, then any grd on G with r ≥ 1 partitions G.

Proof. Suppose that |D| is a grd on G, with r ≥ 1. Then for any v ∈ V (G), the lin-
ear system |D−v| is nonempty, so there exists an effective divisor E with D ∼ v+E.
This shows that the supports of the divisors in |D| cover V (G). For the disjointness
of the supports, we need to show that E is the unique effective divisor linearly equiv-
alent to D−v. So suppose that E′ ∼ E with E′ effective. Applying the Abel-Jacobi

map S
(d−1)
q : Div

(d−1)
+ (G) → Jac(G), we see that S

(d−1)
q (E) = S

(d−1)
q (E′). But by

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

10.3. Household-solutions to the dollar game 209

Proposition 3.28, the d-edge connectivity of G implies that S
(d−1)
q is injective, so

that E = E′ as required. �

Lemma 10.28. Suppose that G is d-edge connected, with |V (G)| > d. Then every
divisor of degree d on G has rank at most 1.

Proof. Suppose that D has degree d and r(D) = r ≥ 1. Fix a vertex v ∈ V (G).
Then by the previous lemma, there is a unique effective divisor E ∈ |D| with v in
its support. Since |V (G)| > d and deg(E) = d, there exists a vertex w ∈ V (G)
outside the support of E. We claim that |D − v − w| = ∅, which shows that
r(D) = 1 as claimed. For this, suppose on the contrary that F is effective and
F ∼ D− v−w. Then F + v+w contains v in its support and is linearly equivalent
to D. Hence F +v+w = E by the uniqueness of E. But this contradicts the choice
of vertex w. �

Proof of Theorem 10.24 Suppose that |D| is a g1
d on G. We wish to construct a

tree T together with a harmonic morphism φ : G→ T . For the vertex set, we define
V (T) = |D|. By Lemma 10.27, |D| partitions G, so for each vertex v ∈ V (G), there
is a unique effective divisor Ev ∈ |D| with v in its support. Hence, sending v to Ev
defines a surjective map from V (G) to V (T). We wish to choose the edge-set E(T)
in such a way that T is a tree and that the map on vertices described above extends
to a harmonic morphism of graphs.

Suppose that E 6= F are distinct effective divisors in |D|. Then there exists
a non-constant function f ∈ M(G) such that E − F = div(f). Set M(f) =
{x ∈ V (G) : f(x) = max(f)}. Then for any x ∈M(f) we have

E(x) = div(f)(x) + F (x)

≥ div(f)(x)

=
∑

xy∈E(G)

(f(x)− f(y))

≥ outdegM(f)(x).

Let δ(M(f)) denote the set of edges in G that connect a vertex in M(f) to a vertex
outside of M(f). Then

|δ(M(f))| =
∑

x∈M(f)

outdegM(f)(x) ≤ deg(E) = d.

But removing the edge-set δ(M(f)) disconnects the graph G, so by d-edge connec-
tivity, we must have |δ(M(f))| = d. This implies that all of the preceding inequal-
ities are actually equalities. In particular, we must have E(x) = outdegM(f)(x) for

all x ∈ M(f), and supp(E) ⊂ M(f). Moreover, if xy ∈ δ(M(f)) with x ∈ M(f),
then f(x)−f(y) = 1. A similar argument shows that the support of F is contained
in m(f) := {y ∈ V (G) : f(y) = min(f)}, and if yz ∈ δ(m(f)) with y ∈ m(f), then
f(z)− f(y) = 1.

Now suppose that there exists an edge e = vw connecting the support of E to
the support of F . It follows that e ∈ δ(M(f))∩ δ(m(f)), and that f(v)−f(w) = 1.
But v ∈M(f) and w ∈ m(f), so we see that f takes only two values, and V (G) =
M(f)∪m(f). This implies that δ(M(f)) = δ(m(f)). Further, if e′ = xy ∈ δ(M(f))

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

210 10. Harmonic morphisms

is an edge with x ∈ M(f), then E(x) = outdegM(f)(x) ≥ 1, so x is in the support

of E. But y ∈ m(f), so

F (y) = E(y)− div(f)(y) =
∑

yz∈E(G)

(f(z)− f(y)) = outdegm(f)(y) ≥ 1,

so y is in the support of F . Thus, the d edges in δ(M(f)) = δ(m(f)) are exactly
the edges in E(G) connecting the support of E to the support of F .

We are now ready to define the edge-set of the graph T : if E,F ∈ |D| = V (T),
then EF ∈ E(T) if and only if there is an edge of G connecting the support of E to
the support of F . Our work above has shown that if one such edge exists in E(G),
then there are exactly d such edges.

Define a graph morphism φ : G→ T as follows:

φ(v) = Ev for all v ∈ V (G)

φ(vw) =

{
EvEw if Ev 6= Ew
Ev if Ev = Ew

for all e = vw ∈ E(G).

At this point, we know that φ is surjective, and that every edge of T has exactly d
pre-images. Hence, if φ is harmonic, then it has degree d as required.

To show that φ is harmonic, let v ∈ V (G) be arbitrary, and set E = φ(v).
Choose an edge EF ∈ E(T) incident to the vertex E. The number of edges e ∈
E(G) incident to v such that φ(e) = EF is the number of edges from v to the
support of F . Call this number m(v, F). Using the notation from above, if E−F =
div(f), then

E(v) = outdegM(f)(v) ≥ m(v, F).

Summing over the support of E, we find that

d = deg(E) ≥
∑

v∈supp(E)

m(v, F) = d,

since there are exactly d edges connecting the support of E to the support of F .
It follows that E(v) = m(v, F) for all v ∈ supp(E). In particular, for fixed v, the
number m(v, F) = E(v) is independent of the choice of edge EF ∈ E(T) incident
to φ(v) = E. Hence, φ : G→ T is harmonic, with horizontal multiplicities given by
mv = Ev(v) for all v ∈ V (G). This implies that φ is non-degenerate, since for all
v ∈ V (G), we have mv = Ev(v) ≥ 1.

It remains to show that T is a tree. For this, it suffices to show that any two
vertices of T are linearly equivalent as degree-one divisors on T (cf. Problem 4.3).
So suppose F ∈ |D| is a vertex of T , and note that

φ∗(F) =
∑

v∈supp(F)

F (v) v = F ∼ D.

Hence, we see that for any two vertices E,F ∈ |D|, we have φ∗(E) ∼ φ∗(F). By the
injectivity of φ∗ as a map of Picard groups, this implies that E ∼ F as degree-one
divisors on T .

Thus, to any g1
d on G, we have associated a non-degenerate, degree-d harmonic

morphism φ : G→ T , where T is a tree.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Notes 211

For the other direction, suppose that φ : G→ T is any non-degenerate, degree-d
harmonic morphism to a tree. We wish to find a g1

d on G that will yield φ via
the construction described above. For this, choose any vertex t ∈ V (T), and set
D := φ∗(t) ∈ Div(G), an effective divisor of degree d. To show that D has rank 1,
first note that r(D) ≤ 1 by Lemma 10.28. To show that r(D) = 1, let v ∈ V (G) be
arbitrary. Then since T is a tree, φ(v) ∈ V (T) is linearly equivalent to t. But then
φ∗(φ(v)) is linearly equivalent to φ∗(t) = D on G. But φ∗(φ(v))(v) = mvv ≥ v
since φ is non-degenerate. It follows that φ∗(φ(v))− v is effective, and

D − v ∼ φ∗(φ(v))− v.
Thus, |D − v| is nonempty for all v ∈ V (G), so r(D) = 1 as claimed. Hence, |D|
is a g1

d on G. Moreover, we have shown that φ∗(s) ∈ |D| for every s ∈ V (T). But
these must account for the entire complete linear system since |D| partitions the
graph G by Lemma 10.27. Hence, applying the construction described in the first
part of this proof to |D| will produce the given tree T together with the harmonic
morphism φ : G→ T .

�

Notes

(1) This chapter is based on the paper [7] by Baker and Norine. In particular, the
Riemann-Hurwitz formula appears as Theorem 2.14 of that paper.

(2) Our discussion of the relation between harmonic morphisms and harmonic func-
tions differs in its focus from that found in Section 2.2 of [7], where the authors
characterize harmonic morphisms to simple graphs (i.e., those without multiple
edges) in terms of a local preservation of harmonic functions under pullback.

(3) Proposition 10.19 appears as Theorem 4.13 of [7], with a different (and substan-
tially more difficult) proof. As observed by Baker and Norine, the corresponding
injectivity result for Riemann surfaces is false in general.

(4) Theorem 10.24 is due to the first author and Avi Steiner. It generalizes Theorem
5.12 of [7], which is essentially the case d = 2.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 10

10.1. Using Remark 10.3, construct all non-constant harmonic morphisms of de-
gree 2 to the triangle graph C3 with at most 2 vertical edges. Are any of your
morphisms degenerate?

10.2. Consider the following composition of graph morphisms:

G1
φ1−→ G2

φ2−→ G3.

(a) Show that if φ1 and φ2 are harmonic, then so is their composition φ2 ◦ φ1.

(b) Show that if φ2 ◦ φ1 is harmonic and φ1 is harmonic and nonconstant, then
φ2 is harmonic.

(c) Prove or provide a counterexample: if φ2 ◦φ1 is harmonic and φ2 is harmonic
and nonconstant, then φ1 is harmonic.

10.3. Find all g1
3 ’s on the complete graph K4 and explicitly describe the correspond-

ing harmonic morphisms to trees.

10.4. A graph G of genus g ≥ 2 is called hyperelliptic if it has a g1
2 .

(a) Use Riemann-Roch to show that every graph of genus g = 2 is hyperelliptic,
with g1

2 given by the canonical divisor.

(b) Use Clifford’s Theorem to show that if g(G) ≥ 2 and D is a divisor of degree 2
on G, then r(D) ≤ 1.

(c) Suppose that φ : G → G′ is a non-constant harmonic morphism and that
g(G′) ≥ 2. Show that if G is hyperelliptic, then G′ is hyperelliptic.

(d) Show that the banana graph Bn is hyperelliptic for n ≥ 3.

(e) Suppose that G 6= Bn is a hyperelliptic graph. Use Proposition 3.28 to show
that the edge-connectivity of G is at most 2.

(f) Show that the g1
2 on a hyperelliptic graph is unique. (Hint: if D and D′

are two degree-2 divisors of rank 1, apply Riemann-Roch to the divisors E =
D+(g−2)D′ and E′ = (g−1)D′ and conclude that both are linearly equivalent
to the canonical divisor. You will find Exercise 5.4 helpful.)

For more about hyperelliptic graphs, including the study of their Weierstrass points
(cf. Problem 5.9), see [7].

10.5. Let Γ ⊂ Aut(G) be a group of automorphisms of the connected graph G. The
group Γ thus acts on the vertices and on the edges of G. Define the quotient graph
G/Γ as follows:

V (G/Γ) = {Γv : v ∈ V (G)} = Γ-orbits of vertices of G

E(G/Γ) = {Γe : e = vw ∈ E(G) and Γv 6= Γw}.
= Γ-orbits of edges of G, with orbits yielding loop-edges removed.

Define a graph morphism φΓ : G→ G/Γ by

φΓ(v) = Γv for all v ∈ V (G);

φΓ(e) =

{
Γe if e = vw and Γv 6= Γw,

Γv if e = vw and Γv = Γw.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 10 213

(a) Show by explicit example that the morphism φΓ need not be harmonic. (Sug-
gestion: consider a Z2-action on the banana graph B3.)

(b) We say that Γ acts harmonically on G if for all subgroups ∆ < Γ, the quotient
morphism φ∆ : G→ G/∆ is harmonic. Show that Γ acts harmonically on G if
and only if for every vertex v, the stabilizer subgroup Γv := {γ ∈ Γ : γv = v}
acts freely on the set of edges incident to v:

if γ 6= idΓ and γv = v, then γe 6= e for all edges e = vw.

For the remainder of this problem, suppose that Γ acts harmonically on G.

(c) Show that φΓ has degree |Γ|, and for each vertex v ∈ V (G), the horizontal
ramification index mv is equal to |Γv|, the size of the stabilizer subgroup. Also,
show that mv divides the vertical multiplicity vert(v) for each vertex v, and
define nv := vert(v)/mv.

(d) Apply the Riemann-Hurwitz formula to φΓ to obtain:

2g(G)− 2 = |Γ|(2g(G/Γ)− 2 +R).

Here, R =
∑
x∈V (G/Γ)

(
2(1− 1

mx
) + nx

)
, where mx := mv and nx := nv for

any choice of vertex v such that φΓ(v) = x.

(e) Show that if R > 2, then in fact R ≥ 7/3.

(f) Now suppose that g(G) ≥ 2. First show that if g(G/Γ) ≥ 1, then |Γ| ≤
2g(G) − 2. Finally, show that if g(G/Γ) = 0, then R > 2 and |Γ| ≤ 6(g − 1).
Thus, the maximal size of a harmonic group action on a graph of genus g ≥ 2
is 6(g − 1).

(g) Find a group of order 6 acting harmonically on the genus-2 banana graph B3.

For more about harmonic group actions and genus bounds, see [30, 31, 32].

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Chapter 11

Divisors on complete graphs

11.1. Parking functions

There is a nice description of the superstable configurations on Kn+1, the complete
graph on n + 1 vertices, in terms of a protocol for parking cars. Suppose there is
a line of n cars, C1, . . . , Cn traveling down a street with C1 in the lead. Further
along that street, there is a line of n parking spaces labeled, in order, 1, . . . , n.
The driver of each car has a preferred parking space. We list these preferences as
a vector p = (p1, . . . , pn) where pi is the preference for Ci. The protocol is that
the driver of Ci will drive to parking space pi, ignoring the state of any previous
parking spaces. If space pi is empty, car Ci parks there. If it is full, then Ci parks
in the next available space. Figure 1 gives three examples.

If p is a permutation of the vector (1, . . . , n), then there is a unique parking
space for each car, and each car Ci will end up in its preferred space. On the
other hand, suppose p is the constant vector (1, 1, . . . , 1). Then car C1 will drive to
space 1 and park; car C2 will find space 1 filled and drive on to 2, the next available
space. In the end, each Ci parks in space i. Only C1 gets its preferred spot.

Not every list of parking preferences p allows every car to park. For instance,
consider the constant vector p = (n, n, . . . , n). Car C1 parks in space n. Next, C2

drives past the empty parking spaces 1, . . . , n− 1 to its preferred space n but finds
it filled. The protocol says C2 should drive on and take the next available space.
However, there are no more available spaces. In fact, only C1 can park with this p.
Those parking preferences p that allow every car to park are called parking functions
of length n.

Exercise 11.1.

(1) Which of the following lists of parking preferences are parking functions? For
each that is, find the resulting assignment of cars to parking spaces.

(a) (3, 1, 3, 1, 4) (b) (2, 3, 2, 4)
(c) (2, 1, 3, 2) (d) (4, 3, 1, 3, 4)

215

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

216 11. Divisors on complete graphs

(i) C2

3

C1

2

C3

1

231
C1 C2 C3

(ii) C3

3

C1

2

C2

1

212
C1 C2 C3

(iii) C2

3

C3

2

C1

1

131
C1 C2 C3

Figure 1. Three examples of parking functions. In each case, the cars

C1, C2, C3 drive across the page from right-to-left to parking spots labeled
1, 2, 3. The parking preferences for each car are listed in order above the

arrows.

(2) Let X := {(p1, p2, p3) ∈ Z3 : 1 ≤ pi ≤ 3}. What is the probability that an
element of X chosen uniformly at random is a parking function?

The list of parking preferences (2, 3, 2, 4) in Exercise 11.1, 1 (b), has no driver
preferring parking space 1. That means all four cars need to park in the three
remaining spaces, 2, 3, 4, which is impossible. A similar problem arises in 1 (d): if
the preferences are (4, 3, 1, 3, 4), then there are four cars competing for the three
parking spaces 3, 4, 5.

Let p be a list of preferences, and let the cars park according to p. If p is not
a parking function, then some of the cars are not able to park in spaces 1, . . . , n.
Suppose we send these cars to a special overflow parking lot. So now everyone has
a space to park, and p is a parking function exactly when no car ends up parked
in the overflow lot, i.e., exactly when all the spaces 1, . . . , n are filled. Note that
space 1 is filled exactly when at least one car prefers space 1. Next note that
spaces 1 and 2 are both filled exactly when space 1 is filled and at least two cars
prefer spaces numbered at most 2, taking into account the possibility that a car
preferring space 1 is forced to park in space 2, instead. Continuing this line of
thought proves the following result.

Proposition 11.2. Let p = (p1, . . . , pn) ∈ Zn with 1 ≤ pi ≤ n for all i. Then p is
a parking function if and only if for each j = 1, . . . , n,

|{i : pi ≤ j}| ≥ j.

For p, q ∈ Zn write q ≤ p if qi ≤ pi for all i. A maximal parking function is a
parking function p maximal with respect to ≤, i.e., with the property that if p ≤ q
for some parking function q, then p = q. Let ~1 = (1, . . . , 1). We have the following
immediate corollary to Proposition 11.2:

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

11.1. Parking functions 217

Corollary 11.3. Suppose that p = (p1, . . . , pn) is a parking function.

(1) Then so is (pπ(1), . . . , pπ(n)) for any permutation π of the indices.

(2) If ~1 ≤ q ≤ p, then q is a parking function.

(3) The maximal parking functions are exactly the n! vectors obtained by permuting
the components of (1, . . . , n).

Corollary 11.3 provides an easy way to determine whether a given integer
vector q is a parking function. First, sort the components of q to obtain the
vector q̃ with q̃i ≤ q̃i+1 for all i. Then q is a parking function if and only if
~1 ≤ q̃ ≤ (1, . . . , n). To find all parking functions, start with the maximal park-

ing function p = (1, . . . , n); next list all vectors q such that ~1 ≤ q ≤ p and q is
increasing, i.e., q1 ≤ · · · ≤ qn; finally, take all vectors obtained by permuting the
components of these increasing parking functions.

Proposition 11.4. There are (n+ 1)n−1 parking functions of length n.

Proof. Problem 11.1. �

Theorem 11.5. Identifying configurations on Kn+1 with elements of Nn, as usual,
the superstables are exactly

p−~1 = (p1 − 1, . . . , pn − 1)

as p ranges over all parking functions of length n.

Proof. Fix q ∈ Kn+1, and consider configurations on the remaining vertices Ṽ =

{v1, . . . , vn}. Let c be a nonnegative configuration on Kn+1, and define p = c+ ~1.

If c is not superstable, there exists a nonempty set S ⊆ Ṽ that can be legally fired.
This means that for each v ∈ S,

c(v) ≥ outdegS(v) = n+ 1− |S|.

Letting j := n+ 1− |S|,

{vi : pi ≤ j} = {vi : c(vi) < j} ⊆ Ṽ \ S.

It follows that

|{i : pi ≤ j}| ≤ |{Ṽ \ S}| = j − 1 < j.

So by Proposition 11.2, p is not a parking function.

Conversely, if p is not a parking function, by Proposition 11.2, there exists
j ∈ {1, . . . , n} such that |{i : pi ≤ j}| < j. Let

T := {vi : pi ≤ j} = {v ∈ Ṽ : c(v) < j},

and define S := Ṽ \ T = {vi : pi > j} = {v ∈ Ṽ : c(v) ≥ j}. Then for each v ∈ S,
we have

outdegS(v) = n+ 1− |S| = |T |+ 1 ≤ j ≤ c(v).

Thus, c is not superstable since S can be legally fired. �

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

218 11. Divisors on complete graphs

Corollary 11.6. A configuration c = (c0, . . . , cn−1) on Kn+1 is superstable if and
only if after sorting the components so that c0 ≤ · · · ≤ cn−1, we have ci ≤ i for
all i. That is,

c ≤ (0, 1, . . . , n− 1).

The maximal superstables (with respect to ≤) on Kn+1 are the n! configurations
obtained from (0, 1, . . . , n− 1) by permuting components.

Corollary 11.7. | Jac(Kn+1)| = (n+ 1)n−1.

Proof. Immediate from Proposition 11.4. �

Remark 11.8. By the matrix-tree theorem, Corollary 11.7 provides a proof of
Cayley’s formula which states that the number of trees on n+ 1 labeled vertices is
(n+ 1)n−1.

11.2. Computing ranks on complete graphs

Although the general problem of computing the rank of a divisor on a graph is
difficult, for certain classes of graphs there are efficient algorithms. In this section,
we describe an algorithm due to Robert Cori and Yvan Le Borgne ([27]) for com-
puting the rank of divisors on the complete graph Kn+1 with vertices v0, v1, . . . , vn.
Fix q = v0. Note that the symmetric group Sn+1 acts on Div(Kn+1) by permuting
the coefficients, and two divisors differing by a permutation have complete linear
systems of the same size. It follows that the rank function is constant on the
Sn+1-orbits in Div(Kn+1).

By Theorem 11.5, the superstable configurations on Kn+1 are in bijection with
the parking functions of length n. In particular, if c is a superstable on Kn+1, then
there exists an index 1 ≤ i ≤ n such that c(vi) = 0. Every divisor D is linearly
equivalent to a unique q-reduced divisor of the form c + kq with c superstable.
Moreover, c+ kq is winnable if and only if k ≥ 0. The idea of the Cori-Le Borgne
algorithm is to iterate the following process until the divisor becomes unwinnable:
replace c + kq by c + kq − vi for c(vi) = 0, and then compute the corresponding
q-reduced divisor. The number of iterations is then one more than the rank of D.

Algorithm 10 Cori-Le Borgne algorithm.

1: input: a divisor D ∈ Div(Kn+1).
2: output: the rank of D.
3: initialization: R = −1
4: compute the q-reduced divisor c+ kq ∼ D
5: while k ≥ 0 do
6: choose vi ∈ Ṽ such that c(vi) = 0
7: c+ kq = q-reduced divisor ∼ c− vi + kq
8: R = R+ 1

9: return R

The proof of validity for this algorithm depends on the following lemma.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

11.2. Computing ranks on complete graphs 219

Lemma 11.9. Suppose D ∈ Div(Kn+1) is an effective divisor, and that D(vi) = 0
for some 1 ≤ i ≤ n. Then there exists an effective divisor E ∈ Div(Kn+1) of degree
r(D) + 1 such that E(vi) > 0 and |D − E| = ∅.

Proof. Let F ∈ Div(Kn+1) be an effective divisor of degree r(D) + 1 such that
|D − F | = ∅. If F (vi) > 0 then we are done, so assume that F (vi) = 0. By
assumption, D − F is not effective, so we may choose a vertex vj 6= vi such that
D(vj) − F (vj) =: −a < 0. Note that vj = v0 = q is allowed. Setting A =
D−(F−avj), we have A(vi) = D(vi)−F (vi) = 0 and A(vj) = D(vj)−F (vj)+a = 0.
Thus, if τ ∈ Sn+1 is the transposition that switches i and j, then τA = A. Define
E = F − avj + avi, which is effective since E(vj) = F (vj) − a = D(vj) ≥ 0.
Moreover, E(vi) = F (vi) + a = a > 0, and deg(E) = deg(F) = r(D) + 1. But we
also have

D − E = D − F + avj − avi
= A− avi
= τ(A− avj)
= τ(D − F).

It follows that |D − E| = |τ(D − F)| = τ |D − F | = ∅, as required. �

Proof of validity for algorithm 10. The algorithm must terminate in at most
deg(D)+1 iterations since the degree of the divisor decreases by 1 in each iteration of
the while-loop. To prove that the returned value R is equal to the rank, we proceed
by induction on r(D). For a base case, if r(D) = −1, then D is unwinnable, the
while-loop never executes, and the algorithm returns R = −1 = r(D). Now suppose
that the algorithm is valid for all divisors of rank at most m ≥ −1, and suppose
that r(D) = m + 1. If c + kq ∼ D is the q-reduced divisor linearly equivalent

to D, then c is superstable, so there exists v ∈ Ṽ such that c(v) = 0. Some such v
will be subtracted from c + kq during the first run of the while-loop, and R will
be incremented to R = 0. By the lemma, there exists an effective divisor E of
degree m + 2 such that E(v) > 0 and |D − E| = ∅. Hence, the divisor D − v
has rank at most m, since subtracting the effective divisor E − v of degree m + 1
yields a divisor with an empty linear system. It follows that r(D − v) = m, since
subtracting v from D can decrease the rank by at most 1 (Exercise 5.3). By
the induction hypothesis, the algorithm will run for m + 1 additional steps before
terminating, when it will return R = m+ 1 = r(D). �

The potentially time-consuming part of Algorithm 10 occurs in the computation
of the q-reduced divisor linearly equivalent to c − vi + kq in step 7. However, it
turns out that the reduction may be accomplished through a single lending move
by q followed by a single set-firing, which we now describe.

For notational purposes, let ci := c(vi+1) for all i so that c = (c0, . . . , cn−1).
Next, assume that c is increasing, i.e., c0 ≤ · · · ≤ cn−1. This entails no loss of
generality: at the initialization stage of the algorithm, we can add a step that sorts
the components of c so that c is increasing. By symmetry of Kn+1, the rank does
not change. Similarly, each time through the while-loop, after the q-reduction in

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

220 11. Divisors on complete graphs

step 7, we can sort again (and, luckily, it turns out that the sorting required is
especially easy).

Let’s follow c through one iteration of the while-loop. For the following, recall
that by Corollary 11.6, an increasing configuration c′ on Kn+1 is superstable if and
only if c′ ≤ (0, 1, . . . , n − 1). Since c is sorted and superstable at the beginning
of the loop, we have c0 = 0, so we may choose v1 at step 6. Subtracting 1 from
c(v1) = c0, then firing q transforms c as follows:

c = (0, c1, . . . , cn−1)→ (−1, c1, . . . , cn−1)

→ (0, c1 + 1, . . . , cn−1 + 1) =: c′.

Next, we want to superstabilize c′ through a single set-firing.

If ci = i for some i = 1, . . . , n− 1, then let ` be the smallest such i, and fire the
set {v`+1, v`+2, . . . , vn}:

c′ = (0, c1 + 1, . . . , c`−1 + 1,

fire︷ ︸︸ ︷
c` + 1, . . . , cn−1 + 1)

→

(n− `, c1 + n− `+ 1, . . . , c`−1 + n− `+ 1, c` − `, . . . , cn−1 − `).
Each of the vertices v`+1, . . . , vn−1 loses a dollar to each of v1, . . . , v` and to q.

Cyclically permute components to get the increasing configuration

(11.1) c̃ := (c` − `, . . . , cn−1 − `, n− `, c1 + n− `+ 1, . . . , c`−1 + n− `+ 1).

Then c̃ ≤ (0, 1, . . . , n− 1), hence superstable.

Otherwise, if ci < i for i = 1, . . . , n − 1, then c′ ≤ (0, 1, . . . , n − 1). So it is
already superstable. We set

c̃ := c′ = (0, c1 + 1, . . . , cn−1 + 1),

which may be interpreted as the special case of equation (11.1) in which ` = n and
the empty set of vertices is fired. In either case, vertex q loses n dollars when it
fires, but then gains n− ` during superstablization.

Thus, in one trip through the while loop, we might as well replace c+ kq with
c̃+ (k − `)q. Algorithm 11 incorporates this idea.

11.2.1. Dyck paths. A balanced string of parentheses of order n is a character
string of length 2n consisting of n open parentheses, (, and n close parentheses,),
such that as the string is read from left-to-right, at no time do more close parenthe-
ses appear than open parentheses. For example, the string (()())() is balanced
of order n = 4, and ())(is not balanced.

Exercise 11.10. Find the five balanced strings of parentheses of order 3.

A Dyck path of order n is a walk in Z2 starting at (0, 0) and ending at (n, n)
where (i) each step in the walk is either north, adding (0, 1), or east, adding (1, 0),
and (ii) at each lattice point (i, j) reached in the walk, i ≤ j. Interpreting each
step north as an open parenthesis and each step east as a closed parenthesis gives
a bijection between the sets of balanced strings of parentheses and Dyck paths
of order n. There is also a bijection between these sets and the set of increasing

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

11.2. Computing ranks on complete graphs 221

Algorithm 11 Cori-Le Borgne algorithm, version 2.

1: input: a divisor D ∈ Div(Kn+1).
2: output: the rank of D.
3: initialization: R = −1
4: compute the q-reduced divisor c+ kq ∼ D
5: sort c so that c = (c0, . . . , cn−1) with 0 = c0 ≤ · · · ≤ cn−1 < n
6: while k ≥ 0 do
7: R = R+ 1
8: find smallest ` > 0 such that c` = `,
9: or let ` = n if no such index exists

10: k = k − `
11: if k ≥ 0 then

superstabilize c after firing q
12: c0 = n− `
13: (c1, . . . , c`−1) = (c1 + n− `+ 1, . . . , c`−1 + n− `+ 1)
14: (c`, . . . , cn−1) = (c` − `, . . . , cn−1 − `)

rotate c
15: c = (c`, . . . , cn−1, c0, . . . , c`−1)

16: return R

superstables on Kn+1. Given a superstable c = (c0, . . . , cn−1) with ci ≤ ci+1 for
all i, create a Dyck path as follows: take c0 steps east and then one step north.
Then for i = 0, . . . , n−2, take ci+1−ci steps east followed by one step north. Finish
the path by taking as many steps east as necessary to reach (n, n). See Figure 2
for an example.

Exercise 11.11. For each of the five balanced strings of parentheses of order 3,
make a drawing as in Figure 2, showing the corresponding Dyck path and shading
boxes to indicate the corresponding increasing superstable on K4.

0
0
1
3

Figure 2. The Dyck path of order 4 corresponding to the balanced string of
parentheses (()())(). The increasing superstable (0, 0, 1, 3) on K5 is encoded
as the number of shaded squares in each row.

Our goal now is to visualize the Cori-Le Borgne algorithm in terms of Dyck
paths. For concreteness, we take n = 8 and consider a divisor on K9. Recall that
we have fixed an ordering of the vertices, v0, . . . , v8 with q = v0. Take D = c+ kq
where

c = 3v4 + 3v5 + 3v6 + 5v7 + 7v8 = (0, 0, 0, 3, 3, 3, 5, 7)

and k is not yet specified.

Figure 3 depicts one iteration of the while-loop in Algorithm 11, transforming c
into the configuration c̃ as described starting on page 220. The number of shaded
boxes in each row encodes the current state of c. From the initial state of c shown

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

222 11. Divisors on complete graphs

on the left in (i), one can see that once the corresponding Dyck path leaves the
lattice point (0, 0), it next hits the diagonal at (3, 3). Thus, ` = 3 for this time
through the while-loop.

(i)

0
0
0
3
3
3
5
7

subtract v1

−1
0
0
3
3
3
5
7

(ii)

−1
0
0
3
3
3
5
7

fire q

0
1
1
4
4
4
6
8

(iii)

0
1
1
4
4
4
6
8

fire
{v4,v5,v6,v7,v8}

5
6
6
0
0
0
2
4

(iv)

5
6
6
0
0
0
2
4

rotate

0
0
0
2
4
5
6
6

Figure 3. One iteration of the while-loop in Algorithm 11.

In (i), c is replaced by c − v1. Firing q in step (ii) adds 1 to each component
of c; the fact that c is then not superstable can be seen from the two shaded
boxes that jut over the diagonal. To superstabilize, since ` = 3, we fire the set of
vertices S := {v4, v5, v6, v7, v8}. There are edges connecting these vertices to the
four remaining vertices, including q, so they each lose $4. Meanwhile, the remaining
vertices each gain $5, one from each vertex in S. Finally, in (iv), the configuration
is rotated to obtain an increasing superstable configuration denoted earlier as c̃.

Figure 4 summarizes the transformation of c into c̃. It also suggests another way
of thinking about the transformation. Consider the area between each Dyck path
and the diagonal. We have divided it into two parts, blue and yellow, determined
by where the Dyck path for c first reconnects with the diagonal, at (`, `) where
` = 3. What is the effect of the while-loop on these regions? Their positions along
the diagonal are swapped, but in the process, the blue region changes. If you tilt
your head counter-clockwise, you might think of the two regions as mountains. The
blue mountain has split into two: a tiny mountain consisting of half a square and
a “sunken” version of the original. (Un-tilting your head, the sunken version of the
blue mountain is obtained by scooting the blue region one unit to the right, then

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

11.2. Computing ranks on complete graphs 223

0
0
0
3
3
3
5
7

c

0
0
0
2
4
5
6
6

c̃

Figure 4. Visualizing one iteration of the while-loop of Algorithm 11 through
the action on the regions between the Dyck path and the diagonal.

excising everything under the diagonal.) The shape of the yellow mountain does
not change. Figure 5 shows the next iteration of the while-loop. This time, ` = 4.
Again the blue mountain splits off a tiny blue mountain and sinks. The yellow
mountain is unchanged.

0
0
0
2
4
5
6
6

c

0
1
2
2
4
5
5
7

c̃

Figure 5. Next iteration (see Figure 4).

Exercise 11.12. For each of the following, repeatedly iterate the while-loop of
Algorithm 11, drawing pictures as in Figure 4. After enough iterations, a stable
state it reached. Describe it.

(1) Continue with (0, 0, 0, 2, 4, 5, 6, 6), from Figure 4.

(2) c = (0, 0, 0, 0) on K5.

(3) Try a couple of your own increasing superstables on complete graphs.

Now for the important question: Is there a way to read off the rank of D =
c + kq from these diagrams? We will assume that D has been processed so that
c is an increasing superstable. Since c is superstable, r(D) ≥ 0 if and only if
k ≥ 0. Each iteration of the while-loop essentially replaces D with the divisor
c̃ + (k − `)q, decreasing the rank by 1. Thus, the rank of D is one less than
the number of times the while-loop is executed, and this number is completely
determined by the succession of values attained by `. Recall the geometric meaning
of ` in our diagrams: (`, `) is where the Dyck path first reconnects to the diagonal
after leaving (0, 0). So we can find the rank of D by paying attention to these
special points!

Consider our previous example, in which c = (0, 0, 0, 3, 3, 3, 5, 7). Assuming
k ≥ 0, the while-loop of Algorithm 11 is executed. The resulting transformation,
c c̃ is again portrayed in Figure 6 but this time with numbers along the diagonals.
In this iteration, we have ` = 3, and hence q loses $3. Thus, if k ∈ {0, 1, 2}, the

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

224 11. Divisors on complete graphs

0

0

0

3

3

3

5

7

0
1

2
3

4
5

6
7

0

0

0

2

4

5

6

6

3
4

5
6

7
8

9
10

Figure 6. First iteration of the while-loop. Numbered diagonals.

while-loop will only be performed once; so r(D) = 0. If k ≥ 3, the loop is executed
again. Repeating the same argument, this time using the diagram on the right in
Figure 6, this next iteration results in a loss to q of an additional $4, hence, a net
loss of $7. So if k ∈ {3, 4, 5, 6}, no more iterations will occur, and since there are
two iterations, r(D) = 1. Using this diagram to look ahead, one may see that q
loses $1 in both the third and fourth iterations, then loses $2 in the fifth. So if
k = 7, then r(D) = 2; if k = 8, then r(D) = 3; and if k = 9 or 10, then r(D) = 4.

Notice if k is large enough, each corner in the original Dyck path eventually cor-
responds with an `-value. Recalling the “sinking mountain” analogy, with repeated
iterations each corner eventually sinks to the point where it touches the diagonal.
However, also recall that with each iteration, the “blue mountain” spawns an addi-
tional tiny mountain, and hence an additional corner is formed. Figure 7 shows the

0

0

2

3

3

4

6

7

9

10

11

12

13

14

15

16

0

1

1

2

4

5

6

7

11

12

13

14

15

16

17

18

Figure 7. Fifth iteration.

fifth iteration of the while-loop. The numbers in bold signify the sum of `-values
encountered so far. It would take a long time to determine how r(D) changes as k
increases if it were necessary to repeatedly draw these diagrams representing each
iteration. Happily, there is an alternative, which we describe next.

11.2.2. Cori-Le Borgne diagrams. Consider Figure 6 illustrating the first it-
eration of the while-loop in Algorithm 11. The diagonal boxes are numbered se-
quentially with those appearing in “corners” of the Dyck path typeset in boldface.
After the first iteration, 3 dollars are lost from q, as one can see from where the
Dyck path on the left first hits the diagonal (not counting the origin). To perform
the next iteration, one would start with the Dyck path pictured on the right in the
figure. It meets the diagonal at (4, 4). So in the second iteration, 4 dollars are lost
from q. The net loss is then $7: the next number after 3 that appears in bold. In

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

11.2. Computing ranks on complete graphs 225

0

0

0

3

3

3

5

7

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Figure 8. Cori-Le Borgne diagram for the divisor D = (0, 0, 0, 3, 3, 3, 5, 7) + kq.

Figure 7, one sees from the boldface numbers that after the fifth iteration of the
algorithm, $11 dollars have been lost from q. Our algorithm continues until q goes
into debt, and the number of iterations then determines the rank of the divisor.
For example, if q started with less than $11, then the rank of our divisor would be
less than 5.

The Cori-Le Borgne diagram of a divisor keeps track of the sequence of net
losses—the boldface numbers—produced by the iterations of the while-loop in Al-
gorithm 11. This diagram for our running example appears in Figure 8. To describe
it in general, let D be any divisor on Kn+1. We may assume that D = c+kq where q
is any chosen vertex and c is a superstable with respect to q. List the components
of c in nondecreasing order, then draw the Dyck path for c. The Dyck path sits in
a square grid with side length equal to n, the number of components of c. Extend
this grid infinitely to the left, keeping the same height (cf. Figure 8). Starting at
the lower-left endpoint of the Dyck path, just left of the Dyck path, itself, list the
natural numbers in the grid squares along diagonals parallel to the diagonal for the
Dyck path. If a number lies to the left of the Dyck path, write it in bold face. This
includes those numbers lying to the left of the original square containing the Dyck
path.

To determine the rank of D = c+kq for each value of k from the Cori-LeBorgne
diagram for D, let b be the number of bold values less than or equal to k. Then
r(D) = b − 1. For example, from Figure 8 we can fill in the table in Figure 9
giving the complete list of ranks for D = (0, 0, 0, 3, 3, 3, 5, 7) +kq as a function of k.
The Cori-Leborgne diagram tidily encodes the rank of D = c + kq by turning the
algorithm’s “rotation” into the wrap-around numbering and the “sinking” into the
left-shift of the numbering along successive diagonals.

k < 0 0, 1, 2 3, 4, 5, 6 7 8 9, 10 11 12, 13 > 13
r(c+ kq) −1 0 1 2 3 4 5 6 k − 7

Figure 9. The rank of D = (0, 0, 0, 3, 3, 3, 5, 7) + kq as a function of k.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

226 11. Divisors on complete graphs

Exercise 11.13. Convince yourself that the bold numbers in a Cori-Leborgne
diagram record the net loss from q at each iteration of the algorithm’s while-loop,
as claimed.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 11

11.1. Consider a variation of the protocol for parking cars described in §11.1. There
are still n cars, C1, . . . , Cn, but this time there is one extra parking space, numbered
n + 1, and the spaces are arranged in a circle. Car Ci prefers to park in space
pi ∈ {1, . . . , n+ 1}. Other than that, the rules are essentially the same: each car in
turn drives to its preferred spot and parks there if possible. Otherwise, it drives on
to the next available spot. Since the spaces are arranged in a circle, each car will
eventually park. Call these preference lists circular parking functions (terminology
we learned from Matthias Beck).

(a) After the cars park according to a given circular parking function, there is one
empty parking space. Show that the number of circular parking functions that
leave space i empty is the same as the number that leave space 1 empty, for
each i.

(b) Show that a circular parking function is an actual parking function if and only
if it leaves space n+ 1 empty.

(c) Now conclude that the number of ordinary parking functions of length n is
(n+ 1)n−1.

11.2. Draw a diagram as in Figure 8 in order to determine the rank of the divisor
D = (0, 0, 0, 1, 1, 4, 6, 6, 8, 22) on K10.

11.3. Find the ranks of all divisors on K4. Let p1, . . . , p5 be the increasing parking
functions of length 3, and define the superstables ci := pi − ~1 for each i. Define
Di := ci−deg(ci)q for i = 1, . . . , 5. For each d ∈ Z, the divisor classes of the Di+dq
and of all the divisors obtained from them by permuting the components of the ci
are exactly the elements of Picd(D). In other words, up to symmetry and linear
equivalence, the divisors of degree d are exactly Di + dq for i = 1, . . . 5. Make a
table showing the rank of Di+dq as i and d vary. Use the Cori-Le Borgne diagrams
of Section 11.2.2 to compute the ranks.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Chapter 12

More about sandpiles

In this chapter we collect some additional topics about sandpiles. The setting is
the same as Part 2: by a graph we mean a finite, connected, directed multigraph,
possibly with loop edges.

12.1. Changing the sink

Consider the graph

u v
2

with two edges from u to v and one from v to u. The sandpile group with respect
to the sink vertex u is trivial while the sandpile group with respect to v has two
elements. For a general graph, how does the sandpile group depend on the choice
of sink?

Extending the definitions from Part 1 to directed graphs, we define divisors on
a directed graph G to be elements of Div(G) := ZV , the free abelian group on the
vertices. Two divisors, D,D′ are linearly equivalent if their difference lies in the
image of the (full) Laplacian L : M(G)→ Div(G), in which case we write D ∼ D′.
The degree of a divisor D, denoted deg(D), is the sum of the coefficients of D. Just
as before, we define the Picard group

Pic(G) := Div(G)/ im(L) = Div(G)/∼ .

Even in the case of a directed graph, the entries in each column of the Laplacian
sum to zero, so the image contains only degree-0 divisors. Therefore, it makes sense
to define the Jacobian group,

Jac(G) := Pic0(G) := Div0(G)/∼ := {[D] ∈ Pic(G) : deg(D) = 0}.

Note that the Jacobian group does not depend on the choice of a sink vertex.

229

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

230 12. More about sandpiles

Now suppose that G has a least one globally accessible vertex, and let det(L̃)
denote the reduced Laplacian with respect to one such vertex. Since the sum of

the rows of L is ~0 and det(L̃) 6= 0 by the matrix-tree theorem 9.3, the rank of L is
|V | − 1, and we may write

ker(L) = Zτ

for some τ ∈ M(G) = ZV . In fact, we specified a generator τ explicitly in Sec-
tion 9.2.2: for each vertex v, let θ(v) be the number of spanning trees rooted into v,
and set γ := gcd{θ(v)}. Then τ = θ/γ.

Theorem 12.1. Let G = (V,E, s) be a sandpile graph with chosen sink s.

(1) There is a commutative diagram with exact rows

0 // ZṼ L̃ //

ι

��

ZṼ //

ε

��

S(G, s) //

ε̄

��

0

0 // ZV / ker(L)
L // Div0(G) // Jac(G) // 0,

where ε(v) = v − s and ι(v) = [v] ∈ ZV / ker(L) for all v ∈ Ṽ . (Here, as usual,
we identify v with its characteristic function χv.)

(2) For each v ∈ Ṽ , let nv denote the number of edges in G directed from s to v.

Let c̃ ∈ S(G, s) ' ZṼ /L̃ be the unique recurrent such that

c̃ = −
∑
v∈Ṽ

nv v mod L̃.

There is short exact sequence

0 // Zτ(s)
α // S(G, s)

ε̄ // Jac(G) // 0,

where α(k) := k · c̃, and ε̄(c) := [c− deg(c) s].

Proof. In part 1, the exactness of the rows is immediate. For commutativity,

εL̃v = ε

outdeg(v) v −
∑

vw∈E:w 6=s

w


= outdeg(v) v −

∑
vw∈E

w

= Lv = Lιv.

The mapping ε̄ : S(G, s)→ Jac(G) is then induced by ε.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

12.1. Changing the sink 231

For part 2, apply the snake lemma (see Appendix B.2.5), using the fact that ε
is invertible (ε−1(

∑
v∈V avv) =

∑
v∈Ṽ avv):

ker ι

��

0

��

ker ε̄

��

0 // ZṼ L̃ //

ι

��

ZṼ //

ε

��

S(G, s) //

ε̄

��

0

0 // ZV / ker(L)
L //

��

Div0(G) //

��

Jac(G) //

��

0

cok ι 0 cok ε̄

By the snake lemma, there is an exact sequence

0 // ker ι // 0 // ker ε̄ //// cok ι // 0 // cok ε̄ // 0.

Hence, ker ι = 0, cok ε̄ = 0, and ker ε̄ ' cok ι. Since every non-sink vertex is
equivalent to 0 in cok ι, we see that the cokernel is generated by [s]. But [s] has
order τ(s) in cok ι, since kerL = Zτ . It follows that ker ε̄ ' cok ι ' Zτ(s). All that
remains is to describe the mapping α : Zτ(s) → S(G, s) explicitly, and for this we
just need to find a generator for the kernel of ε̄. From the definition of the snake
lemma mapping ker ε̄

∼−→ cok ι and the generator [s] for cok ι, we find the generator

c := ε−1(L[s]) = ε−1((outdeg(s)− (#loops at s)) s−
∑
v∈Ṽ

nv v) = −
∑
v∈Ṽ

nv v,

where nv is the number of edges directed from s to v. Letting c̃ ∈ S(G, s) denote
the equivalent recurrent sandpile, we see that α : Zτ(s) → S(G, s) is defined by
α(k) = k · c̃ as claimed. �

Exercise 12.2. Consider the following 2-vertex graph G:

u v
4

2

with full Laplacian

L =

(
4 −2
−4 2

)
.

There are 2 spanning trees rooted into u and 4 rooted into v, so τ = (1, 2) generates
the kernel of L. The Jacobian of G is cyclic of order 2:

Jac(G) = Div0(G)/ im(L) = Z(1,−1)/Z(2,−2) = Z2.

First take s = u for the sink, so that L̃ = (2) and S(G, u) = {0, v} ' Z2. Using
the notation from Theorem 12.1 (2), we have c̃ = 0, the unique recurrent equivalent

to −4v modulo L̃. In this case, α is the zero map, and ε̄ : S(G, u)→ Jac(G) is an
isomorphism, defined by v 7→ [v − u].

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

232 12. More about sandpiles

Now take s = v for the sink, so L̃ = (4) and S(G, v) = {0, u, 2u, 3u} ' Z4. Now
we have c̃ = 2u, and the map α : Z2 → S(G, v) is given by 1 7→ 2u. The mapping
ε̄ : S(G, v)→ Jac(G) = Z2 defined by u 7→ [u− v] fits into the exact sequence

0 // Z2
α // S(G, v)

ε̄ // Z2
// 0.

Note that this exact sequence is not split, since S(G, v) ' Z4 6' Z2 × Z2.

In the case where G is undirected, we saw in Proposition 2.8 that the kernel of
the Laplacian is generated over Z by τ = (1, . . . , 1). So in that case, S(G) ' Jac(G)
for all choices of sink vertex s. Since Jac(G) does not depend on s, the sandpile
group is determined up to isomorphism, independent of the choice of sink. Which
directed graphs have this independence property?

The following corollary of Theorem 12.1 answers this question. (In its state-
ment, we use the term well-defined to mean that the vertex chosen as the sink is
globally accessible, i.e., from each vertex there is some directed path to the sink.)

Corollary 12.3. The sandpile group S(G) is well-defined and independent of the
choice of sink (up to isomorphism) if and only if G is Eulerian, in which case the
mapping ε̄ gives an isomorphism S(G) ≈ Jac(G).

Proof. If S(G) is well-defined and independent of choice of sink, then for all v, we
have τ(v) > 0, and by Theorem 12.1 (2),

| S(G)|/τ(v) = | Jac(G)|.

Since Jac(G) is independent of v, it follows that τ is a constant vector, and
hence, τ = (1, . . . , 1). But τ = (1, . . . , 1) is equivalent to indeg(v) = outdeg(v)
for all v ∈ V , which in turn is equivalent to G being Eulerian (Proposition A.29).

Conversely, if G is Eulerian, the existence of an Eulerian cycle implies every
vertex is globally accessible. Further, indeg(v) = outdeg(v) for all v; so τ =
(1, . . . , 1), and by Theorem 12.1 (2), S(G, v) ≈ Jac(G) for all v.

�

12.2. Minimal number of generators for S(G)

Let G = (V,E, s) be a sandpile graph, and let µ(G) denote the minimal number of
generators for S(G). We first consider some bounds on µ(G), then consider what
happens to µ(G) as edges are removed fromG. The results presented here are rooted
in work by Lorenzini ([70, 71, 72]) and collaboration with Hoppenfeld ([58]).

By the structure theorem for finitely generated abelian groups, discussed in
Section 2.4 and Remark 2.34,

S(G) '
µ(G)∏
i=1

Zsi

for some integers si > 1 such that si|si+1 for all i. The si are the invariant factors
of S(G) and are uniquely determined by S(G). Since S(G) is finite, its free part is
trivial.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

12.2. Minimal number of generators for S(G) 233

Since S(G) ' ZṼ /L̃, the invariant factors of S(G) are exactly the invariant

factors of L̃ not equal to 1. Suppose G has n vertices. Then L̃ is an (n−1)×(n−1)
invertible matrix, and hence,

µ(G) = n− 1− t.

where t is the number of invariant factors of L̃ equal to 1.

Recall from Section 2.4 that the i-th determinantal divisor, di := di(L̃), is

the gcd of the i × i minors of L̃ and turns out to be the product of the first i

invariant factors of L̃. (Since L̃ is invertible, none of its determinantal divisors
are 0.) Therefore, the t in the above displayed equation is the maximal i such that
di = 1.

Of course, 0 ≤ µ(G) ≤ n−1. By the matrix-tree theorem 9.3, we have µ(G) = 0
if and only if G contains exactly one directed spanning tree rooted at the sink. Thus,
if G is undirected, then µ(G) = 0 if and only if G is a tree. In general, if G is an

undirected simple graph, then L̃ will contain an entry equal to±1, and hence, d1 = 1
and µ(G) ≤ n − 2. By Problem 2.6, we know that S(Kn) ' Zn−2

n . In fact, if G is
a subgraph of Kn, then µ(G) = n− 2 if and only if G = Kn (cf. Problem 12.2).

Example 12.4. Figure 1 displays all connected 5-vertex subgraphs of the complete
graph K5 and their invariant factors. Graphs on the same horizontal level have the
same number of edges. A line connects a graph G on one level to a graph G′ one
level down if G′ is obtained from G by removal of an edge. The line is black if the
edge-removal does not change the number of invariant factors, blue if the number
decreases, and red if it increases. Note that removal of an edge changes the number
of invariant factors by at most one, a general fact explained by Theorem 12.6.

We now concentrate on how the minimal number of generators for the sandpile
group changes when a graph is modified by adding or removing edges. The mod-
ification can be expressed in terms of a change in reduced Laplacians. In general,
let M be any m× n integer matrix, and define µ(M) to be the minimal number of
generators of cok(M). Therefore, µ(M) = m− t where t is the number of invariant

factors of M equal to 1. For a sandpile graph G with reduced Laplacian L̃, we

have µ(G) = µ(L̃). We are interested in the following lemma in the case when M
and M ′ are reduced Laplacians of graphs obtainable from each other by adding or
removing edges.

Lemma 12.5. Let M and M ′ be m× n integer matrices. Then

|µ(M)− µ(M ′)| ≤ rk(M −M ′).

Proof. For notation, let Λi be the collection of all Z-linear combinations of i × i
minors of M , let di := di(M) be the i-th determinantal divisor of M , and let si be
the i-th invariant factor of M . Therefore, Λi = (di), the principal ideal consisting

of all integer multiples of di, and by Theorem 2.33, di =
∏i
j=1 sj . Let Λ′i be the

Z-linear combinations of i× i minors of M ′, and let d′i and s′i be the corresponding
determinantal divisor and invariant factor for M ′.

For each i, we will show that

(12.1) Λ′i ⊆ Λi−r

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

234 12. More about sandpiles

(5, 5, 5)

(5, 15)

(3, 15) (40)

(4, 4)(21)(2, 10)(24)

(3, 3)(8)(8)(11)(2, 6)

(3)(3)(3)(4)(5)

()()()

Figure 1. Invariant factors of the connected 5-vertex subgraphs of K5 for

Example 12.4. Lines between graphs indicate an edge removal, and colors
indicate a change in the number of invariant factors: black = no change; blue

= decrease; red = increase.

where r := rk(M − M ′). (For this purpose, take Λi = (1) = Z and di = 1 if
i ≤ 0, and take Λi = {0} if i is larger than the number of rows or columns of M ,
and similarly for M ′.) To see that this implies the lemma, let t be the number of

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

12.2. Minimal number of generators for S(G) 235

invariant factors of M ′ equal to 1. Then d′t = 1 and µ(M ′) = m− t. Once (12.1) is
established, it follows that dt−r = 1, and thus, µ(M) ≤ m − (t − r) = µ(M)′ + r.
By symmetry, we also have µ(M ′) ≤ µ(M) + r, and the result follows.

To prove (12.1), take some i such that 1 ≤ i ≤ min{m,n}, the other cases
being trivial. Replacing M ′ by an arbitrary i× i submatrix of M ′ and replacing M
by its corresponding submatrix, we may assume M ′ and M are i× i matrices. Our
task is to show det(M ′) ∈ Λi−r.

Say the columns of M are u1, . . . , ui and the columns of M ′−M are v1, . . . , vi.
Then

det(M ′) = det(u1 + v1, . . . , ui + vi).

Expanding the right-hand side of this equation using the fact that the determinant
is multilinear and alternating, it follows that det(M ′) is a sum of terms of the form

(12.2) ± det(u`1 , . . . , u`k , vµ1
, . . . , vµi−k

).

Writing each u`p as a linear combination of the standard basis vectors, {ej}, and
expanding further, each of these terms is a Z-linear combination of terms of the
form

det(eν1 , . . . , eνk , vµ1
, . . . , vµi−k

),

which is an (i− k)× (i− k) minor of the matrix with columns vµ1
, . . . , vµi−k

, and
thus, an (i− k)× (i− k) minor of M ′ −M . If i− k > r = rk(M −M ′), then this
minor is 0. Hence, we may assume i− r ≤ k.

Next, go back to (12.2) and this time write the vµp in terms of the standard
basis vectors. Expand (12.2) to get a Z-linear combination of k × k minors of M .
In general, any j×j minor of a matrix is a linear combination of its (j−1)× (j−1)
minors, as can be seen by computing a determinant by expanding along a row. In
our case, since i− r ≤ k, repeated application of this fact shows that det(M ′) is a
linear combination of (i− r)× (i− r) minors of M , as required. �

Theorem 12.6. Let G and G′ be sandpile graphs on the same vertex set with the
same sink, and let U be a subset of the vertices of size r+ 1. Suppose the edge sets
of G and G′ differ only by edges with both endpoints in U . Then

|µ(G)− µ(G′)| ≤ r.

Proof. Let L̃ and L̃′ be the reduced Laplacians for G and G′, respectively. For
each non-sink vertex v, let ev be the v-th standard basis vector, and let es := 0 for

the sink vertex, s. Then the column span of L̃− L̃′ is contained in SpanZ{eu− ev :

u, v ∈ U}, a free abelian group of rank r. Hence, rk(L̃ − L̃′) ≤ r, so the result
follows from Lemma 12.5. �

Corollary 12.7. Let G and G′ be sandpile graphs on the same vertex set with the
same sink.

(1) If G′ is obtained from G by removal of a single edge or, more generally, by
removal of any set of edges joining a fixed pair of vertices, then

|µ(G)− µ(G′)| ≤ 1.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

236 12. More about sandpiles

(2) µ(G) ≤ |Ẽ| − |V | + 1 where Ẽ is the set of edges for the underlying simple

undirected graph (e.g., Ẽ = E if G is a simple undirected graph).

(3) Let U be a subset of the vertices of size r + 1. Suppose that by removing only
edges with both endpoints in U one may obtain a directed spanning tree of G
rooted into the sink. Then, µ(G) ≤ r.

Proof. Part (1) is immediate from Theorem 12.6. By the matrix-tree theorem
theorem 9.3, G has at least one spanning tree rooted into the sink. Choosing such
a spanning tree T , note that it has |V |−1 edges. Then part (2) follows from part (1)
and the fact that the sandpile group of T is trivial. Similarly, part (3) follows from
Theorem 12.6. �

As an application of the ideas presented above, we ask: How many edges must
one remove from the complete graph Kn in order to obtain a sandpile graph with
cyclic sandpile group? Since S(Kn) ' Zn−2

n , we have µ(Kn) = n− 2, so according
to Corollary 12.7 (1), we must remove at least n − 3 edges. In fact, with proper
choices, a cyclic sandpile group is always achievable by removing exactly n−3 edges.
One way of doing this is to remove a path graph from Kn. For an illustration of
the following proposition, see Figure 2.

Proposition 12.8. Let G be a sandpile graph obtained from the complete graph Kn

by removing k (undirected) edges.

(1) If S(G) is cyclic, then k ≥ n− 3.

(2) If G is obtained by removing a path graph of length n−3, then S(G) is cyclic of
order nUn−3(n−2

2), where Uj is the j-th Chebyshev polynomial 1 of the second
kind.

Proof. We have already discussed part (1). For part (2), let 1, . . . , n be the vertices
of Kn. By symmetry, we may assume G is obtained by removing the path graph
on vertices 1, . . . , n − 2, where vertices 1 and n − 2 have degree 1. The Laplacian
for G is the n× n matrix

L =



n− 2 0 −1 −1 · · · −1 −1 −1 −1
0 n− 3 0 −1 · · · −1 −1 −1 −1
−1 0 n− 3 0 · · · −1 −1 −1 −1
...

...
...

...
. . .

...
...

...
...

−1 −1 −1 −1 · · · n− 3 0 −1 −1
−1 −1 −1 −1 · · · 0 n− 2 −1 −1
−1 −1 −1 −1 · · · −1 −1 n− 1 −1
−1 −1 −1 −1 · · · −1 −1 −1 n− 1


Choosing n as the sink vertex, drop the last row and column from L to obtain

the reduced Laplacian, L̃, of G. To show S(G) is cyclic, it suffices to show the

(n − 2)-nd determinantal divisor for L̃ is 1. To see this, start with the matrix L̃

and perform the following operations, in order: (i) subtract the last row of L̃ from
all other rows, (ii) add all but the last column to the last column, and (iii) add the
last row to the second-to-last row. Finally, dropping the first column and last row

1The definition of Chebyshev polynomial follows the proof of this proposition.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

12.2. Minimal number of generators for S(G) 237

of the resulting matrix leaves an (n− 2)× (n− 2) lower-triangular matrix with 1s
on the diagonal, and hence determinant 1. Thus, G is cyclic.

To compute the size of S(G), let J be the n× n matrix with each entry equal
to 1. Then by Proposition 9.12, the number of spanning trees, hence the size of
S(G) is det(L+ J)/n2. We have

L+ J =



n− 1 1
1 n− 2 1

1 n− 2 1
. . .

1 n− 2 1
1 n− 1 0

0 n 0
0 n


.

0

0

Let A be the matrix obtained by dropping the last two rows and columns from
L+ J . Then

| S(G)| = det(L+ J)/n2 = det(A).

The matrix A is closely related to a particular evaluation of a Chebyshev polynomial
of the second kind:

Un−2

(
n−2

2

)
= det



n− 2 1
1 n− 2 1

1 n− 2 1
. . .

1 n− 2 1
1 n− 2


.

0

0

Letting ri denote the i-th row of the above matrix, and letting ei denote the i-th
standard basis vector, we have

det(A) = det(r1 + e1, r2, . . . , rn−3, rn−2 + en−2)

= det(r1, r2, . . . , rn−3, rn−2) + det(e1, r2, . . . , rn−3, rn−2)

+ det(r1, r2, . . . , rn−3, en−2) + det(e1, r2, . . . , rn−3, en−2)

= Un−2

(
n− 2

2

)
+ 2Un−3

(
n− 2

2

)
+ Un−4

(
n− 2

2

)
.

Expanding the determinant defining Chebyshev polynomials of the second kind
gives the identity Un−2(x) = 2xUn−3(x) − Un−4(x), from which it follows that
det(A) = nUn−3(n−2

2), as desired. �

Definition 12.9. A square matrix M is tridiagonal if Mij = 0 whenever |i−j| > 1.
The determinants of the following two j× j tridiagonal matrices are called the j-th

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

238 12. More about sandpiles

Figure 2. The complete K9 after removing a path graph of length 6 (dashed).
In accordance with Proposition 12.8, the sandpile group is cyclic of order

9 · U6(7
2

) = 953433, where U6(x) = 64x6 − 80x4 + 24x2 − 1 is a Chebyshev

polynomial of the second kind.

Chebyshev polynomials of the first and second kind, respectively:

Tj(x) = det



x 1
1 2x 1

1 2x 1
. . .

1 2x 1
1 2x


, Uj(x) = det



2x 1
1 2x 1

1 2x 1
. . .

1 2x 1
1 2x


.

Equivalently, they are defined by the recurrences:

T0(x) = 1

T1(x) = x(12.3)

Tj(x) = 2xTj−1(x)− Tj−2(x) for j ≥ 2,

and

U0(x) = 1

U1(x) = 2x(12.4)

Uj(x) = 2xUj−1(x)− Uj−2(x) for j ≥ 2.

12.3. M-matrices

In this section we consider a generalization of the sandpile model. Define

Zn := {A ∈Mn×n(Z) : Aij ≤ 0 for i 6= j},

the set of n × n integer matrices with nonpositive off-diagonal entries. Let S̃ :=
{s1, . . . , sn} be a collection of sites, and fix A ∈ Zn. The idea now is to mimic the
sandpile model, using A in place of the reduced Laplacian matrix.

Think of A as a mapping ZS̃ → ZS̃ where Asi is the i-th column of A. A

configuration on S̃ is an element c ∈ ZS̃ ' Zn. Firing si from c results in the

configuration c − Asi. A site si ∈ S̃ is unstable in c if c(i) ≥ Aii, and it is then

legal to fire c. If σ ∈ ZS̃ , the corresponding script-firing produces the configuration

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

12.3. M -matrices 239

c − Aσ. Our previous definitions of recurrent and superstable configurations now
make sense in this new setting.

Example 12.10. Let

A =

(
2 −4
−2 3

)
.

The configuration c = 2s1 = (2, 0) is unstable since c(s1) = 2 ≥ A11. Firing s1

yields the stable configuration

c◦ =

(
0
2

)
= c−As1 =

(
2
0

)
−
(

2 −4
−2 3

)(
1
0

)
.

Exercise 12.11. Is c◦ superstable?

Continuing the above example, consider the configuration (0, 3). We have the
following sequence of legal vertex firings:

(0, 3)
s2−→ (4, 0)

s1−→ (2, 2)
s1−→ (0, 4)

s2−→ (4, 1)
s1−→ . . .

This configuration will never stabilize.

Gabrielov [46], has shown that given any A ∈ Zn, if a configuration has a
stabilization (through legal vertex firings), then that stabilization and its firing
script is unique, and the least action principle, Theorem 6.7, still holds. Further,
whether a configuration will stabilize does not depend on the order of legal vertex
firings.

Definition 12.12. A matrix A ∈ Zn is avalanche finite if every configuration

c ∈ ZS̃ has a stabilization.

For example, we have seen that the reduced Laplacian of a sandpile graph is
always avalanche finite. It turns out avalanche finite matrices are well-known and
useful not just in the context of sandpiles. They have applications in economics,
game theory, probability and statistics, and finite-element analysis for partial differ-
ential equations. (See [46], [52], and [80] for references.) Avalanche finite matrices
are exactly the nonsingular M -matrices which we now describe.

Definition 12.13. A matrix A ∈ Zn is an M -matrix if A = rI − B for some
matrix B with nonnegative entries and some real number r ≥ ρ(B), the maximum
of the moduli of the eigenvalues of B.

Theorem 12.14 ([80]). Let A ∈ Zn. Then A is a nonsingular M -matrix if it
satisfies any of the following equivalent conditions.

(1) The matrix A is avalanche finite.

(2) The real part of each eigenvalue of A is positive.

(3) Every real eigenvalue of A is positive.

(4) A−1 exists and its entries are nonnegative.

(5) All of the principal minors of A are positive. (A principal minor is the determi-
nant of a submatrix formed by removing a set, possibly empty, of rows and the
corresponding set of columns, i.e., rows and columns with the same indices.)

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

240 12. More about sandpiles

(6) The matrix A+ rI is nonsingular for all r ≥ 0.

(7) There exists σ ≥ 0 such that Aσ > 0.

(8) The matrix A does not reverse signs: σ(s) · ((Aσ)(s)) > 0 for all s ∈ S̃ such
that σ(s) > 0.

(9) Aσ ≥ 0⇒ σ ≥ 0.

(10) There exists σ > 0 with Aσ ≥ 0 such that if (Aσ)(si0) = 0, then there exist
1 ≤ i1 ≤ · · · ≤ ir ≤ n such that Aikik+1

6= 0 for 0 ≤ k ≤ r−1 and (Aσ)(sir) > 0.

We have already seen some of these conditions for the case where A is the
reduced Laplacian of a sandpile graph. Condition (1) is the existence of a stabiliza-
tion for the sandpile model, Theorem 6.12. Theorem 8.29 implies the nonnegativity
of the entries of L̃−1, condition (4). Condition (9) is Lemma 7.14. The existence
of a burning sandpile implies condition (10).

Given A ∈ Zn, define the configuration cmax by cmax(s) = Ass−1 for all s ∈ S̃.

Theorem 12.15 ([52]). Let A be a nonsingular M -matrix.

(1) (Existence and uniqueness.) In each equivalence class of configurations modulo
the image of A, there is a unique recurrent and a unique superstable configura-
tion.

(2) (Duality.2) A configuration c is recurrent if and only if cmax− c is superstable.

Exercise 12.16. Let

A =

(
2 −3
−3 6

)
.

(1) Show that A is a nonsingular M -matrix.

(2) Find all recurrents and superstables.

(3) Was there a quick way of determining the number of recurrents before explicitly
finding all of them?

Remark 12.17. (1) We have defined integer M -matrices. Instead, we could re-
place Zn by the set of n×n real matrices with nonpositive off-diagonal entries,
and then Definition 12.13 yields the collection of real M -matrices, for which
Theorem 12.14 still holds. In this case, we consider real-valued configurations,

but firing scripts are still integer-valued, so A is viewed as a mapping ZS̃ → RS̃.

(2) In fact, [80] provides 40 equivalent conditions for non-singular M -matrices, and
Theorem 12.14 is only a sample.

12.4. Self-organized criticality

The Gutenberg-Richter Law ([51]) is an empirical relationship describing the fre-
quency of earthquakes as a function of their magnitude, defined to be proportional to
the logarithm of the maximal amplitude reading of a standard seismogram located
at a standard distance from the quake epicenter. Fixing a suitable geographic re-
gion and sufficiently long time-scale, let N(m) denote the number of earthquakes of

2In fact, our proof of (1 ⇒ 2) in Theorem 7.12 is lifted directly from [52].

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

12.4. Self-organized criticality 241

magnitude m. Then the Gutenberg-Richter Law states that the logarithm of N(m)
decreases linearly with m:

log10N(m) ≈ a− bm.

Matching this formula to data, the slope b is generally found to be approximately 1,
whereas the intercept a depends on the overall level of seismic activity in the region.

Equivalently, setting s := 10m as a measure of the intensity of an earthquake,
and writing Ñ(s) := N(log10(s)) for the number of earthquakes of intensity s, we
find the power law

Ñ(s) ≈ As−b,

where A := 10a. This implies a lack of preferred scale for earthquakes in the
following sense: Ñ(s)sb = A does not depend on s. Recalling that b ≈ 1, we
may interpret this fact as follows: over a sufficiently long time period, the total
intensity produced by quakes of a particular intensity s is independent of s. As
stated in [91]: “Nature expends the same total intensity shaking the earth at
one point on the Gutenberg-Richter scale as it does at any other point on that
scale.” Power laws and the corresponding lack of preferred scale occur in many
other contexts, including the frequency of words in natural languages (Zipf’s law),
the population of cities, the distribution of incomes, and self-similar fractal patterns
in natural formations such as coastlines.

In an influential 1987 paper [4], Bak, Tang, and Weisenfeld introduced their
notion of self-organized criticality (SOC), which they offered as a general mecha-
nism to explain the ubiquity of power-laws and scale-free structures in natural and
social phenomena. They studied toy models of slowly-driven dissipative physical
systems such as the abelian sandpile in the expectation that these models would
display SOC. Here is Dhar writing about sandpiles and self-organized criticality 10
years later ([35]):

The sandpile model was proposed as a paradigm of self-organized criti-
cality (SOC). It is certainly the simplest, and best understood, theorist’s
model of SOC: it is a non-equilibrium system, driven at a slow steady
rate, with local threshold relaxation rules, which in the steady state
shows relaxation events in bursts of a wide range of sizes, and long-range
spatio-temporal correlations, obtained without fine-tuning of any control
parameters.

Many of the features listed by Dhar should be familiar to the reader from Part 2:

• non-equilibrium system: sand is regularly being added to the sandpile, as well
as lost to the sink;

• driven at a slow steady rate: the additional grains come one-by-one, with time
allowed between grains for stabilization to occur through toppling (avalanches);

• local threshold relaxation rules: a vertex topples only when it becomes unsta-
ble, and the stability threshold is the degree of the vertex, determined by its
immediate neighbors;

• steady state: a random walk on the recurrent sandpiles (Corollary 8.28);

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

242 12. More about sandpiles

• relaxation events in bursts of a wide range of sizes: adding a single grain
of sand to a recurrent sandpile may immediately result in another recurrent
(avalanche size zero) or it may result in an unstable sandpile that must topple
many times before stabilizing (a large avalanche).

It remains to explain the final two features: long-range spatio-temporal correla-
tions and without fine-tuning of any control parameters. For this, we must briefly
and informally describe the phenomenon of continuous thermodynamic phase tran-
sitions. So consider a ferromagnetic substance (like iron), which you might imagine3

as a regular lattice of atoms, each of which has a physical quantity called spin that
may be in one of two states: up or down. It is energetically favorable for neigh-
boring atoms to have the same spin rather than opposite, so at low temperatures
the spins will tend to align with each other—at equilibrium the system will fluctu-
ate around either the all-up or the all-down state. At high temperatures, thermal
fluctuations will disrupt the spin-alignment, so at equilibrium the system will fluc-
tuate around a state of average spin zero, and the correlation between spins will
be extremely short-range. More precisely, there will be a temperature dependent
correlation length ξ(T) that sets the scale for the exponential decay of correlation
as a function of separation r via exp(−r/ξ(T)): nearby atoms tend to fluctuate
together, while atoms separated by more than the correlation distance fluctuate
independently. Starting at high temperatures and slowly cooling, the system will
pass through a critical temperature Tc which separates the two regimes. The cor-
relation length ξ(T) diverges to infinity as T → Tc, while the correlation function
changes from exponential decay to a power law r−τ for some critical exponent τ .

The appearance of the power law correlation function r−τ at the critical tem-
perature Tc indicates that there is no characteristic length scale for the system,
so that clusters of spin-aligned atoms of all sizes appear, leading to a fractal-like
spatial structure. Similarly, there is no characteristic time scale for the formation
and persistence of spin-aligned regions, so that cluster lifetimes of all durations will
appear. These are the long-range spatio-temporal correlations mentioned by Dhar
in the quote above. Note the essential fact that this critical behavior is dependent
on fine-tuning the control parameter of temperature to the critical value Tc.

In contrast, the hallmark of SOC is that such long-range correlations occur
without the fine-tuning of any parameter—the system organizes itself into a critical
state. In the abelian sandpile model, the steady state is expected to be critical in the
sense of displaying a power law distribution of avalanche sizes and durations. These
expectations for avalanche statistics are born out by numerical simulations, and in
some cases there are rigorous results indicating the presence of power laws—see,
for example, [12]. Overall, the idea of self-organized criticality has been extremely
influential in a variety of fields, and it has also generated much controversy—for a
survey, see [92].

3We are roughly describing the famous Ising model of magnetism. For further details, see, e.g.,
[83, Section 8.1 and Chapter 12].

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 12

12.1. Let G be Eulerian, and let S(G, s) and S(G, s′) denote the sandpile group
of G with respect to sink vertices, s, s′ ∈ V , respectively. Describe an isomorphism
S(G, s) ' S(G, s′).

12.2. Suppose that G is a subgraph of Kn but not equal to Kn. Show that µ(G),
the minimal number of generators for G, is strictly less than µ(Kn) = n− 2.

12.3. Let Cm be the cycle graph with vertices u0, . . . , um−1 and let Cn be the cycle
graph with vertices v0, . . . , vn−1. Let Gm,n be the graph obtained by identifying
the vertices u0 and v0 and adding the edge {u1, vn−1}. See Figure 3 for G4,6.

(a) Show that S(G) is cyclic of order 3mn−m− n.

(b) Removing the edge {u1, vn−1} results in a graph with sandpile group isomor-
phic to Zm×Zn. Thus, removing this edge causes the minimal number of gener-
ators of the sandpile group to increase by 1 if and only if gcd(m,n) 6= 1. Find a
graphG with a sequence of k edges e1, . . . , ek such that (i)Gi := G\{e1, . . . , ei}
is a sandpile graph for i = 0, . . . , k (with G0 := G) and (ii) µ(Gi+1) = µ(Gi)+1
for all i, i.e., the minimal number of generators for the sandpile group increases
with each edge removal.

v3

v4v5

v1 v2

u1

u2

u3

Figure 3. G4,6 for Problem 12.3

12.4. (See [46], Example 1.17).

(a) Let A ∈ Zn, i.e., A is an integer matrix with nonpositive entries off of the main
diagonal. Furthermore, assume that the diagonal entries of A are nonnegative.
Show that if n ≤ 3, then A is avalanche finite if and only if det(A) > 0.

(b) Consider the matrix with determinant 16 > 0,

A =


1 −3 −1 0
−3 1 −1 0
−1 −1 1 −2

0 0 −2 1

 .

Show that A is not avalanche finite by exhibiting a configuration that will not
stabilize.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Chapter 13

Cycles and cuts

In this chapter, we relate the sandpile group to the algebraic theory of cycles and
cuts. Unless stated otherwise, G = (V,E) will denote an undirected multigraph,
not necessarily connected, and possibly containing loop edges. See Appendix A for
background and terminology from graph theory.

13.1. Cycles, cuts, and the sandpile group

In order to develop the algebraic theory of cycles and cuts, we need to choose an
orientation O for the undirected multigraph G and consider the directed multi-
graph (G,O). However, we will see that the main results are independent of the
choice of orientation. If the vertices of G are ordered as v1, . . . , vn, then we will
generally choose the standard orientation, which assigns the directed edge (vi, vj)
to the undirected edge {vi, vj} whenever i < j.

Let ZE be the free abelian group on the undirected edges of G. In the case
where E is a multiset, copies of edges are treated as distinct in ZE. For example,
if G is the banana graph B2 consisting of two vertices connected by two edges, then
then ZE ' Z2. As usual, if g =

∑
e∈E ae e is an element of ZE, then the support

of g, denoted supp(g), is the set of edges e for which the coefficient ae is nonzero.

The orientation O allows us to define the boundary of an edge e ∈ E as ∂e :=
e+ − e− ∈ ZV . Extending linearly defines the boundary map,

∂ : ZE → ZV.

Fixing an ordering of the vertices and of the edges realizes ∂ as a matrix called
the oriented incidence matrix whose rows are indexed by the vertices and whose
columns are indexed by the edges. See Figure 1 for an example. The next exercise
reveals the connection between the oriented incidence matrix and the Laplacian of
the multigraph G.

Exercise 13.1. Let ∂ ttt denote the transpose of the boundary mapping. Show that
∂∂ ttt = L, the Laplacian matrix.

245

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

246 13. Cycles and cuts

v4

v2 v3

v1


−1 −1 0 0 0

1 0 −1 −1 0
0 1 1 0 −1
0 0 0 1 1

∂ =

1

2

3

4

12 13 23 24 34

Figure 1. The oriented incidence matrix with respect to the standard orien-
tation. Rows and columns are labeled with vertex indices.

The cycle space. Consider a cycle C = u0, e1, u1, e2, . . . , ek, uk in the undirected
graph G. The sign of an edge e ∈ E with respect to C and the orientation O is
σ(e, C) = 1 if C = v, e, v is a loop at a vertex v, and otherwise

σ(e, C) =


1 if e− = ui and e+ = ui+1 for some i,

−1 if e+ = ui and e− = ui+1 for some i,

0 otherwise (e does not occur in C).

We then identify C with the formal sum
∑
e∈E σ(e, C)e ∈ ZE. For notational

convenience, if e = uv, we denote −e by vu.

Example 13.2. For the graph in Figure 1 (with the standard orientation), the
cycle

C = v1, {v1, v2}, v2, {v2, v3}, v3, {v1, v3}, v1

is identified with
C = 12 + 23− 13 = 12 + 23 + 31 ∈ ZE

where 12 := v1v2, etc. This cycle is shown in red in Figure 3.

Definition 13.3. The (integral) cycle space, C ⊂ ZE, is the Z-span of all cycles.

Example 13.4. Let G be the oriented graph pictured in Figure 2. The cycle space
is isomorphic to Z2 with basis e1 − e2, e3.

e1

e2

e3

Figure 2. C ' Z2.

The cut space. A directed cut of G is an ordered partition of the vertices into two
nonempty parts. For each nonempty U (V , we get the directed cut, (U,U c). The
cut-set corresponding to U , denoted c∗U , is the collection of edges with one vertex
in U and the other in the complement, U c. For each e ∈ E, define the sign of e
in c∗U with respect to the orientation O by

σ(e, c∗U) =


1 if e− ∈ U and e+ ∈ U c,
−1 if e+ ∈ U and e− ∈ U c,

0 otherwise (e does not occur in c∗U).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

13.1. Cycles, cuts, and the sandpile group 247

We identify the cut-set c∗U with the formal sum
∑
e∈E σ(e, c∗U)e ∈ ZE. Thus, for

instance, c∗Uc = −c∗U . If G is not connected, there will be empty cut-sets, identified
with 0 ∈ ZE. A vertex cut is the cut-set corresponding to a single vertex, U = {v},
and we write c∗v for c∗U in that case. A minimal nonempty cut-set with respect to
inclusion is called a bond. For example, the cut-set c∗{v2,v3} in Example 13.5 is not

a bond.

Example 13.5. For the graph in Figure 1 (with the standard orientation), the
cut-set corresponding to {v2, v3} is

c∗{v2,v3} = −12− 13 + 24 + 34

= 21 + 31 + 24 + 34 ∈ ZE.
It is shown in blue in Figure 3.

v4

v2 v3

v1

v4

v2 v3

v1

Figure 3. The cycle C from Example 13.2 (left) and the cut-set c∗{v2,v3}
from

Example 13.5 (right).

Definition 13.6. The (integral) cut space, C∗ ⊂ ZE, is the Z-span of all cut-sets.

Exercise 13.7. If U is a nonempty subset of V (G), the subgraph of G induced by U ,
denoted G[U], is the graph with vertex set U and edge multiset consisting of those
edges with both ends in U . If G is connected, show that the cut-set corresponding
to a nonempty set U (V (G) is a bond if and only if G[U] and G[U c] are connected.
If G is not connected, show that its bonds are exactly the bonds of its connected
components.

Bases for cycle and cut spaces. Fix a spanning forest F forG, and for notational
purposes, identify F with its set of edges. Let F c := E \ F .

Exercise 13.8. Show that for each e ∈ F c, the graph with edges F ∪ {e} has a
unique cycle, ce, such that σ(e, ce) = 1. (This holds even if e is a loop.)

Pick e ∈ F . The forest F is a disjoint union of spanning trees of the connected
components of G, and one of these spanning trees, say T , contains e. Removing e
disconnects T into two connected components T− and T+ where e− is contained
in T−. Let U be the vertices of T−. Define the cut-set c∗e := c∗U , and note that
σ(e, c∗e) = 1.

Exercise 13.9. Show that the cut-sets c∗e are bonds.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

248 13. Cycles and cuts

Theorem 13.10.

(1) The kernel of the boundary mapping is the cycle space: ker ∂ = C.

(2) Let F be a spanning forest of G. Then {ce : e ∈ F c} is a Z-basis for C and
{c∗e : e ∈ F} is a Z-basis for C∗.

(3) rankZ C = |E| − |V | + κ, and rankZ C∗ = |V | − κ where κ is the number of
connected components of G.

(4) C = (C∗)⊥ := {f ∈ ZE : 〈f, g〉 = 0 for all g ∈ C∗} where 〈 , 〉 is defined for
e, e′ ∈ E by

〈e, e′〉 := δ(e, e′) =

{
1 if e = e′,

0 if e 6= e′

and extended linearly for arbitrary pairs in ZE.

(5) If G is connected, then the following sequence is exact:

0 // C // ZE ∂ // ZV
deg

// Z // 0.

Proof. It is clear that C ⊆ ker ∂. For the opposite inclusion, consider an arbitrary
f =

∑
e∈E aee ∈ ZE. Fix a spanning forest F , and define

g := f −
∑
e∈F c

aece.

Then ∂f = ∂g and supp(g) ⊆ F . If g 6= 0, then the union of the edges in supp(g)
is a subforest of F with at least one edge; choose a leaf vertex v in this subforest.
Then v ∈ supp(∂g), and hence, ∂f = ∂g 6= 0. So if f ∈ ker ∂, then g = 0, i.e.,

f =
∑
e∈F c

aece ∈ C.

The proves part 1.

For part 2, we have just seen that {ce : e ∈ F c} spans ker ∂. These elements
are linearly independent since ce ∩ F c = {e}. To see that {c∗e : e ∈ F} is a basis
for C∗, first note that each cut-set is a linear combination of vertex cuts:

Exercise 13.11. Show that for each nonempty U (V ,

c∗U =
∑
v∈U

c∗v.

Hence, the vertex cuts span C∗. However, each vertex cut is a linear combination
of the c∗e:

Exercise 13.12. Show that for each v ∈ V ,

c∗v =
∑

e∈F :e−=v

c∗e −
∑

e∈F :e+=v

c∗e.

(One way to proceed: First argue that we may assume G is connected. Then
analyze the above expression in terms of the components of F after removing all
edges incident on v.)

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

13.1. Cycles, cuts, and the sandpile group 249

Hence, {c∗e : e ∈ F} spans the cut space. Linear independence of the c∗e follows
from the fact that c∗e ∩ F = {e}.

For part 3, first note that we have just shown that both the cycle and cut space
have Z-bases, hence it makes sense to consider their ranks (see Theorem 2.23).
Since the number of edges in a tree is one less than the number of its vertices, we
have

rankZ C∗ = |F | = |V | − κ,

and

rankZ C = |F c| = |E| − |F | = |E| − |V |+ κ.

For part 4, let f =
∑
e∈E aee. For each v ∈ V ,

〈f, c∗v〉 =
∑

e:e−=v

ae −
∑

e:e+=v

ae,

which is the negative of the coefficient of v in ∂f . Thus, 〈f, c∗v〉 = 0 for all v ∈ V if
and only if f ∈ ker ∂ = C. Since the vertex cuts span C∗, the result follows.

Part 5 is Problem 13.1. �

Remark 13.13. The number rankZ C is known as the cycle rank or cyclomatic
number of G. If G is connected, Theorem 13.10 (3) shows that this number is what
we called the genus of G in Part 1. In graph theory, the name genus is typically
reserved to mean something else: the minimal number g such that the graph can be
drawn on a sphere with g handles (an oriented compact surface of genus g) without
edge crossings.

Relation to the sandpile group. The connection of cycles and cuts to sandpile
groups is the fact that taking the boundary of a vertex cut corresponds to firing
the vertex! Details appear below.

Proposition 13.14.

∂(C∗) = L := imL.

Proof. For v ∈ V ,

∂c∗v = ∂

(∑
e:e−=v

e−
∑

e:e+=v

e

)

=
∑

e:e−=v

(e+ − e−)−
∑

e:e+=v

(e+ − e−)

= −Lv.

Since the c∗v generate C∗, it follows that ∂(C∗) = L. �

Corollary 13.15. The boundary map induces an isomorphism

E(G) := ZE/(C + C∗) ∂' Div0(G)/L = Jac(G) ' S(G).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

250 13. Cycles and cuts

Proof. This result follows immediately from the previous proposition and Theo-
rem 13.10 (5). The isomorphism Jac(G) ' S(G) sends

∑
v∈V c(v)v to the recurrent

equivalent to
∑
v∈Ṽ c(v)v modulo L̃, the inverse of ε̄ in Theorem 12.1 (2). [The

τ(s) appearing in Theorem 12.1 is 1 since here we are assuming G is undirected,
hence, Eulerian (cf. Corollary 12.3).] �

13.2. Planar duality

This section involves properties of graph-embeddings in the plane and hence, nec-
essarily, a certain amount of topology. We will rely on intuition for these aspects
and refer the reader to [39] for a rigorous treatment.

Let G = (V,E) be an undirected plane multigraph, not necessarily connected.
By plane multigraph we mean that G is drawn in the plane with non-crossing edges.
Removing G from the plane divides the plane into several connected components,
one of which is unbounded. These are the faces of G, which we denote by F .

Definition 13.16. The dual of G, denoted G∗ = (V ∗, E∗), is the graph with
vertices V ∗ := F , and one edge e∗ for each edge e ofG. For e ∈ E, the corresponding
edge e∗ ∈ E∗ joins the faces on either side of e. (These two faces may coincide if e
contains a leaf vertex, in which case e∗ forms a loop.)

We think of the dual of G as a plane graph by picking a point in each face of G,
including the unbounded face, to serve as the vertices for G∗, then connecting a
pair of these vertices with an edge if their corresponding faces share an edge in G.
We require that each edge e∗ of G∗ is drawn so that it crosses its corresponding
edge, e ∈ E, exactly once and crosses no other edges. See Figure 4, ignoring the
arrows for now.

We have not required that G be connected. However, G∗ is always connected.
Roughly, the reason is as follows. Let f be a bounded face and pick a point in
its interior. Next, consider the infinitely many lines through that point. Fix one
of them that misses the finitely many vertices of G. That line represents a path
of edges in G∗ connecting f to the unbounded face. Thus, every vertex of G∗ is
connected to the vertex representing the unbounded face of G.

Exercise 13.17.

(1) Find the duals of the complete graphs K3 and K4. What is remarkable about
the relationship between K4 and its dual?

(2) Check that (K∗3)∗ ' K3 and (K∗4)∗ ' K4.

(3) Give an example of a plane graph G that is not connected, and show (G∗)∗ 6' G.
Compare the number of vertices, edges, and faces of G and G∗.

It turns out that (G∗)∗ ' G if and only if G is connected (cf. [39, Section 4.6]).
(So one might object to calling G∗ the dual if G is not connected.) By definition,
the faces of G are always in bijection with the vertices of G∗. If G is connected,
then by duality, the vertices of G are in bijection with the faces of G∗.

Fix the usual orientation of the plane. An orientation O on G induces an
orientation O∗ on G∗ as follows. If e is an edge of G, let (e∗)− := right(e), the face

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

13.2. Planar duality 251

to the right of e when traveling from e− to e+, and let (e∗)+ := left(e), the face
to the left. Figure 4 gives an example. In that example, there are two edges of G
joining the same vertices (an edge of multiplicity two), and we have chosen to give
them opposite orientations, to show that it is not prohibited.

Figure 4. An oriented graph G in black and its dual G∗ in blue.

The next exercise shows that something funny happens with orientations when
taking the double-dual.

Exercise 13.18. Starting from the oriented plane graph G∗ in Figure 4, find
the orientation on G = (G∗)∗ induced by G∗. It should be opposite the original
orientation.

The previous exercise suggests that we should really be thinking of G and G∗

as sitting in different copies of R2—copies with opposite orientations. We used a
right-left rule, above, to induce an orientation from G to G∗. To think of G∗ as
sitting in the same oriented plane as G, use a left-right rule to induce an orientation
from G∗ to its dual, (G∗)∗ = G.

Theorem 13.19. Let G be an oriented plane graph, and let G∗ have the induced
orientation. Then the mapping on edges e 7→ e∗ determines isomorphisms

CG ' C∗G∗ , C∗G ' CG∗
between the cycle and cut spaces of G and G∗. These isomorphisms restrict to
bijections between cycles and bonds.

Sketch of a proof. Let X be a collection of edges of G with corresponding dual
edges X∗ in G∗. Let f and g be faces of G with corresponding vertices f∗ and g∗

of G∗. Suppose there is a path f∗, e∗1, f
∗
2 . . . , f

∗
k , e
∗
k, g
∗ in the undirected graph G∗,

using none of the edges in X∗, going from f∗ to g∗. This path corresponds to a walk
in R2 from a point in f to a point in g moving from face to face by transversally
crossing the edges e1, . . . , ek of G and not meeting any edge of X.

By the Jordan curve theorem, removing any cycle in G divides the plane into
two components: the inside and the outside. Any two faces f and g in the same
component are connected by a path in R2 not meeting the cycle. By the previous

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

252 13. Cycles and cuts

paragraph, this means that the vertices f∗ and g∗ are connected by a path in G∗.
Hence, if U is the set of faces of G inside the cycle, then the induced subgraphs
G∗[U∗] and G∗[(U∗)c] are both connected. By Exercise 13.7, the edges connect-
ing U∗ to its complement form a bond. These are the edges dual to those in the
original cycle.

Now suppose that X∗ is the set of edges in a bond of G∗. Removing X∗ divides
the vertices of G∗ into two connected components, so removing X from R2 discon-
nects the faces of G into two connected components. If X does not contain a cycle,
then it forms a forest. However, a forest has only one face, which would contradict
the disconnection just mentioned. So X must contain a cycle C. Minimality of the
bond implies that X = C. �

Exercise 13.20. Let G be a plane graph consisting of the disjoint union of a square
and a triangle. Illustrate the bijection between cycles of G and bonds of G∗ and
between bonds of G and cycles of G∗ given by Theorem 13.19.

Exercise 13.21. Let G = (V,E) be a connected plane graph, and let F denote
the set of faces of G. Show that Euler’s formula,

|V | − |E|+ |F | = 2,

is an immediate consequence of Theorems 13.10 and 13.19.

Remark 13.22. It turns out that the boundaries of the faces of a plane graph are
cycles generating the graph’s cycle space. Omitting any one of them gives a basis
for the cycle space. This basis has the property that each edge appears at most
twice (since each edge lies on at most two faces). MacLane’s planarity condition
says the existence of such a basis characterizes graphs that may be embedded in
the plane—see [39, Section 4.5] for more details.

In Corollary 13.15, we defined E(G) := ZE/(C + C∗) and showed that the
boundary mapping from edges to vertices induces an isomorphism E(G) ' S(G).

Corollary 13.23. Let G be a connected plane graph. There is a commutative
diagram of isomorphisms

E(G) //

∂

��

E(G∗)

∂∗

��

S(G) // S(G∗).

The vertical maps are induced by the edge-vertex boundary mappings. The top
horizontal mapping sends the class of an edge e to the class of its dual, e∗.

In particular, the sandpile groups of G and G∗ are isomorphic.

Proof. Immediate from Corollary 13.15. �

Example 13.24. Consider Figure 5, which shows an oriented plane graph G in
black and its dual in blue with the induced orientation. Sink vertices s and h are
fixed for G and G∗, respectively.

To illustrate the isomorphism S(G) ' S(G∗) of Corollary 13.23, start with the
recurrent cmax = 2u+ 2v + w on G (see Figure 6). We represent this recurrent by

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

13.2. Planar duality 253

u v

w

s

g

f

h

G + G∗

Figure 5. An oriented plane graph G with sink s (in black) and its dual G∗

with sink h (in blue)

its corresponding element in Jac(G) by using the sink vertex to create a divisor of
degree zero:

cmax − deg(cmax) s = 2u+ 2v + w − 5s.

The next step is to lift cmax − 5s to E(G) := ZE/(C + C∗), that is, to find an
element in ∂−1(cmax). To do this, it helps to think of elements of ZE as flows on G.
Think of the edges of G as pipes. Let e be an oriented edge. Then, for example, 3e
represents flow of three units of liquid from e− to e+, which can be read off from the
boundary mapping: ∂(3e) = 3e+ − 3e−. An element in ker ∂ = C then represents a
flow in which there is no build-up of liquid at any vertex—flow is conserved at each
vertex. These flows are sometimes called circulations. They are ignored by E(G).

In these terms, our problem is to find a flow on G such that the flow into each
vertex is given by the coefficients of cmax − 5s. One such flow is exhibited on the
top right in Figure 6. To find that configuration, start at vertex s. To get −5 units
of flow there, we arbitrarily start with 3 units of flow along su and 2 along sv. At
that point, there is one surplus unit of flow into u. To correct for this, send one unit
of flow from u to w, at which point, we are done: ∂(3su+ 2sv + uw) = cmax − 5s.

Exercise 13.25. Find a lifting of cmax − 5s that has 5 units of flow from s to u.

Next, dualize the flow, i.e., think of the flow along each edge e ∈ E as a
flow along the dual edge e∗ ∈ E∗. Then apply the boundary mapping for E(G∗).
This gives an element of Jac(G∗)—in our case, −f − g + 2h. One way to find the
corresponding recurrent in S(G∗) is to fire the sink of G∗ enough times to enable
the creation of an equivalent divisor whose restriction to the non-sink vertices is

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

254 13. Cycles and cuts

2 2

1

−5

∂

3 2

0
1 0

∂∗−1

−1
2 0

2

0

3

1

Figure 6. The isomorphism of Corollary 13.23 sends the recurrent 2u+2v+w

of G to the recurrent of G∗ equivalent to −f−g modulo the reduced Laplacian
of G∗, i.e., to f + g.

greater than c∗max, the maximal stable configuration for G∗. Then stabilize. In our
case, firing the sink twice is enough and gives

−f − g 2s−→ 3f + 3g (3f + 3g)◦ = f + g.

Exercise 13.26. Dualize the flow you found in Exercise 13.25, take the boundary,
and show that the equivalent recurrent is still f + g.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 13

13.1. Prove Theorem 13.10 (5).

13.2. A graph is planar if it can be drawn in the plane without crossing edges.
Show there exists a planar graph G with two embeddings in the plane, say as the
graphs G1 and G2, such that the duals of G1 and G2 are not isomorphic.

13.3. A planar graph G is self-dual if it is isomorphic to its dual, G∗.

(a) For each n ≥ 4 find a self-dual planar graph with n vertices.

(b) Show that if G is self-dual, then |E| = 2|V | − 2.

13.4. In this problem, we provide an alternate computation of the sandpile group
in terms of lattices and orthogonal projections. For more about this topic, includ-
ing the connection with the Abel-Jacobi map from Section 3.5, see [2]. Let G be
a connected undirected multigraph with a fixed orientation O for its edges, and
∂Q : QE → QV denote the boundary mapping, now viewed as a linear transforma-
tion between vector spaces over Q. We endow QE with the inner product 〈 , 〉 as
described in Theorem 13.10, for which the edges form an orthonormal basis. Set
K := ker ∂Q, and consider the orthogonal direct sum decomposition QE = K⊕K⊥,
with orthogonal projection π : QE → K onto the kernel. The edge-group ZE ⊂ QE
is a lattice in QE in the sense of being a finitely generated subgroup of rank equal
to the dimension of QE.

(a) Check that the integral cycle space C is a lattice in K and the integral cut
space C∗ is a lattice in K⊥.

(b) Define the dual lattice C# := {x ∈ K : 〈x, y〉 ∈ Z for all y ∈ C}. Show that
π(ZE) = C# as follows:

(i) Choose a spanning tree T for G, and let {ce : e ∈ T c} = {c1, c2, . . . , cg}
denote the corresponding Z-basis for C (Theorem 13.10 (2)). Show that
this may be extended to a Z-basis B = {c1, c2, · · · , c|E|} for ZE, hence a
Q-basis for QE.

(ii) Consider the dual basis B′ = {c′i} for QE defined by

〈c′i, cj〉 = δij .

Show that B′ is actually a Z-basis for ZE, and that {π(c′i) : i = 1, . . . , g}
is a Z-basis for π(ZE).

(iii) Show that C# = π(ZE) by writing an arbitrary element of the dual lattice
as a Q-linear combination of the basis elements π(c′1), . . . , π(c′g) and then
showing that the coefficients must be integers.

(c) Show that the map π : ZE → C# induces an isomorphism

E(G) = ZE/(C + C∗)→ C#/C.
By Corollary 13.15, it follows that C#/C ' S(G).

(d) Apply the preceding argument to the integral cut lattice to conclude that
(C∗)#/C∗ ' S(G).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Chapter 14

Matroids and the Tutte
polynomial

In the previous chapter we saw that the sandpile group is determined by a graph’s
cycles and cuts. In this chapter, we give a brief introduction to matroids—the
abstract setting in which to analyze these structures. We present a theorem of Criel
Merino showing that the coefficients of the Tutte polynomial of a graph encode the
number of recurrents of each degree. As a further consequence, we provide a proof
of Stanley’s h-vector conjecture for the case of cographic matroids.

Unless otherwise specified, the graphs in this chapter are undirected multi-
graphs, possibly with loops.

14.1. Matroids

By way of motivation, let V be a finite-dimensional vector space over a finite field—
so V is in fact a finite set. Recall the following properties of linear independence
in V : (i) the empty set is linearly independent; (ii) if I is a linearly independent
subset of V and J ⊆ I, then J is also linearly independent; (iii) if I, J are linearly
independent subsets of V with |I| > |J |, then there exists v ∈ I such that J ∪{v} is
still linearly independent in V . Matroids capture the essence of linear independence
by abstracting these key properties.

Definition 14.1. A matroid is a pair M = (E, I) consisting of a finite set E and
a collection I of subsets of E satisfying:

(1) ∅ ∈ I;

(2) I is closed under taking subsets: if I ∈ I and J ⊆ I, then J ∈ I;

(3) the exchange axiom: if I, J ∈ I and |I| > |J |, then there exists e ∈ I such that
J ∪ {e} ∈ I.

257

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

258 14. Matroids and the Tutte polynomial

The elements of I are called the independent sets of the matroid, and E is called the
ground set of M (or we say that M is a matroid on E). Two matroids are isomorphic
if there is a bijection of their ground sets inducing a bijection of independent sets.

In what follows, the reader should check their intuition using the following three
basic examples of matroids.

• Uniform matroids. Suppose E = [n] := {1, . . . , n}, and let k ≤ n be a natural
number. Then Uk,n is the matroid on E with every subset of size at most k taken
as independent. Any matroid isomorphic to Uk,n is called k-uniform.

• Linear matroids. Suppose E is a finite subset of a vector space, and let I be the
linearly independent subsets of E. Then M = (E, I) is a matroid. A typical way
for these to arise is for E to be the set of columns of a matrix.

• Graphic matroids. Let E be the edges of an undirected multigraph, and let I be
the edge-sets of forests (i.e., acyclic subgraphs) of the graph. Then M = (E, I)
is called the cycle matroid of G, denoted M(G). Verifying the exchange property
is part of Problem 14.1. Any matroid isomorphic to the cycle matroid of a graph
is called a graphic matroid.

Vocabulary. Let M = (E, I) be a matroid, and let A ⊆ E. The exchange property
implies that every maximal independent subset of A under inclusion has the same
cardinality. This cardinality is called the rank of A and is denoted rk(A). An
independent subset of size rk(A) is a basis for A. The rank of M is rk(E), and a
basis for M is by definition a basis for E.

Exercise 14.2. Characterize the rank of a graphic matroid. What is a basis for a
graphic matroid?

The closure of A ⊂ E is

cl(A) := {e ∈ E : rk(A ∪ {e}) = rkA}.
If A = cl(A), then A is called closed or a flat or a subspace. If A is closed, then any
subset of A whose closure is A is said to span A. A hyperplane of M is a maximal
proper (6= E) flat.

A subset of E that is not independent is dependent. A circuit of M is a minimal
dependent set. A cocircuit is a minimal subset with the property that its intersection
with every basis is nonempty.

Exercise 14.3. For a graphic matroid, show that circuits and cocircuits are exactly
the cycles and bonds of the corresponding graph.

The dual of M , denoted M∗ is the matroid on the same set E but whose bases
are exactly the complements of the bases of M . The independent sets are subsets
of the bases. Said another way: a subset of E is independent in M∗ if and only if
its complement spans M .

The direct sum of matroids M = (E, I) and N = (F,J), denoted M⊕N , is the
matroid whose ground set is the disjoint union of E and F and whose independent
sets are disjoint unions of an independent set of M with an independent set of N
or, equivalently, elements of I × J . If G t H is the disjoint union of graphs G
and H, then M(G tH) = M(G)⊕M(H).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

14.2. The Tutte polynomial 259

Deletion and contraction. A loop of M is an element e ∈ E contained in no
basis, i.e., rk({e}) = 0. A bridge, also called a coloop or isthmus, is an element
e ∈ E contained in every basis, i.e., a loop of M∗.

If e ∈ E is not a loop, we can form a new matroid by contracting e:

M/e := (E \ {e}, {I \ {e} : e ∈ I ∈ I}),
the matroid formed from M by removing e from the ground set and from all its
independent sets.

Dually, if e ∈ E is not a bridge, we get a new matroid by deleting e:

M \ e := (E \ {e}, {I ∈ I : e /∈ I}),
the matroid formed from M by removing e from the ground set and removing all
independent sets containing e.

Exercise 14.4. Show that if e is not a loop, then (M/e)∗ = M∗ \ e.

Let e be an edge in a graph G. If e is not a loop, define G/e to be the graph
obtained from G by contracting e: remove e and identify its two vertices. Then
M(G/e) = M(G)/e. If e is not a bridge, define G \ e to be the graph obtained
from G by deleting e. Then M(G \ e) = M(G) \ e.

It turns out that the dual of a graphic matroid is graphic if and only if the
graph is planar, i.e., if and only if the graph has an embedding in the plane with
non-crossing edges (cf. [74], Theorem 5.2.2). In that case, if the original graphic
matroid is associated with the graph G, its dual is associated with G∗, the dual
of G with respect to any planar embedding of G as described in Section 13.2.

There are many ways of characterizing matroids, including by properties of
any of the following: bases, the rank function, dependent sets, circuits, cocircuits,
flats, or hyperplanes. Problem 14.12 characterizes matroids as “subset systems”
amenable to the greedy algorithm (so whenever you see the greedy algorithm, you
might suspect there is a matroid lurking somewhere).

14.2. The Tutte polynomial

We now introduce a fundamental invariant of a matroid M = (E, I).

Definition 14.5. The Tutte polynomial of a matroid M is

T (x, y) := T (M ;x, y) :=
∑
A⊆E

(x− 1)rk(E)−rk(A)(y − 1)|A|−rk(A).

The Tutte polynomial of an undirected multigraph is the Tutte polynomial of its
cycle matroid: T (G;x, y) := T (M(G);x, y).

Exercise 14.6. Compute the Tutte polynomial of G = K3, a triangle, by comput-
ing the ranks of all subsets of the edge set.

Theorem 14.7 (Deletion-contraction). The Tutte polynomial may be computed
recursively as

(1) T (∅;x, y) = 1 where ∅ is the matroid with empty ground set.

(2) If e is a loop, then T (M ;x, y) = y T (M \ e;x, y).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

260 14. Matroids and the Tutte polynomial

(3) If e is a bridge, then T (M ;x, y) = xT (M/e;x, y).

(4) If e is neither a loop nor a bridge, then

T (M ;x, y) = T (M \ e;x, y) + T (M/e;x, y).

Proof. Problem 14.3. �

Example 14.8. Figure 1 illustrates the construction of the Tutte polynomial of
the diamond graph G pictured at the top.

G

x3

x2

x y

x2 xy xy y2

T (G;x, y) = x+ 2x2 + x3 + (1 + 2x)y + y2

Figure 1. The Tutte polynomial of G.

The idea is to delete and contract edges that are not bridges or loops (dashed
in the figure) until graphs with only bridges and loops remain (at the bottom of
the figure). A graph with a bridges and b loops is recorded as the monomial xayb.

Exercise 14.9.

(1) To appreciate a surprising aspect of Theorem 14.7, construct the Tutte poly-
nomial of the graph in Figure 1 using a different sequence of edges to delete
and contract.

(2) Use deletion-contraction to verify the calculation made in Exercise 14.6.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

14.2. The Tutte polynomial 261

Proposition 14.10. Let M = (E, I) be a matroid.

(1) T (M ; 1, 1) is the number of bases of M .

(2) T (M ; 2, 1) = |I|, the number of independent sets of M .

(3) T (M ; 1, 2) is the number of spanning sets of M (those sets containing a basis).

(4) T (M ; 2, 2) = 2|E|.

(5) T (M∗;x, y) = T (M ; y, x).

Proof. Problem 14.4. �

For the following proposition, we recall that a coloring of an undirected multi-
graph G = (V,E) using λ colors is the assignment of one of λ distinct colors to each
of the vertices of G. The coloring is proper if no two vertices sharing an edge have
the same color. Let χG(λ) be the number of proper colorings of G using λ colors.
The function χG(λ) is actually a polynomial in λ, called the chromatic polynomial
of G. To see it’s a polynomial, let ci be the number of proper colorings of G using
exactly i colors. Then

χG(λ) =

|V |∑
i=0

ci

(
λ

i

)
.

Proposition 14.11. Let G be an undirected multigraph with κ connected compo-
nents.

(1) T (G; 1, 1) is the number of spanning forests of G.

(2) T (G; 2, 1) is the number of forests of G.

(3) T (G; 1, 2) is the number of spanning subgraphs of G, i.e., subgraphs whose edge
sets contain all the vertices of G.

(4) T (G; 2, 0) is the number of acyclic orientations of G (cf. Chapter 4).

(5) The chromatic polynomial of G is given by

χG(λ) = (−1)|V |−κλκ T (G; 1− λ, 0).

(6) Fix p ∈ (0, 1), and remove each edge of G independently with probability p. The
probability the resulting graph has the same number of components as G (i.e.,
that no original connected component of G is disconnected) is

(1− p)|V |−κp|E|−|V |+κ T (G; 1, 1/p).

Proof. The proofs of parts (1)–(3) are immediate from Proposition 14.10. For
parts (4)–(6), see [20, Section X.4]. �

The Tutte polynomial has the following universal property with respect to
deletion and contraction.

Theorem 14.12. Let f be any function from isomorphism classes of matroids to
a commutative ring R satisfying the following:

(1) f(M ⊕N) = f(M)f(N) for all matroids M and N ;

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

262 14. Matroids and the Tutte polynomial

(2) There exist a, b, c, d ∈ R such that for every matroid M ,

f(M) =


a f(M \ e) + b f(M/e) if e is not a loop or bridge,

c f(M/e) if e is a bridge,

d f(M \ e) if e is a loop.

Then, for every matroid M ,

f(M) = ark(M∗)brk(M) T (M ; c/b, d/a).

In the case where a or b is not a unit in R, we interpret the expression on the right
by treating them as indeterminates, expanding the Tutte polynomial according to its
definition, and then canceling.

Proof. Use induction on |E|, the size of the ground set of the matroid M ; Prob-
lem 14.7. �

14.3. 2-isomorphisms

The following proposition says that the sandpile group is a matroid invariant.

Proposition 14.13. Let G and H be graphs (undirected with possible loops). Then

M(G) 'M(H) =⇒ S(G) ' S(H).

Proof. This is an immediate consequence of Corollary 13.15 and Exercise 14.3. �

So the question arises: when are the cycle matroids of two graphs isomorphic?
To approach this question, we consider two operations on graphs. First, suppose
G1 t G2 is the disjoint union of two graphs G1 and G2. Identify a vertex in G1

with a vertex in G2 (i.e., glue the two graphs together at a vertex) to form a new
graph G1 ∨ G2 called a one-point join of G1 and G2. The reader should spend a
few moments verifying

M(G1 tG2) = M(G1 ∨G2).

Next consider two-point joins of the disjoint graphs G1 and G2 by choosing ver-
tices u1, v1 in G1 and u2, v2 in G2. We consider two gluings. The first identifies u1

with u2 and v1 with v2. Call the resulting graph G. The second gluing identifies u1

with v2 and v1 with u2. Call the result G′. We say that G′ is formed from G by
performing a Whitney twist. See Figure 2.

Figure 2. A Whitney twist.

Exercise 14.14. Show that if G′ is a Whitney twist of G, then M(G′) = M(G).

Definition 14.15. Two undirected multigraphs are 2-isomorphic if one can be
obtained from the other by sequences of one-point joins and Whitney twists.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

14.4. Merino’s Theorem 263

Theorem 14.16 (H. Whitney, 1933). Let G and G′ be undirected multigraphs.
Then M(G) 'M(G′) if and only if G and G′ are 2-isomorphic.

In order to perform a one-point join on a graph, the graph must be disconnected.
In order to perform a Whitney twist, there must be a pair of vertices whose removal
disconnects the graph. In general, a graph is k-connected if there is no set of k − 1
vertices whose removal disconnects the graph.

Corollary 14.17. If G is 3-connected and M(G) ' M(G′) for some graph G′,
then G ' G′.

14.4. Merino’s Theorem

In this section, we present Merino’s Theorem—a fundamental connection between
sandpile theory and the Tutte polynomial. We start with an example. The super-
stables of the diamond graph G are displayed in Figure 3, with ijk denoting the
sandpile iv1 + jv2 + kv3.

s

v2v1

v3

000

100, 010, 001

200, 020, 101, 011

Figure 3. The superstables of the diamond graph G.

How many are there of each degree? In Figure 1 we computed the Tutte polynomial
of G:

T (G;x, y) = x+ 2x2 + x3 + (1 + 2x)y + y2.

Evaluating at x = 1 gives

T (G; 1, y) = 4 + 3y + y2.

Merino’s Theorem says that the coefficients of T (G; 1, y) record the number of
superstables of each degree (in reverse order): there is 1 superstable of degree 0,
there are 3 of degree 1, and there are 4 of degree 2.

Let G = (V,E) be a connected undirected multigraph, possibly with loops.
Choose a sink vertex s. Earlier (see Remark 13.13), we defined the cycle rank
of G to be g = |E| − |V | + 1. In Part 1 we called this number the genus, and
we showed that when G has no loops, the maximal superstables have degree g
(Corollary 4.9). Note that each loop increases the cycle rank by 1, but does not
affect the superstables (Problem 7.4). It follows that if G has exactly l loops, then
the maximal superstables have degree g − l ≤ g.

For i = 0, . . . , g, let hi denote the number of superstables of G of degree i. We
call

h = h(G) = (h0, . . . , hg)

the h-vector of G. As a consequence of Theorem 14.18, below, we will see that the
h-vector is independent of the choice of sink s.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

264 14. Matroids and the Tutte polynomial

Theorem 14.18 (Merino [73], 1997). Let T (x, y) = T (G;x, y) be the Tutte poly-
nomial of the undirected multigraph G. Then

T (1, y) =

g∑
i=0

hg−iy
i.

Proof. Let g be the cycle rank of G, and fix s as the sink vertex for all graphs
appearing below. The proof goes by induction on the number of edges. For these
purposes we define h0 = 1 when G has only the single vertex s (possibly with some
loop edges).1 Thus, in the case where G has no edges, we have T (1, y) = 1 = h0,
so the result holds.

Suppose that e is an edge of G incident to s. There are three cases to consider.

Case 1. Suppose e is a loop, and let G′ := G \ e. It follows that T (G;x, y) =
y T (G\e;x, y), the cycle rank of G′ is g′ = g−1, and the superstables on G′ are the
same as on G (cf. Problem 7.4). Hence, h′ := h(G′) = h. Therefore, by induction
and using the fact that hg = 0:

T (G; 1, y) = y T (G′; 1, y) = y

g′∑
i=0

hg′−i y
i =

g∑
i=0

hg−i y
i.

Case 2. Suppose e is a bridge, and let G′ := G/e. Then the circuit rank of G′ is
g′ = g, and h′ := h(G′) = h (cf. Problem 7.4). Since T (G;x, y) = xT (G′;x, y), we
have T (G; 1, y) = T (G′; 1, y), and the result follows by induction.

Case 3. Suppose e = {s, v} is neither a loop nor a bridge. Divide the superstables
of G into two sets:

A := {c : c(v) = 0}
B := {c : c(v) > 0}.

We will show that elements of A are in bijection with superstables on G/e and
elements of B are in bijection with superstables on G \ e.

First consider A. To form G/e, the vertices s and v are identified. Label
the resulting vertex s, and think of the vertices of G/e as V ′ := V \ {v}. Let

Ṽ := V \ {s} denote the non-sink vertices of G, and let Ṽ ′ := Ṽ \ {v} ⊂ Ṽ denote
the non-sink vertices of G/e. Each configuration c on G with c(v) = 0 is naturally
a configuration on G/e.

Let c be any sandpile on G with c(v) = 0. If it is legal to fire a nonempty set

W ⊆ Ṽ from c, then since c(v) = 0 and v is connected to s, it must be that v /∈W .
Therefore, c is superstable if and only if there does not exist any nonempty legal

firing-set W ⊆ Ṽ ′. Further, if w ∈W ⊆ Ṽ ′, then outdegW (w) is the same whether
we are considering W as a set of vertices of G or of G/e. Therefore, c is superstable
on G if and only if it is superstable on G/e. This shows that the elements of A

1This amounts to saying that the sandpile group of a 1-vertex sandpile graph is the trivial group,
generated by the empty sandpile.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

14.4. Merino’s Theorem 265

are in bijection with the superstables of G/e. Note that under this bijection, the
degree of a superstable is preserved.

Now consider B. If c is a sandpile on G with c(v) > 0, define

c−(u) =

{
c(u) if u 6= v

c(v)− 1 if u = v.

Then c is superstable on G if and only if c− is superstable on G \ e. Note that in
this bijection, deg(c−) = deg(c)− 1.

It follows from the above that if h′ and h′′ are the h-vectors for G/e and G \ e,
respectively, then

hi = h′i + h′′i−1

for all i (setting h′′−1 = 0 when i = 0). Recalling that the cycle rank of G/e is
g = g(G) and that the cycle rank of G \ e is g − 1, it follows by induction that

T (G; 1, y) = T (G/e; 1, y) + T (G \ e; 1, y) =

g∑
i=0

hg−i y
i.

�

Corollary 14.19.

(1) The number of superstables of each degree is independent of the choice of sink
vertex s.

(2) Let ri,s be the number of recurrents of degree i for each i, and let ms :=
deg(cmax)—these quantities generally depend on the sink s. Then the gen-
erating function for the recurrents by degree is

ms∑
i=0

ri,s y
i = yms−g · T (G; 1, y).

(3) T (G; 1, 1) = | S(G)|.
(4) If G has exactly ` loops, then

1

y`
· T (G; 1, y)

∣∣∣∣
y=0

is the number of maximal superstables (or minimal recurrents).

Proof. These all follow directly from Theorem 14.18. For part 2, use exercise
14.20 below and the fact that c is recurrent if and only if cmax − c is superstable
(cf. Theorem 7.12). For part 4, note that y` is the maximal power of y dividing
T (G;x, y). �

Exercise 14.20. Show that ms := deg(cmax) = g + |E| − deg(s) where s is the
sink vertex. (Note that a loop contributes 2 to the degree of its vertex.)

The original version of Theorem 14.18 was defined in terms of “levels” of re-
currents, where the level of a sandpile c is defined to be

level(c) := deg(c)− |E|+ degG(s).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

266 14. Matroids and the Tutte polynomial

The generating function for recurrents by level is

P (y) :=

g∑
i=0

`i y
i,

where `i is the number of recurrents of level i.

Exercise 14.21. Show that hg−i = `i and hence

P (y) = T (G; 1, y).

14.5. The Tutte polynomials of complete graphs

In Definition 14.5, we introduced the Tutte polynomial of a matroid via an explicit
formula involving ranks of subsets of the ground set. We then observed (Theo-
rem 14.7; Problem 14.3) that this definition is equivalent to one given by deletion
and contraction. In the case of graphs, there is yet a third equivalent definition
as a sum over spanning forests—in fact, this is Tutte’s original definition. Before
presenting the spanning forest expansion, we need to briefly introduce two notions
of activity.

Definition 14.22. Let G be an undirected multigraph, and fix a total ordering ≺
on the edges of G. Suppose that F is a spanning forest of G.

(1) An edge e ∈ E(F) is internally active in F if e ≺ e′ for all edges e′ /∈ E(F)
such that (F \ e) ∪ e′ is a spanning forest of G. The internal activity i(F) is
the number of internally active edges in F .

(2) An edge e /∈ E(F) is externally active in F if e ≺ e′ for all edges e′ ∈ E(F)
such that (F \ e′) ∪ e is a spanning forest of G. The external activity2 e(F) is
the number of externally active edges in F .

Figure 4 shows the internally and externally active edges of a spanning tree in
a graph on 6 vertices.

0

5
1

4
3

2

Figure 4. The thick edges form a spanning tree with internally active edges
(0, 1) and (1, 2) in blue and externally active edge (1, 4) in red. We use the
lexicographic edge ordering, where (i, j) ≺ (i′, j′) if i < i′ or i = i′ and j < j′.

2See Section 9.3.2 for a bijection between superstables and spanning trees relating the degree of a
superstable to the external activity of its corresponding tree.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

14.5. The Tutte polynomials of complete graphs 267

Theorem 14.23. Let G be an undirected multigraph with an edge-ordering as in
Definition 14.22. Then the Tutte polynomial of G may be computed as the following
sum over spanning forests3 F ⊆ G:

T (G;x, y) =
∑
F⊆G

xi(F)ye(F).

Proof. See [20], Section X.5, Theorem 10. �

In the remainder of this section, we use the spanning forest expansion to de-
rive a recursion due to I. Pak for the Tutte polynomials of complete graphs—our
exposition follows the short note [75].

Consider the complete graph Kn+1 with vertex set V = {0, 1, 2, . . . , n}. The
edges of Kn+1 are given by ordered pairs (i, j) with i < j, and we use the lexico-
graphic ordering, so that (i, j) ≺ (i′, j′) iff i < i′ or i = i′ and j < j′. For each
spanning tree T , there is a unique path in T from vertex 0 to vertex 1; let (0, j) be
the first edge of this path. Removing the edge (0, j) yields a disjoint union of two
trees

T \ (0, j) = T ′ t T ′′,
where 0 ∈ V (T ′) and j ∈ V (T ′′). Define the quantities k(T) := |V (T ′′)| and
a(T) := |{i ∈ V (T ′′) : i < j}|. Note that 1 ≤ k(T) ≤ n and 0 ≤ a(T) ≤ k(T) − 1.
Finally, set A := V (T ′′) \ {1}, which is a set of size k(T)− 1.

Now consider the collection T (k, a) of all spanning trees T of Kn+1 such that
k(T) = k and a(T) = a. We claim that T (k, a) is in bijection with the set of triples
(A, T ′, T ′′) with

• A ⊂ {2, 3, . . . , n} a subset of size k − 1;

• T ′ a tree on V (T ′) = {0} ∪ ({2, . . . , n} \A}), a set of size n− k + 1;

• T ′′ a tree on V (T ′′) = {1} ∪A, a set of size k.

Indeed, the previous paragraph describes a recipe that produces such a triple from
any spanning tree T ∈ T (k, a). But the inverse is easy to describe: given such a
triple (A, T ′, T ′′), list the elements of A ∪ {1} = V (T ′′) in increasing order, and
set j to be the (a+ 1)st element of this list. Then adjoin the edge (0, j) to obtain
the tree T = T ′ ∪ (0, j) ∪ T ′′.

We now present two lemmas describing the activities of a spanning tree T ∈
T (k, a) with respect to the decomposition T = T ′ ∪ (0, j) ∪ T ′′.
Lemma 14.24. The internal activity of a spanning tree T ∈ T (k, a) satisfies

i(T) = i(T ′) + δa,0,

where δa,0 is the Kronecker delta.

Proof. First note that every internally active edge of T has the form (0, i) for
some vertex i. This is because removing any other type of edge e from T yields two
connected components T0 and T1, with 0 ∈ V (T0). Then adjoining any edge of the
form (0, l) with l ∈ V (T1) yields a spanning tree, and since (0, l) ≺ e, this shows
that e is not internally active. This observation immediately implies that no edge

3Recall that spanning forests are exactly spanning trees in the case where G is connected.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

268 14. Matroids and the Tutte polynomial

of T ′′ is internally active for T . Also, the special edge (0, j) is internally active for T
if and only if a = 0, since if a ≥ 1, there exists i < j such that (T \ (0, j))∪ (0, i) is
a spanning tree.

Finally, consider an edge of T ′ of the form (0, i). Then T \ (0, i) = T0 t T1,
where T0 is a tree containing 0 and T ′′, and T1 ⊂ T ′ contains i. Now the only edges
smaller than (0, i) are of the form (0, l) for l < i, and in order for (T \ (0, i))∪ (0, l)
to be a spanning tree, we must have l ∈ V (T1) ⊂ V (T ′). It follows that (0, i)
is internally active for T if and only if it is internally active for T ′. The claim
follows. �

Lemma 14.25. The external activity of a spanning tree T ∈ T (k, a) satisfies

e(T) = e(T ′) + e(T ′′) + a.

Proof. First note that every edge of the form (0, i) with i < j and i ∈ V (T ′′) is
externally active in T ; there are a such edges. But if (l, i) is any other type of edge
with 0 < l ∈ V (T ′) and i ∈ V (T ′′), then (l, i) is not externally active in T because
of the existence of (0, j). Now consider i1, i2 ∈ V (T ′) but (i1, i2) /∈ E(T ′). Then
T ∪ (i1, i2) contains a unique cycle in the subgraph T ′ ∪ (i1, i2), and in order to
produce a spanning tree distinct from T , we must remove an edge of T ′. This shows
that (i1, i2) is externally active in T if and only if it is externally active in T ′. The
same argument holds for the subtree T ′′, and the claim follows. �

Theorem 14.26. The Tutte polynomials of complete graphs satisfy the following
recurrence:

T (Kn+1;x, y) =

n∑
k=1

(
n− 1

k − 1

)(
x+ y + y2 + · · · yk−1

)
T (Kk; 1, y)T (Kn−k+1;x, y).

Proof. We begin with the spanning tree expansion of the Tutte polynomial, where
the sum is over spanning trees T of the complete graph Kn+1, and then we use the
decomposition described above together with the preceding lemmas:

T (Kn+1;x, y) =
∑
T

xi(T)ye(T)

=
n∑
k=1

k−1∑
a=0

∑
T∈T (k,a)

xi(T)ye(T)

=

n∑
k=1

k−1∑
a=0

∑
(A,T ′,T ′′)

xi(T
′)+δa,0ye(T

′)+e(T ′′)+a

=
n∑
k=1

k−1∑
a=0

xδa,0ya
∑

(A,T ′,T ′′)

xi(T
′)ye(T

′)ye(T
′′)

=
n∑
k=1

k−1∑
a=0

xδa,0ya
(
n− 1

k − 1

)∑
T ′′

ye(T
′′)
∑
T ′

xi(T
′)ye(T

′)

=

n∑
k=1

(
n− 1

k − 1

)(k−1∑
a=0

xδa,0ya

)
T (Kk; 1, y)T (Kn−k+1;x, y)

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

14.6. The h-vector conjecture 269

=
n∑
k=1

(
n− 1

k − 1

)(
x+ y + y2 + · · · yk−1

)
T (Kk; 1, y)T (Kn−k+1;x, y).

Note that, starting in the 3rd line, we have used the bijection between the set
of spanning trees T (k, a) and the set of triples (A, T ′, T ′′) discussed earlier. The
binomial coefficient appears in the 5th line as the number of ways to choose the
subset A. �

Exercise 14.27. Note that T (K1;x, y) = 1 and T (K2;x, y) = x. Use the recursion
of Theorem 14.26 to compute the Tutte polynomial of K3, and show that your an-
swer agrees with that obtained by deletion and contraction. Then use the recursion
to find the Tutte polynomial of K4.

Remark 14.28. In the proof of Theorem 14.26, we used the decomposition of a
spanning tree T into two parts, achieved by removing the single edge (0, j) beginning
the path from 0 to 1 in T . Instead, we could remove all edges of T incident to 0,
which would yield a decomposition of the form

T \
m⋃
i=1

(0, ji) = T1 t T2 t · · · t Tm,

where the Ti are disjoint trees. The collection of vertex sets V (Ti) forms a partition
of {1, 2, . . . , n} into m > 0 parts. Setting ki := |V (Ti)| to be the size of the ith
piece of the partition, a similar argument to the one provided above yields the
following expression for the Tutte polynomial, where the sum is over all partitions
of {1, 2, . . . , n} into any number m > 0 parts.

T (Kn+1;x, y) =
∑

V1,V2,...,Vm

m∏
i=1

(x+ y + y2 + · · ·+ yki−1)T (Kki ; 1, y).

This result appears as Theorem 14 of [47], which also contains the following more
general result concerning the specialization T (G; 1, y) for arbitrary connected multi-
graphs G.

Theorem 14.29 ([47], Theorem 10). Let G be a connected multigraph, and fix a
vertex v. For any subset Vi ⊆ V (G) \ {v}, let G[Vi] denote the induced subgraph,
consisting of the edges of G between vertices in Vi. Finally, let ε(Vi) denote the
number of edges in G from v to Vi. Then

T (G; 1, y) =
∑

V1,V2,...,Vm

m∏
i=1

(1 + y + y2 + · · ·+ yε(Vi)−1)T (G[Vi]; 1, y),

where the sum is over all partitions of V (G) \ {v} into m > 0 pieces Vi such that
each G[Vi] is connected.

For a deletion-contraction proof of Theorem 14.29, see [22].

14.6. The h-vector conjecture

The goal of this section is to state Stanley’s h-vector conjecture 14.36 and present
Merino’s proof in the case of cographic matroids. In order to do so, we will need
to briefly introduce three notions and the associated terminology: multicomplexes,
simplicial complexes, and matroid complexes.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

270 14. Matroids and the Tutte polynomial

14.6.1. Multicomplexes. If c and c′ are configurations on a sandpile graph,
we have defined the relation c′ ≤ c if c′(v) ≤ c(v) for all non-sink vertices v. This
relation defines a partial ordering on every subset of configurations:

Definition 14.30. A partially ordered set (poset, for short) is a set P and a relation
≤ such that for all x, y, z ∈ P ,

(1) x ≤ x (reflexivity);

(2) if x ≤ y and y ≤ x, then x = y (antisymmetry);

(3) if x ≤ y and y ≤ z, then x ≤ z (transitivity).

For x, y in any poset P , we write x < y if x ≤ y and x 6= y; we write x ≥ y
if y ≤ x; and so on. We say y covers x if x < y and there is no z ∈ P such that
x < z < y.

It is convenient to think of a poset P in terms of its Hasse diagram: the graph
with vertex set P in which two elements x, y are connected by an edge when y
covers x. When drawn in the plane, we draw the edges so that the larger element
is above the smaller.

Of special interest to us is the poset of superstables on a sandpile graph. Fig-
ures 5 and 6 display this poset for the cases of the diamond graph and K5, respec-
tively.

200 101 011 020

100 001 010

000

Figure 5. The Hasse diagram for the superstables of the diamond graph

(cf. Figure 3).

Figure 6. The Hasse diagram for the superstables of the complete graph K5.

The poset of superstables on a sandpile graph has several special properties.
We recall the relevant terminology from the theory of posets. A subset I of a
poset P is called an order ideal or down-set if whenever a ∈ P and b ∈ I, then a ≤ b
implies a ∈ I. An order ideal I is generated by S ⊆ I if

I = 〈S〉 := {x ∈ P : ∃ y ∈ S such that x ≤ y}.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

14.6. The h-vector conjecture 271

If S is finite, we say I is finitely generated. A chain in P of length k is a subset
of elements a0 < a1 < · · · < ak. It is saturated if ai+1 covers ai for all i. The
poset P is graded of rank m if each maximal length chain has length m. In that
case, the rank function is given by rk(a) = 0 if a is minimal, and rk(b) = rk(a) + 1
if b covers a.

Every subset of Nn with our usual relation (a ≤ b if ai ≤ bi for all i) is a poset.
A finitely generated order ideal in Nn is called a multicomplex. A multicomplex is
called pure if it is a graded poset. Thus, a pure multicomplex is one which has a
generating set consisting of elements of the same degree (where deg(a) :=

∑
i ai).

Figures 5 and 6 are Hasse diagrams of pure multicomplexes. Figure 7 is an example
of a multicomplex that is not pure.

(1, 2)

(2, 0) (1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)

Figure 7. The (impure) multicomplex 〈(2, 0), (1, 2)〉.

LetM⊂ Nn be a multicomplex, and let the highest degree of an element ofM
be d. The degree sequence for M is the vector h = (h0, . . . , hd) where hi is the
number of elements of M of degree i. Any vector of the form (h0, . . . , hd) is called
an O-sequence if it is the degree sequence of a multicomplex. An O-sequence is
pure if it is the degree sequence of a pure multicomplex.

Now let G be a sandpile graph, possibly directed, with n + 1 vertices. Fixing
an ordering of the vertices identifies configurations on G with elements of Nn,
and the set of superstables forms a multicomplex. By the discussion just prior to
Theorem 14.18, if G is undirected, the superstables form a pure multicomplex of
rank g − l = |E| − |V |+ 1−#(loops). So, in that case the h-vector of G is a pure
O-sequence.

Exercise 14.31. Give an example of a sandpile graph (necessarily directed) whose
superstables do not form a pure multicomplex.

14.6.2. Simplicial complexes. In this section we provide only the basic defi-
nition of a simplicial complex; see Chapter 15 for a fuller description including an
introduction to simplicial homology.

An (abstract) simplicial complex ∆ on a finite set S is a collection of subsets
of S, closed under the operation of taking subsets. The elements of a simplicial
complex ∆ are called faces. An element σ ∈ ∆ of cardinality i + 1 is called an
i-dimensional face or an i-face of ∆. The empty set, ∅, is the unique face of
dimension −1. Faces of dimension 0, i.e., elements of S, are vertices and faces of
dimension 1 are edges.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

272 14. Matroids and the Tutte polynomial

The maximal faces under inclusion are called facets. To describe a simplicial
complex, it is often convenient to simply list its facets—the other faces are exactly
determined as subsets. The dimension of ∆, denoted dim(∆), is defined to be the
maximum of the dimensions of its faces. A simplicial complex is pure if each of its
facets has dimension dim(∆).

Example 14.32. If G = (V,E) is a simple connected graph (undirected with no
multiple edges or loops), then G is the pure one-dimensional simplicial complex
on V with E as its set of facets.

The face-vector or f -vector of ∆ is f(∆) = (f−1, . . . , fd−1) where fi is the
number of faces of dimension i and d := dim(∆) + 1 is the rank of ∆. Thus,
f−1 = 1. The face enumerator of ∆ is

f∆(x) := xd + f0x
d−1 + · · ·+ fd−1 :=

d∑
i=0

fi−1 x
d−i.

The h-vector of ∆ is the vector (h0, . . . , hd) defined by

h∆(x) := h0x
d + h1x

d−1 + · · ·+ hd =
d∑
i=0

hd−i x
i := f∆(x− 1).

Example 14.33. Let ∆ be the 2-dimensional simplicial complex on the set [5] :=
{1, 2, 3, 4, 5} pictured in Figure 8. Its facets, {1, 2, 3}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5},
determine the rest of the faces. Check that its f -vector is (1, 5, 8, 4) and its h-vector
is (1, 2, 1, 0).

1

2 3

4

5

Figure 8. A pure simplicial complex of dimension 2.

Exercise 14.34. Compare coefficients in h∆(x) = f∆(x − 1) to show h0 = 1 and
hd = (−1)d−1χ̃(∆), where the alternating sum

χ̃(∆) := −f−1 + f0 − f1 + · · ·+ (−1)d−1fd−1

is the reduced Euler characteristic of ∆ (see Problem 15.9). In general,

hj =

j∑
i=0

(−1)j−i
(
d− i
j − i

)
fi−1.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Notes 273

14.6.3. Matroid complexes. If M = (E, I) is a matroid, let ∆(M) denote the
simplicial complex on E consisting of the independent sets. Simplicial complexes
arising this way are call matroid complexes. The exchange axiom for matroids
implies every matroid complex is pure.

Exercise 14.35. Is the simplicial complex in Figure 8 a matroid complex?

We now come to the h-vector conjecture:

Conjecture 14.36 (Stanley [85], 1977). The h-vector of a matroid complex is a
pure O-sequence.

According to [19], published in 2012:

Most of the huge amount of work done on matroids over the last thirty-
four years, involving ideas and techniques coming from several different
disciplines, has in fact been motivated by that intriguing conjecture,
which remains wide open today . . .

The reader is encouraged to consult Stanley’s influential paper, [85], as well
as [19] for an appreciation of the context of this conjecture. Here, we present
Merino’s proof of the conjecture for the class of cographic matroids—those matroids
that are matroid duals of graphic matroids.

Theorem 14.37 (Merino [73], 1997). The h-vector of a cographic matroid is a
pure O-sequence.

Proof. We use the fact from [16] that for a matroid complex ∆ = ∆(M), the
h-vector is encoded in the Tutte polynomial:

T (M ;x, 1) = h∆(x).

Suppose that M is cographic. Then there exists a graph G such that M = M(G)∗,
the dual of the cycle matroid of G. By Proposition 14.10 (5) and the fact that
M∗ = M(G)

T (M ;x, 1) = T (M∗; 1, x) = T (G; 1, x).

By Merino’s Theorem (Theorem 14.18), we see that the h-vectors for M and G
coincide. The h-sequence for G corresponds to the pure multicomplex formed by
the superstables of G, and hence is a pure O-sequence. �

Notes

Proposition 14.13 appears as Corollary 7.7 of D. Wagner’s paper [90]. The formula-
tion of Theorem 14.12 is adapted from V. Reiner’s lecture notes [81], Proposition 28.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 14

14.1. Let G = (V,E), and let I be the collection of forests of G. Show that
M := (E, I) is a matroid.

14.2. Compute the Tutte polynomial for the k-uniform matroid, Uk,n.

14.3. Prove Theorem 14.7.

14.4.

(a) Prove Proposition 14.10, parts (1)–(4).

(b) Show that if M = (E, I) is a matroid and A ⊆ E, then

rkM∗(A) = |A| − rkM (E)− rkM (Ac).

(c) Prove Proposition 14.10, part 5.

14.5. Compute the Tutte polynomial for the diamond graph G in Figure 1 directly
from Definition 14.5. Then verify that T (G; 1, y) = 4 + 3y+ y2. Identify the sets A
in the definition that contribute to nonzero terms in T (G; 1, y).

14.6. Use deletion and contraction to compute the Tutte polynomial for the dual
of the graph G in Figure 1, and verify that it agrees with Proposition 14.10 (5).

14.7. Use induction to prove Theorem 14.12.

14.8. Use deletion and contraction to compute the Tutte polynomial for the cycle
graph Cn, and then use it to verify Merino’s theorem, Theorem 14.18, for Cn.

14.9. Verify Proposition 14.11 (6) in the following two cases by directly calculating
the relevant probabilities and comparing with those given by the formula involving
the Tutte polynomial:

(a) Let G = Bk be the banana graph consisting of two vertices joined by k edges.

(b) Let G be the graph consisting of k loops at a single vertex.

14.10. (Unicycles and stationary density.) Let G = (V,E) be a connected, undi-
rected multigraph with Tutte polynomial T (G;x, y). Define tG(y) := T (G; 1, y).

(a) Prove the following formula for the stationary density (Definition 8.41) of G:

ζst =
1

|V |

(
|E|+ t′G(1)

tG(1)

)
=

1

|V |
(|E|+ ln(tG(y))′|y=1) .

(b) Use the formula to compute the stationary density of the banana graph Bn.

(c) Show that t′G(1) is the number of spanning unicycles of G, where a unicycle
is a subgraph having a single cycle. So a spanning unicycle is a subgraph
obtained from a spanning tree by adding an edge, or equivalently, is a subgraph
with |V | vertices and |V | edges. We therefore have the following formula for
the stationary density:

ζst =
1

|V |

(
|E|+ # spanning unicycles

spanning trees

)
.

(d) Let G be the graph pictured below:

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 14 275

s

u v

Compute the threshold density of G in three ways:
(i) directly from the definition by computing the recurrents of G;
(ii) using the formula given above involving tG(1) and t′G(1);

(iii) and by describing the unicycles and spanning trees of G.

14.11. This problem assumes familiarity with basic generatingfunctionology (see [93],
freely available online, for a nice introduction). The object is to establish a closed
formula for the stationary density of the complete graph Kn.

For n, k ∈ N defining the falling factorial, nk := n(n− 1) . . . (n− k + 1). Next,
define the Ramanujan Q-function for n ≥ 1 by

Q(n) :=
∑
k≥1

nk

nk

= 1 +
n− 1

n
+

(n− 1)(n− 2)

n2
+

(n− 1)(n− 2)(n− 3)

n3
+ . . .

Note that Q(n) is a finite sum for each particular value of n. Our goal is to show
that the stationary density of Kn is

ζst(Kn) =
1

2

(
Q(n) + n− 3 +

1

n

)
,

A rooted spanning tree of a graph is a spanning tree plus a choice of a “root”
vertex. Let tn and un be the number of rooted spanning trees and the number of
spanning unicycles of Kn, respectively, and consider the corresponding exponential
generating functions:

T (x) =
∑
n≥1

tn
xn

n!
and U(x) =

∑
n≥1

un
xn

n!
.

By Cayley’s formula (Corollary 9.8), we have tn = nn−1, i.e., n times the number
of spanning trees of Kn.

(a) Prove that

U(x) =
∑
k≥3

T (x)k

2k
=

1

2

(
ln

(
1

1− T (x)

)
− T (x)− 1

2
T (x)2

)
.

(Hint: one can form unicycles by grafting a rooted tree to each of the vertices
of a cycle graph Ck with k ≥ 3. Counting rotations and flips, there are 2k
symmetries of Ck.)

(b) Show that

1

1− T (x)
=
∑
n≥0

nn
xn

n!

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

276 14. Matroids and the Tutte polynomial

and

ln

(
1

1− T (x)

)
=
∑
n≥0

nn−1Q(n)
xn

n!
.

(c) Compute n! times the n-th coefficient of U(x) to show that the number of
unicycles in Kn is 1

2n
n−2(nQ(n)− 2n+ 1).

(d) Use Problem 14.10 to compute the stated formula for ζst(Kn) in terms of
the Q-function.

(e) The function Q has the following asymptotic expression ([63]):

Q ∼
√
πn

2
− 1

3
+

1

12

√
π

2n
− 4

135n
+O(n−3/2).

Use this expression to show

ζst(Kn) ∼ n

2
+

√
2πn

4
− 5

3
+

1

48

√
2π

n
+

131

270n
+O(n−3/2).

(It turns out that the approximation ζst(Kn) ≈ n
2 +

√
2πn
4 − 5

3 is off by less
that one percent for n > 11.)

Note: Our references for the connection between unicycles and Ramanujan’s Q-
function are [59] and [45], and we would like to acknowledge the assistance of Riley
Thornton for the ideas presented here.

14.12. This problem shows that the exchange axiom for matroids is essentially
related to the notion of a greedy algorithm.

Let M = (E, I) where E is a finite set and I is a nonempty collection of subsets
of E, closed under inclusion. In particular, ∅ ∈ I. Any such M is called a subset
system.

A weight function on M is any function of the form wt: E → R, and with
respect to this function, define the weight of a subset A of E to be wt(A) :=∑
a∈A wt(a). The optimization problem for M takes as input a weight function and

asks for an element of I with maximal weight. (The problem of minimization is
equivalent by negating the weight function.)

One approach to the optimization problem is the greedy algorithm. Start with
A = ∅. Then, as long as possible, choose an element of maximal weight among
all e ∈ E \ A such that A ∪ {e} ∈ I and then add e to A. This certainly finds a
maximal element of I under inclusion, but does not guarantee that this maximal
element has the maximal weight of all elements of I.

(a) Give an example of a subset system M that is not a matroid and exhibit a
weight function for which the greedy algorithm does not produce a basis. (How
about a minimal example?)

(b) Show that a subset system M satisfies the matroid exchange axiom (and thus
M is a matroid) if and only if for every weight function, the greedy algorithm
produces an element of I for M of maximal weight.

(c) What changes if we only allow nonnegative weight functions?

(d) The greedy algorithm in the special case of the cycle matroid of a graph is called
Kruskal’s algorithm. Use it to find minimal and maximal weight spanning trees

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 14 277

for the graph in Figure 9. For this purpose, the weight of a tree is defined as
the sum of the weights of its edges.

3 7 −4

2 0 4

−1 1 5−2 0 3 4

−1 0 3 3 2 −1

6 −6

15

Figure 9. Graph with weighted edges for Problem 14.12.

14.13. Find two connected simple (undirected and no multiple edges or loops)
graphs that are not 2-isomorphic but have isomorphic sandpile groups.

14.14. Show that the exchange axiom for matroids is equivalent to the fact that
matroid complexes are pure.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Chapter 15

Higher dimensions

In this final chapter, we discuss higher-dimensional versions of many of the topics
studied throughout the book. Graphs are replaced by simplicial complexes, and we
begin by discussing their homology groups. We then generalize the Jacobian of a
graph by defining the critical groups of a simplicial complex. We also introduce
simplicial spanning trees and state the higher-dimensional matrix-tree theorem due
to Duval, Klivans, and Martin. Finally, we conclude with a few remarks about
higher-dimensional versions of the dollar game and the sandpile model.

15.1. Simplicial homology

We review the idea of a simplicial complex from Section 14.6.2 by way of an example.

Example 15.1. Figure 1 pictures a simplicial complex ∆ on the set [5] := {1, 2, 3, 4, 5}:

∆ := {∅, 1, 2, 3, 4, 5, 12, 13, 23, 24, 34, 123},

writing, for instance, 23 to represent the set {2, 3}.

1

2

3

4

5

Figure 1. A 2-dimensional simplicial complex, ∆.

The sets of faces of each dimension are:

F−1 = {∅} F0 = {1, 2, 3, 4, 5}

F1 = {12, 13, 23, 24, 34} F2 = {123}.

279

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

280 15. Higher dimensions

Its facets are 5, 24, 34, and 123. The dimension of ∆ is 2, as determined by the
facet 123. Since not all of the facets have the same dimension, ∆ is not pure.

Let ∆ be an arbitrary simplicial complex. By relabeling, if necessary, assume its
vertices are [n] := {1, . . . , n}. For each i, let Fi(∆) be the set of faces of dimension i,
and define the group of i-chains/ to be the free abelian group with basis Fi(∆):

Ci = Ci(∆) := ZFi(∆) := {
∑
σ∈Fi(∆) aσ σ : aσ ∈ Z}.

The boundary of σ ∈ Fi(∆) is

∂i(σ) :=
∑
j∈σ

sign(j, σ) (σ \ j),

where sign(j, σ) = (−1)k−1 if j is the k-th element of σ when the elements of σ
are listed in order, and σ \ j := σ \ {j}. Extending linearly gives the i-th boundary
mapping,

∂i : Ci(∆)→ Ci−1(∆).

If i > n − 1 or i < −1, then Ci(∆) := 0, and we define ∂i := 0. We sometimes
simply write ∂ for ∂i if the dimension i is clear from context.

Example 15.2. Suppose σ = {1, 3, 4} = 134 ∈ ∆. Then σ ∈ F2(∆), and

sign(1, σ) = 1, sign(3, σ) = −1, sign(4, σ) = 1.

Therefore,
∂(σ) = ∂2(134) = 34− 14 + 13.

The (augmented) chain complex of ∆ is the complex

0 −→ Cn−1(∆)
∂n−1

−→ · · ·
∂2

−→ C1(∆)
∂1

−→ C0(∆)
∂0

−→ C−1(∆) −→ 0.

The word complex here refers to the fact that ∂2 := ∂ ◦ ∂ = 0, i.e., for each i, we
have ∂i−1 ◦ ∂i = 0 (cf. Problem 15.1).

1

2

∂1

1
−

2
+

12 2− 1

1 2

3

∂2

123

1 2

23− 13 + 12

1

3

2

3

Figure 2. Two boundary mapping examples. Notation: if i < j, then we

write i j for ij and i j for −ij.

Figure 2 gives two examples of the application of a boundary mapping. Note
that

∂2(12) = ∂0(∂1(12)) = ∂0(2− 1) = ∅ − ∅ = 0.

The reader is invited to verify ∂2(123) = 0.

Figure 3 shows the boundary of σ = 1234, the solid tetrahedron. Figure 4
helps to visualize the fact that ∂2(σ) = 0. The orientations of the triangles may

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

15.1. Simplicial homology 281

1 2

34

∂3

1 2

4

2

34

1 2

31

34

1234 234− 134 + 124− 123

Figure 3. ∂3 for a solid tetrahedron. Notation: if i < j < k, then we write

i j

k

for ijk and
i j

k

for −ijk.

be thought of as inducing a “flow” along the edges of the triangles. These flows
cancel to give a net flow of 0. This should remind you of Stokes’ theorem from
multivariable calculus.

1
2

3
4

Figure 4. As seen in Figure 3, the boundary of a solid tetrahedron consists
of oriented triangular facets.

Example 15.3. Let ∆ be the simplicial complex on [4] with facets 12, 3, and 4
pictured in Figure 5. The faces of each dimension are:

F−1(∆) = {∅}, F0(∆) = {1, 2, 3, 4}, F1(∆) = {12}.

1 2

3

4

Figure 5. Simplicial complex for Example 15.3.

Here is the chain complex for ∆:

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

282 15. Higher dimensions

0 C1(∆) C0(∆) C−1(∆) 0.
∂1 ∂0

12 2− 1

1
2
3
4

∅

In terms of matrices, the chain complex is given by

0 Z Z4 Z 0.
∂1 ∂0


−1
1
0
0


1

2

3

4

12

(
1 1 1 1

)
∅

1 2 3 4

The sequence is not exact since rk(im ∂1) = rk ∂1 = 1, whereas by rank-nullity,
rk(ker(∂0)) = 4− rk ∂0 = 3.

Definition 15.4. For i ∈ Z, the i-th (reduced) homology of ∆ is the abelian group

H̃i(∆) := ker ∂i/ im ∂i+1.

In particular, H̃n−1(∆) = ker(∂n−1), and H̃i(∆) = 0 for i > n−1 or i < 0. Elements
of ker ∂i are called i-cycles and elements of im ∂i+1 are called i-boundaries. The
i-th (reduced) Betti number of ∆ is the rank of the i-th homology group:

β̃i(∆) := rk H̃i(∆) = rk(ker ∂i)− rk(∂i+1).

Remark 15.5. To define ordinary (non-reduced) homology groups, Hi(∆), and
Betti numbers βi(∆), modify the chain complex by replacing C−1(∆) with 0 and ∂0

with the zero mapping. The difference between homology and reduced homology is

that H0(∆) ' Z⊕H̃0(∆) and, thus, β0(∆) = β̃0(∆)+1. All other homology groups
and Betti numbers coincide. To see the motivation for using reduced homology in
our context, see Example 15.12. From now on, we use “homology” to mean reduced
homology.

In general, homology can be thought of as a measure of how close the chain

complex is to being exact. In particular, H̃i(∆) = 0 for all i if and only if the
chain complex for ∆ is exact. For the next several examples, we will explore how
exactness relates to the topology of ∆.

The 0-th homology group measures “connectedness”. Write i ∼ j for vertices i
and j in a simplicial complex ∆ if ij ∈ ∆. An equivalence class under the transitive
closure of ∼ is a connected component of ∆. By Problem 15.3, β̃0(∆) is one less
than the number of connected components of ∆. For instance, for the simplicial
complex ∆ in Example 15.3,

β̃0(∆) = rk H̃0(∆) = rk(ker ∂0)− rk(∂1) = 3− 1 = 2.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

15.1. Simplicial homology 283

Example 15.6. The hollow triangle,

1 2

3

∆ = {∅, 1, 2, 3, 12, 13, 23}

has chain complex

0 Z3 Z3 Z 0.
∂1 ∂0

−1 −1 0
1 0 −1
0 1 1

1

2

3

12 13 23

(
1 1 1

)
∅

1 2 3

It is easy to see that rk(∂1) = rk(ker ∂0) = 2. It follows that β̃0(∆) = 0, which
could have been anticipated since ∆ is connected. Since rk(∂1) = 2, rank-nullity

says rk(ker ∂1) = 1, whereas ∂2 = 0. Therefore, β̃1(∆) = rk(ker ∂1) − rk(∂2) = 1.

In fact, H̃1(∆) is generated by the 1-cycle

23− 13 + 12 =

1 2

3

.

If we would add 123 to ∆ to get a solid triangle, then the above cycle would
be a boundary, and there would be no homology in any dimension. Similarly, a
solid tetrahedron has no homology, and a hollow tetradedron has homology only in
dimension 2 (of rank 1). See Problem 15.4 for a generalization.

Exercise 15.7. Compute the Betti numbers for the simplicial complex formed by
gluing two (hollow) triangles along an edge. Describe generators for the homology.

Example 15.8. Consider the simplicial complex pictured in Figure 6 with facets
14, 24, 34, 123. It consists of a solid triangular base whose vertices are connected by
edges to the vertex 4. The three triangular walls incident on the base are hollow.

1

2

3

4

Figure 6. Simplicial complex for Example 15.8.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

284 15. Higher dimensions

What are the Betti numbers? The chain complex is:

0 Z Z6 Z4 Z 0.
∂2 ∂1 ∂0


1
−1

0
1
0
0


123

12
13
14
23
24
34

−1 −1 −1 0 0 0

1 0 0 −1 −1 0

0 1 0 1 0 −1

0 0 1 0 1 1

1

2

3

4

12 13 14 23 24 34

(1 1 1 1)∅
1 2 3 4

By inspection, rk(∂2) = 1 and rk(∂1) = rk(ker ∂0) = 3. Rank-nullity gives

rk(ker ∂1) = 6−3 = 3. Therefore, β̃0 = β̃2 = 0 and β̃1 = 2. It is not surprising that

β̃0 = 0, since ∆ is connected. Also, the fact that β̃2 = 0 is easy to see since 123 is
the only face of dimension 2, and its boundary is not zero. Seeing that β̃1 = 2 is a
little harder. Given the cycles corresponding to the three hollow triangles incident
on vertex 4, one might suppose β̃1 = 3. However, as conveyed in Figure 7, those
cycles are not independent: if properly oriented their sum is the boundary of the
solid triangle, 123; hence, their sum is 0 in the first homology group.

1

2

3

4

(12 + 24− 14) + (23 + 34− 24) + (14− 34− 13) = (12 + 23− 13)︸ ︷︷ ︸
∂2(123)

Figure 7. A tetrahedron with solid base and hollow walls. Cycles around the

walls sum to the boundary of the base, illustrating a dependence among the
cycles in the first homology group.

15.1.1. A quick aside on algebraic topology. Algebraic topology seeks an
assignment of the form X 7→ α(X) where X is a topological space and α(X) is
some algebraic invariant (a group, ring, etc.). If X ' Y as topological spaces, i.e.,
if X and Y are homeomorphic, then we should have α(X) ' α(Y) as algebraic
objects—this is what it means to be invariant. The simplicial homology we have
developed provides the tool for creating one such invariant.

Let X be a 2-torus—the surface of a donut. Draw triangles on the surface so
that neighboring triangles meet vertex-to-vertex or edge-to-edge. The triangulation
is naturally interpreted as a simplicial complex ∆. An amazing fact, of fundamental
importance, is that the associated homology groups do not depend on the choice

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

15.1. Simplicial homology 285

of triangulation! In this way, we get an assignment

X 7→ H̃i(X) := H̃i(∆),

and, hence, also X 7→ β̃i(X) := β̃i(∆), for all i.

In a course on algebraic topology, one learns that these homology groups do
not see certain aspects of a space. For instance, they do not change under certain
contraction operations. A line segment can be continuously morphed into a single
point, and the same goes for a solid triangle or tetrahedron. So these spaces all
have the homology of a point—in other words: none at all (all homology groups
are trivial). A tree is similarly contractible to a point, so the addition of a tree to
a space has no effect on homology. Imagine the tent with missing walls depicted
in Figure 6. Contracting the base to a point leaves two vertices connected by
three line segments. Contracting one of these line segments produces two loops
meeting at a single vertex. No further significant contraction is possible—we are not
allowed to contract around “holes” (of any dimension). These two loops account

for β̃1 = 2 in our previous calculation. As another example, imagine a hollow
tetrahedron. Contracting a facet yields a surface that is essentially a sphere with
three longitudinal lines connecting its poles, thus dividing the sphere into 3 regions.
Contracting two of these regions results in a sphere—a bubble—with a single vertex
drawn on it. No further collapse is possible. This bubble accounts for the fact
that β̃2 = 1 is the only nonzero Betti number for the sphere, as calculated in
Problem 15.5.

15.1.2. How to compute homology groups. As illustrated in the examples
above, Betti numbers of simplicial complexes may be found by computing ranks of
matrices. Homology groups are more subtle. They are finitely generated abelian
groups and thus have—as we know from Theorem 2.23—a free part, which deter-
mines the rank, and a torsion part. For instance,

Z2 × Z4 × Z3

is a typical finitely generated abelian group of rank 3; it has free part Z3 and torsion
part Z2 × Z4.

The key to calculating homology groups is to compute the Smith normal forms
of the matrices representing the boundary maps. Since the homology groups depend
on comparing the kernel of one boundary mapping with the image of another, one
might think that a complicated simultaneous reduction for successive boundary
maps would be necessary. Happily, that is not the case.

Let ∆ be a simplicial complex, and choose bases for each chain group Ci thus
identifying the boundary mappings with matrices. Suppose the invariant factors—
the diagonal entries of the Smith normal form—for ∂i+1 are d1, . . . , dk, 0, . . . , 0,
with respect to bases e1, . . . , es for Ci+1 and e′1, . . . , e

′
t for Ci. We have

∂i+1(ej) =

{
dj e
′
j for 1 ≤ j ≤ k,

0 for k < j ≤ s.

Therefore, d1 e
′
1, . . . , dk e

′
k is a basis for im ∂i+1, the group of i-boundaries of ∆.

Since ∂2 = 0,
0 = ∂i(∂i+1(ej)) = dj ∂i(e

′
j),

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

286 15. Higher dimensions

for j = 1, . . . , k. Therefore, e′1, . . . , e
′
k form part of a basis for ker ∂i, the group of

i-cycles of ∆, which we complete to a basis of ker ∂i,

e′1, . . . , e
′
k, e
′′
k+1, . . . , e

′′
k+r

for some e′′j and r. It follows that

H̃i(∆) = ker ∂i/ im ∂i+1

' Z〈e′1, . . . , e′k, e′′k+1, . . . , ek+r〉/Z〈d1 e
′
1, . . . , dk e

′
k〉

' Zd1 × · · · × Zdk × Zr.

In summary, the torsion part of H̃i(∆) is determined by the invariant factors of ∂i+1.

The rank r of H̃i(∆) is rk(ker ∂i)− k, where k is the number of nonzero invariant
factors of ∂i+1.

Example 15.9. The real projective plane, RP2, is a topological space representing
the set of 1-dimensional vector subspaces of R3, i.e., the set of lines through the
origin in R3. To create it, let S2 be a sphere centered at the origin in R3. Each
line meets S2 in a pair of antipodal points. So to form RP2, we glue each point
of S2 with its antipode. Proceed in two steps: first, glue every point strictly above
the equator with its antipode to get a disc. Forgetting the labeled vertices, this
disc is pictured in Figure 8. Next, we need to glue each point on the equator (the
boundary of the disc) to its antipode. This cannot be done without crossings in 3
dimensions, but the vertex labels in Figure 8 indicate the gluing instructions. Thus,
for instance, the edge 12 appearing in the lower-left should be glued to the edge 12
in the upper-right, matching up like vertices, and so on. Figure 8 may be thought
of as an embedding of the complete graph K6 in RP2.

1

23

1

2 3

4 5

6

Figure 8. A triangulation of the real projective plane, RP2.

Let ∆ be the 2-dimensional simplicial complex pictured in Figure 8. By Prob-
lem 15.8, all the Betti numbers of ∆ are 0. The Smith normal form for ∂2 is the
15 × 10 matrix with diagonal elements d1 = · · · = d9 = 1 and d10 = 2. It follows

that H̃1(RP2) = Z2. All other homology groups are trivial (cf. Problem 15.8).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

15.2. Higher-dimensional critical groups 287

15.2. Higher-dimensional critical groups

Every simple connected graph G = (V,E) determines a one-dimensional simplicial
complex with E as its set of facets. Its chain complex is

0 −→ ZE ∂1−→ ZV ∂0−→ Z −→ 0.

We have seen this sequence before, in Chapter 13. According to Theorem 13.10,
it is exact at ZV , and the kernel of ∂1—the first homology group of the simplicial
complex—is the cycle space, C, for G. Further, C is a free abelian group of rank
β̃1 = |E| − |V |+ 1. All other Betti numbers are 0.

Thinking of ZV as the group of divisors on G, the mapping ∂0 is the degree
mapping. Hence, ker ∂0 is the group of divisors of degree 0. In Exercise 13.1 we
found ∂1∂

ttt
1 is the Laplacian of G. Therefore,

ker ∂0/ im ∂1∂
ttt
1 = Jac(G) ' S(G),

motivating the following definition.

Definition 15.10. Let ∆ be a simplicial complex of dimension d. The i-dimensional
Laplacian or i-Laplacian mapping for ∆ is

Li := ∂i+1∂
ttt
i+1 : Ci(∆)→ Ci(∆).

The i-th critical group for ∆ is

Ki(∆) := ker ∂i/ im ∂i+1∂
ttt
i+1.

The critical group of ∆ is
K(∆) := ⊕di=0Ki(∆).

The transpose ∂ ttti+1 is the mapping

Hom(Ci(∆),Z)→ Hom(Ci+1(∆),Z)

φ 7→ φ ◦ ∂i+1.

Choosing bases for Ci(∆) and Ci+1(∆) identifies ∂i+1 with a matrix and ∂ ttti+1 with
the transpose of that matrix.

Remark 15.11. Since im ∂i+1∂
ttt
i+1 ⊆ im ∂i+1, the i-th homology group is a quo-

tient of the i-th critical group:

Ki(∆)� H̃i(∆).

Accordingly, the critical groups encode more information about ∆. Since the rank
of a real matrix is equal to the rank of the product of the matrix with its trans-

pose, Ki(∆) and H̃i(∆) have the same rank—these groups differ only in torsion.

If ∆ is d-dimensional, then ∂d+1 = 0, hence,

Kd(∆) = H̃d(∆) = ker ∂d.

Example 15.12. The k-skeleton of a simplicial complex ∆ is the simplicial complex
Skelk(∆) formed by all faces of ∆ of dimension at most k. The 1-skeleton is called
the underlying graph of the simplicial complex. The 0-th critical group of ∆ is the
Jacobian group of its underlying graph:

K0(∆) = Jac(Skel1(∆)) ' S(Skel1(∆)).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

288 15. Higher dimensions

The same reasoning used to compute homology groups in Section 15.1.2 applies
directly to computing critical groups, yielding the following result.

Proposition 15.13. Let ∆ be a simplicial complex. Let d1, . . . , dk be the nonzero
invariant factors of the i-Laplacian mapping, Li, and let r = rk(ker ∂i)− k. Then

Ki(∆) ' Zd1 × · · · × Zdk × Zr.

Example 15.14 (Tetrahedron). Let ∆ be the simplicial complex whose facets are
all 3-element subsets of [4]—a triangulation of a hollow tetrahedron. We have

∂2 : Z4 Z6.



1 1 0 0

−1 0 1 0

0 −1 −1 0

1 0 0 1

0 1 0 −1

0 0 1 1



123 124 134 234

12

13

14

23

24

34

Thus, rk(∂2) = 3. Hence, rk(ker ∂2) = 1, and

K2(∆) = H̃2(∆) = ker ∂2 ' Z.

The nonzero invariant factors of

L1 = ∂2∂
ttt
2 =


2 −1 −1 1 1 0
−1 2 −1 −1 0 1
−1 −1 2 0 −1 −1

1 −1 0 2 −1 1
1 0 −1 −1 2 −1
0 1 −1 1 −1 2


are d1 = d2 = 1 and d3 = 4, and the kernel of ∂1 has rank 3. Therefore, by
Proposition 15.13,

K1(∆) ' Z4.

The underlying graph of ∆ is the complete graph K4; hence,

K0(∆) ' S(K4) ' Z4 × Z4.

In general, it is shown in [41] that if ∆′ is any simplicial complex drawn on a
d-dimensional sphere, then Kd−1(∆′) ' Zn where n is the number of facets of ∆′.

On the other hand, H̃d−1(∆′) = 0. So the critical groups encode combinatorial
structure not determined by the underlying topology of the sphere.

15.3. Simplicial spanning trees

Let ∆ be a d-dimensional simplicial complex. A simplicial complex ∆′ is a subcom-
plex of ∆, written ∆′ ⊆ ∆, if the faces of ∆′ are a subset of the faces of ∆, i.e.,
Fi(∆

′) ⊆ Fi(∆) for all i. Recall: the i-skeleton Skeli(∆) is the subcomplex of ∆

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

15.3. Simplicial spanning trees 289

formed by the collection of all faces of ∆ of dimension at most i; the i-th Betti

number of ∆ is β̃i(∆) := rk H̃i(∆); and the f -vector (face-vector) for ∆ is

f(∆) := (f−1, . . . , fd),

where fi := |Fi(∆)| = rk Ci(∆). (When we saw the f -vector in Chapter 14, it was
notationally convenient to write it in terms of the rank (= 1 + dim ∆) rather than
the dimension of ∆.)

Definition 15.15. Let ∆ be a d-dimensional simplicial complex. A (simplicial)
spanning tree of ∆ is a d-dimensional subcomplex Υ ⊆ ∆ with Skeld−1(Υ) =
Skeld−1(∆) and satisfying the three conditions:

(1) H̃d(Υ) = 0;

(2) β̃d−1(Υ) = 0;

(3) fd(Υ) = fd(∆)− β̃d(∆) + β̃d−1(∆).

If 0 ≤ k < d, a k-dimensional (simplicial) spanning tree of ∆ is a spanning tree of
the k-skeleton Skelk(∆).

Exercise 15.16. What are the 0-dimensional spanning trees of a simplicial com-
plex?

Example 15.17. Let ∆ be a 1-dimensional simplicial complex, i.e., a graph, and
suppose Υ is a simplicial spanning tree of ∆. The condition Skel0(Υ) = Skel0(∆)
says that Υ contains all of the vertices of ∆. Condition (1) says Υ has no cycles.
Condition (2) says Υ is connected. What about condition (3)? Since Υ contains
all of the vertices and is connected, it follows that ∆ is connected, and hence,

β̃0(∆) = 0. Since ∆ is 1-dimensional, H̃1(∆) = ker(∂1) = C, the cycle space of ∆.

Therefore, β̃1(∆) = rk C. Then, by Theorem 13.10 (3), β̃1(∆) = f1(∆)−f0(∆)+1.
Hence, condition (3) says the number of edges of Υ is one less than the number of
vertices of ∆. So simplicial spanning trees are the same as ordinary spanning trees
in the case of a graph.

Example 15.18. It turns out that if ∆ is any triangulation of the real projective
plane, RP2, then ∆ is its own spanning tree (cf. Example 15.9 and Problem 15.8).

In this case, H̃1(∆) = Z2 6= 0, but condition (2) is still satisfied.

In fact, any two of the three conditions defining a spanning tree suffice:

Proposition 15.19. Let Υ be a d-dimensional subcomplex of a d-dimensional sim-
plicial complex ∆, and suppose that Skeld−1(Υ) = Skeld−1(∆). Then any two of
the three conditions in Definition 15.15 imply the remaining one.

Proof. Problem 15.9. �

Example 15.20. (Equatorial bipyramid.) The equatorial bipyramid, B, is pictured
in Figure 9. It has three top facets, 124, 134, 234; three bottom facets, 125, 135,
235; and a middle facet, 123. By Problem 15.10, the only nontrivial homology

group for B is H̃2(B) = Z2. Its generating 2-cycles are the boundaries of the two
missing 3-dimensional faces, 1234 and 1235. Condition (3) of the definition of a
spanning tree requires any spanning tree of B to be formed by removing two facets

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

290 15. Higher dimensions

1

23

4

5

Figure 9. The equatorial bipyramid—a 2-dimensional simplicial complex
with 7 facets.

from B. In order to satisfy condition (1), we must either remove a top face and a
bottom face or remove the middle face and any other face. (And having satisfied
conditions (1) and (3), condition (2) must hold as well.) Thus, in total, B has 15
spanning trees.

When does a simplicial complex have a spanning tree? For a graph, we have
seen that possessing a spanning tree is equivalent to being connected, i.e., having 0-
th Betti number 0. There is a simple generalization that characterizes the existence
of spanning trees in higher dimensions.

Proposition 15.21. Suppose that ∆ is a d-dimensional simplicial complex. Then ∆
possesses a simplicial spanning tree if and only if β̃d−1(∆) = 0. We say that such
complexes are acyclic in codimension 1.

Proof. First suppose that Υ is a spanning tree of ∆. Then Cd(Υ) ⊂ Cd(∆),
Cd−1(Υ) = Cd−1(∆), and im(∂Υ,d) ⊆ im(∂∆,d). It follows that there is a surjection

H̃d−1(Υ) = Cd−1(Υ)/ im(∂Υ,d)� Cd−1(∆)/ im(∂∆,d) = H̃d−1(∆).

Since H̃d−1(Υ) is finite, it follows that H̃d−1(∆) is also finite, hence β̃d−1(∆) = 0.

Now suppose that ∆ is acyclic in codimension 1. To construct a spanning tree,

start with Υ = ∆. If H̃d(Υ) = 0, then Υ is a spanning tree, and we are done. If
not, then there is an integer-linear combination of facets σi in the kernel of ∂d:

a1σ1 + a2σ2 + · · ·+ akσk,

where we assume that a1 6= 0. If we work over the rational numbers, then we may
assume a1 = 1. Still working over the rationals, we see that

∂d(σ1) = −
k∑
i=2

ai∂d(σi).

Hence, if we remove the facet σ1 from Υ, we obtain a smaller subcomplex Υ′ without
changing the image of the rational boundary map: im(∂Υ,d) = im(∂Υ′,d). It follows
from rank-nullity that

β̃d(Υ
′) = fd(Υ

′)− rk im(∂Υ′,d) = fd(Υ)− 1− rk im(∂Υ,d) = β̃d(Υ)− 1,

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

15.3. Simplicial spanning trees 291

and β̃d−1(Υ′) = β̃d−1(Υ) = 0. Continuing to remove facets in this way, we eventu-
ally obtain a spanning tree of ∆. �

Definition 15.22. A simplicial complex ∆ is acyclic in positive codimension (APC)

if β̃i(∆) = 0 for all i < dim ∆.

Proposition 15.23. Let ∆ be a d-dimensional simplicial complex. The following
are equivalent:

(1) ∆ is APC.

(2) ∆ has a k-dimensional spanning tree for each 0 ≤ k ≤ d.

Proof. Problem 15.11. �

Geometrically, a prototypical APC complex is the triangulation of a d-sphere.
For a slightly more complicated example, take several d-spheres and pick a point
on each. Now glue these spheres together by identifying the chosen points. A trian-
gulation of this wedge of d-spheres turns out to be APC. For example, consider the
equatorial bipyramid. Contracting the middle face does not change the homology
groups, and the resulting figure is the wedge of two 2-spheres.

15.3.1. Reduced Laplacians and the generalized matrix-tree theorem. In
the case of a sandpile graph, the reduced Laplacian is obtained from the ordinary
Laplacian by removing the row and column corresponding to the sink vertex. The
cokernel of the reduced Laplacian is isomorphic to the sandpile group of the graph,
and the determinant counts the number of spanning trees. Both of these results
generalize to simplicial complexes of arbitrary dimension.

Let ∆ be a d-dimensional simplicial complex. For each 0 ≤ i ≤ d, define the
i-th tree number:

τi := τi(∆) :=
∑
Υ

|H̃i−1(Υ)|2,

where the sum is over all i-dimensional spanning trees of ∆. Recall that for an

i-dimensional spanning tree Υ we have β̃i−1(Υ) = 0; hence, H̃i−1(Υ) consists only

of torsion and is finite. Note that τi = 0 if β̃i−1(∆) > 0 (Proposition 15.21).

Suppose that β̃i−1(∆) = 0, and fix an i-dimensional spanning tree Υ. Let

F̃i := Fi(∆) \ Fi(Υ),

the i-faces of ∆ not contained in Υ, and let L̃i be the i-Laplacian of ∆ with the
rows and columns corresponding to faces in Fi(Υ) removed.

Theorem 15.24 (Duval, Klivans, Martin [40, Theorem 1.3], [41, Theorem 3.4]).

(1) If H̃i−1(Υ) = 0, there is an isomorphism

ψ : Ki(∆)→ ZF̃i/ im(L̃i),

defined by dropping i-faces of Υ: if c =
∑
f∈Fi(∆) cf · f ∈ ker ∂i represents an

element of Ki(∆), then

ψ(c) =
∑
f∈F̃i

cf · f mod im(L̃i).

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

292 15. Higher dimensions

(2) (Simplicial matrix-tree theorem)

τi+1 =
|H̃i−1(∆)|2

|H̃i−1(Υ)|2
det(L̃i).

Example 15.25. Let G be the 1-skeleton of ∆, i.e., the underlying graph, and
consider the i = 0 case of Theorem 15.24. In this case the spanning tree, Υ, is a
single vertex. Part (1) says the Jacobian group of G is the cokernel of its ordinary

reduced Laplacian. For part (2), note that H̃0(T) = 0 for all spanning trees T
of G, so τ1 is the number of spanning trees of G, each counted with weight 1. Also,

H̃−1(∆) = H̃−1(Υ) = 0. Therefore, part (2) is the ordinary matrix-tree theorem
applied to G.

Example 15.26. Let Kn,d denote the d-skeleton of the (n − 1)-dimensional sim-
plex ∆n−1 (see Problem 15.4). Explicitly, the facets of Kn,d consist of all subsets
of [n] of size d+1. For d = 1, the complex Kn,1 = Kn is simply the complete graph
on n vertices, and Cayley’s formula 9.8 says that

τ1 = nn−2.

In [60], Kalai established the following generalization of Cayley’s result:

τd = n(n−2
d).

Consider the particular case of K6,2, the 2-skeleton of the 5-dimensional simplex
with vertex set [6]. By Kalai’s formula, the tree number τ2 of this complex is
66 = 46656. Some of the simplicial spanning trees for K6,2 are contractible, hence
have no homology, and thus contribute 1 to τ2. For instance, consider the tree T
comprised of all 10 facets containing the vertex 1. On the other hand, K6,2 also
has spanning trees with nontrivial 1-dimensional homology. Indeed, one such tree

is the triangulation of RP2 shown in Figure 8, having H̃1 = Z2. This tree thus
contributes 22 = 4 to the quantity τ2.

Exercise 15.27. Let ∆ be the simplicial complex whose facets are the faces of a
tetrahedron (cf. Example 15.14). Verify the cases i = 1 and i = 2 of both parts of
Theorem 15.24 for ∆ (for a single fixed spanning tree in each case). In addition,
by calculating Smith normal forms of reduced Laplacians, verify that K1(∆) ' Z4

and that K2(∆) ' Z.

Remark 15.28. In Chapter 9 we proved a matrix-tree theorem for graphs in
which spanning trees were allowed to have edges with arbitrary weights. For a
generalization to simplicial complexes with weighted facets, see [40, Theorem 1.4].

15.4. Firing rules for faces

We know the columns of the ordinary Laplacian matrix of a graph encode vertex-
firing rules (cf. Figure 1 from Chapter 2). In this section, we interpret the columns of
the higher-dimensional Laplacians of a simplicial complex as firing rules for higher-
dimensional faces. For this purpose, the group of i-dimensional chains, Ci(∆), of
a simplicial complex ∆ are called i-flows and thought of as assignments of “flow”
along the i-faces. Firing an i-face redirects flow around incident (i + 1)-faces. An
element of ker ∂i is thought of as a conservative flow—one for which flow does

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

15.4. Firing rules for faces 293

not build up along the (i− 1)-dimensional boundary. Thus, the i-th critical group
is interpreted as conservative i-flows modulo redirections of flow around incident
(i+ 1)-faces.

Definition 15.29. Let c ∈ Ci(∆) be an i-flow on a simplicial complex ∆ and let
σ ∈ Fi(∆) be an i-dimensional face. Let Li be the i-Laplacian of ∆. Firing σ
from c produces the configuration c− Liσ, and we use the notation:

c
σ−→ c− Liσ.

Example 15.30. Let ∆ be the 2-dimensional simplicial complex with facets {1, 2, 3}
and {2, 3, 4} pictured in Figure 10.

1

2

3

4

Figure 10. Simplicial complex for Example 15.30.

Figure 11 displays a 1-flow on ∆:

c = 2 · 12− 2 · 13 + 3 · 23− 24 + 34 ∈ C1(∆).

Note that negative coefficients are interpreted visually as positive flow in the oppo-
site direction: −2 · 13 represents 2 units of flow directed from vertex 3 to vertex 1.
The flow c is conservative since ∂1(c) = 0, which means that for each vertex, the
incoming flow balances the outgoing flow.

What happens when the edge 23 fires? In analogy with vertex firing, we sub-
tract the 23-column of the 1-dimensional Laplacian.

2 ·

 1

2

3

2(12 + 23− 13) + (23 + 34− 24)

+

 
2

3

4 =

= 2 · 12− 2 · 13 + 3 · 23

−24 + 34

1

2

3

4

2

2

3

1

1

Figure 11. A conservative 1-flow on ∆. (Labels on directed edges represent
units of flow; an unlabeled directed edge represents one unit of flow.)

The chain complex for ∆ is

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

294 15. Higher dimensions

0 Z2 Z5 Z4 Z 0,
∂2 ∂1 ∂0

 1 0
−1 0

1 1
0 −1

0 1


123 234

12
13
23
24

34

−1 −1 0 0 0

1 0 −1 −1 0

0 1 1 0 −1

0 0 0 1 1

1

2

3

4

12 13 23 24 34

(1 1 1 1)∅
1 2 3 4

and the 1-Laplacian is

L1 = ∂2∂
ttt
2 =


1 −1 1 0 0
−1 1 −1 0 0

1 −1 2 −1 1
0 0 −1 1 −1
0 0 1 −1 1

 .

12 13 23 24 34

12

13

23

24

34

The firing rule determined by the 23-column of L1 is illustrated in Figure 12.

1

2

3

42 1

2

3

4

1

1

1

1


1
−1

2
−1

1


12

13

23

24

34

−−−

23

Figure 12. Firing the edge 23 diverts flow around the bordering 2-faces. The

net flow into each vertex is unaffected by the firing.

Figure 13 shows the effect on c of firing the edge 23:

c c− L1(23) = 12− 13 + 23.
23

1

2

3

4

2

2

3

1

1

c

1

2

3

4

1

1

1

c− L1(23)

23

Figure 13. Firing the edge 23.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

15.4. Firing rules for faces 295

In Part 1 of this book, we interpreted graph vertex-firing rules as lending moves
in the dollar game; in Part 2 we interpreted them as sandpile-topplings. We end
this chapter by briefly indicating possibilities for corresponding interpretations of
the face-firing rules on a simplicial complex.

15.4.1. The flow game. Let ∆ be a d-dimensional simplicial complex, and
consider a (d − 1)-flow D =

∑
f∈Fd−1(∆)D(f) f ∈ Cd−1(∆). By analogy with the

theory of divisors on graphs, we say that D is effective if D(f) ≥ 0 for all (d− 1)-
faces f . We think of effective flows as those which flow in the “correct” direction,
as determined by the orientation coming from the vertex-ordering of ∆. Given two
(d − 1)-flows D and D′, we say that D is linearly equivalent to D′ if D may be
obtained from D′ via a sequence of face-firings/reverse-firings. With this setup,
we have a natural generalization of the dollar game to d-dimensional simplicial
complexes ∆:

The flow game: Is a given (d − 1)-flow D on ∆ linearly equivalent to an
effective (d− 1)-flow?

As of this writing, little is known about the flow game on simplicial complexes,
although there are certainly many questions one could ask. Is there a greedy algo-
rithm for winning the flow game? Is there a version of Dhar’s algorithm for flows?
Most notably, is there a Riemann-Roch type theorem in this context?

15.4.2. Higher-dimensional chip firing. In order to interpret the face-firing
rules in terms of a higher-dimensional version of the sandpile model, one would
want notions of stability and recurrence for i-flows on a simplicial complex ∆.
Unfortunately, the search for such notions is complicated by the fact that reduced
i-Laplacians for i ≥ 1 are not M -matrices (indeed, they are not even Z-matrices—
see Section 12.3). However, in [53] Guzmán and Klivans propose a generalization

of chip-firing in the context of an arbitrary invertible matrix L̃, at the price of
choosing an auxiliary M -matrix M . In the case of graphs, where the invertible

matrix L̃ is the usual graph Laplacian, one may choose M = L̃ and obtain the usual
sandpile theory. On the other hand, one can always choose M = I, the identity

matrix. In the case where L̃ is the reduced i-Laplacian of a simplicial complex,
any choice of M leads to well-defined notions of stable flows, superstable flows,
and critical flows (the latter being analogous to recurrent sandpiles). Moreover,
just as the collections of superstable and recurrent sandpiles each form systems of
representatives for the sandpile group, so do the superstable and critical i-flows
form systems of representatives for the i-dimensional critical group.

However, many questions remain in this context as well. For instance, is there
a good notion of duality between the superstable and critical i-flows, generalizing
the duality between superstables and recurrents for sandpiles? Perhaps most im-

portantly, is there a natural choice for the M -matrix M in the case where L̃ is the
reduced i-Laplacian of a simplicial complex?

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

296 15. Higher dimensions

Notes

Most of the results in this chapter are taken from the papers [40] and [41] by
A. Duval, C. Klivans, and J. Martin. To avoid confusion, we note that in these
original papers there are occasional minor errors with regard to precise acyclicity
conditions, but the same authors corrected and generalized all of their results in
the later book chapter [42].

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 15

Note. For convenience, in all computations involving chain complexes in these
problems, please use lexicographic ordering of the faces: i1 · · · ik precedes j1 · · · jk
if the first nonzero component of (i1 − j1, . . . , ik − jk) is negative.

15.1. (The boundary of a boundary is empty.) Show that for each i, the following
relation holds for the boundary mappings in the chain complex of a simplicial
complex: ∂i−1 ◦∂i = 0. This relation is often abbreviated as ∂2 = 0. It justifies the
use of the word complex.

15.2. Let ∆ be the simplicial complex in Figure 1.

(a) Find the matrices representing the chain complex for ∆ with respect to lexi-
cographic ordering of the faces in each dimension.

(b) Find the Betti numbers by computing ranks.

(c) Find the homology groups by computing Smith normal forms. Find generators
for each non-trivial group.

15.3. Let ∆ be a simplicial complex. Show that β̃0(∆) is one less than the number
of connected components of ∆.

15.4.

(a) Let ∆n denote the n-simplex, i.e., the n-dimension simplicial complex consist-
ing of all subsets of [n + 1]. Thus, ∆0 is a point, ∆1 is a line segment, ∆2 is

a solid triangle, ∆3 is a solid tetrahedron, and so on. Show that H̃i(∆n) = 0
for all i.

(b) Let ∆◦n be the (n− 1)-dimensional simplicial complex consisting of all subsets
of [n + 1] except [n + 1], itself. Thus, ∆◦1 is a pair of points, ∆◦2 is a hollow
triangle, ∆◦3 is a hollow tetrahedron, and so on. Prove that

H̃i(∆
◦
n) ≈

{
Z if i = n− 1,

0 otherwise.

15.5. (Sphere.) The left side of Figure 14 shows a simplicial complex drawn on a
sphere. On the right side is the same simplicial complex projected onto the face 134.
It has eight two-dimensional facets, counting 134. Find the chain complex for this
simplicial complex and compute the Betti numbers.

1

2

3

45

6 1 3

4

2

5

6

Figure 14. Simplicial complex on a sphere for Problem 15.5.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

298 15. Higher dimensions

15.6. (Torus.) Gluing the same-numbered vertices in Figure 15 and their corre-
sponding edges produces a torus. The figure represents an embedding of the com-
plete graph K7 on the torus. Find the chain complex and compute the Betti
numbers for the corresponding simplicial complex (with 14 facets).

1 2 3 1

1 2 3 1

4

5

4

5

6 7

Figure 15. Simplicial complex on a torus for Problem 15.6.

15.7. (Klein bottle.) Gluing the same-numbered vertices in Figure 16 and their
corresponding edges produces a Klein bottle. The graph determines a simplicial
complex with 16 facets. Find the chain complex and compute the homology groups
for the corresponding simplicial complex. Find generators for the homology. Is
there any torsion?

1 2 3 1

1 2 3 1

4

5 4

5

6

7 8

Figure 16. Simplicial complex on a Klein bottle for Problem 15.7.

15.8. Let ∆ be the simplicial complex triangulating the real projective plane in
Example 15.9.

(a) Compute the critical groups and homology groups for ∆ by computing Smith
normal forms of Laplacians.

(b) Verify that ∆ is a 2-dimensional spanning tree of itself.

(c) Verify both parts of Theorem 15.24 for the cases i = 0, 1, 2 (for a single span-
ning tree in each case). Verify your calculation of the critical groups by com-
puting Smith normal forms of reduced Laplacians.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Problems for Chapter 15 299

15.9. Let ∆ be a d-dimensional simplicial complex. The reduced Euler character-
istic of ∆ is the alternating sum of the reduced Betti numbers of ∆:

χ̃(∆) :=
d∑
i=0

(−1)iβ̃i(∆) = β̃0(∆)− β̃1(∆) + · · ·+ (−1)dβ̃d(∆).

Now consider the chain complex for ∆:

0 −→ Cd(∆)
∂d

−→ · · ·
∂2

−→ C1(∆)
∂1

−→ C0(∆)
∂0

−→ C−1(∆) −→ 0.

Recall that the f -vector (f−1, f0, f1, . . . , fd) is defined by fi = rk(Ci(∆)). Show
that the reduced Euler characteristic of ∆ may be computed as the alternating sum
of the numbers fi:

χ̃(∆) =
d∑

i=−1

(−1)ifi = −f−1 + f0 − f1 + · · ·+ (−1)dfd.

Now suppose that Υ is a simplicial spanning tree of ∆. Show that fi(Υ) = fi(∆)

for −1 ≤ i ≤ d− 1 and β̃i(Υ) = β̃i(∆) for 0 ≤ i ≤ d− 2. Use these observations to
prove Proposition 15.19 by computing χ̃(Υ)− χ̃(∆) in two different ways.

15.10. Compute the homology groups for the equatorial bipyramid (cf. Exam-
ple 15.20).

15.11. Prove Proposition 15.23.

15.12. Calculate the 1-dimensional Laplacian for the simplicial complex in Figure 1,
and draw a picture like that in Figure 12 showing the effect of firing the edge 23.

15.13. Consider the solid bipyramid, obtained from the equatorial bipyramid
in Figure 9 by adding the 3-dimensional facets 1234 and 1235. Calculate the 2-
dimensional Laplacian, and draw a picture analogous to that in Figure 12 showing
the effect of firing the face 123.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Appendix

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Appendix A

In this appendix, we briefly recall some basic notions from graph theory.

A.1. Undirected multigraphs

Definition A.1. A multiset is a set A with a multiplicity function m : A → N≥1

from A to the positive integers. Informally, we think of a multiset as a set A where
each element a ∈ A appears m(a) ≥ 1 times. A submultiset of A is a subset B ⊆ A
together with a multiplicity function m′ satisfying m′(b) ≤ m(b) for all b ∈ B.

Example A.2. The multiset {a, a, a, b, b, c} has underlying set A = {a, b, c} and
multiplicity function m given by m(a) = 3,m(b) = 2, and m(c) = 1. The multiset
{a, a, b, b} is a submultiset of {a, a, a, b, b, c}.

Definition A.3. An (undirected) multigraph G = (V,E) is a pair consisting of a
set of vertices V and a multiset of edges E comprised of unordered pairs {v, w} of
vertices. We generally write vw or wv for the edge {v, w}. A loop is a singleton {v},
corresponding to an edge connecting the vertex v to itself. A multigraph G is finite
if both V and E are finite; G is a simple graph if E is a set, i.e., if each edge occurs
with multiplicity 1.

Definition A.4. Two vertices v and w are adjacent if vw is an edge of G, and
the edge e = vw is said to be incident to v and w. The degree of a vertex v is its
number of incident edges, denoted degG(v).

Definition A.5. A submultigraph of a multigraph G = (V,E) is a pair (V ′, E′)
with V ′ ⊆ V and E′ a submultiset of E such that every vertex appearing in an
edge from E′ is an element of V ′. If W ⊆ V , then the submultigraph induced by W
is the pair (W,E′) where E′ consists of every edge in E whose endpoints are both
in W .

Definition A.6. A path in a multigraph G is an alternating sequence of vertices
and edges v1, e1, v2, e2, . . . , vn such that ei = vivi+1 for all i = 1, . . . , n − 1. A
finite multigraph is connected if for all vertices v, w ∈ V there is a path in G with
v1 = v and vn = w. The maximal connected submultigraphs of G are its connected
components.

303

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

304 A

In Part 1 of this text, we use the generic term graph to mean a finite, connected,
undirected multigraph without loop edges.

Example A.7. Here are several infinite families of graphs, indexed by positive
integers n ≥ 1:

(1) The path graph Pn consists of n vertices connected in a line; it has length n−1
(Figure 1).

v1 v2 vn−1 vn

Figure 1. The path graph Pn of length n− 1.

(2) The cycle graph Cn consists of n vertices connected in a circle (Figure 2).
Note that C2 has 2 edges connecting its two vertices.

v1

v2

v3v4

v5

v6

v7 v8

v9

Figure 2. The cycle graph C9 on 9 vertices.

(3) The complete graph Kn consists of n vertices and all possible edges, each with
multiplicity 1 (Figure 3).

v1

v2

v3

v4

v5

v6

v7

Figure 3. The complete graph K7 on 7 vertices.

(4) The banana graph Bn consists of 2 vertices connected by n edges (Figure 4).
Note that B2 = C2.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

A.1. Undirected multigraphs 305

v w

Figure 4. The banana graph B6 with 6 edges.

Definition A.8. A cycle in a multigraph G is a path C = v1, e1, v2, e2, . . . , vn such
v1 = vn, the first n− 1 vertices are distinct, and no edge is repeated. We consider
two cycles to be the same if they differ by a cyclic shift—i.e., cycles do not have
distinguished starting points. Note that a loop is a cycle of length 1. We treat
multiple edges between the same two vertices as distinct, so that the graph C2 is a
cycle. A multigraph with no cycles is called acyclic. The path graph Pn in Figure 1
is acyclic, while the banana graph in Figure 4 has

(
n
2

)
cycles of length 2.

Definition A.9. A forest is an acyclic graph, and a tree is a connected forest.
Note that forests are simple graphs, since if G has two edges e1, e2 of the form vw,
then v, e1, w, e2, v is a cycle in G.

Proposition A.10. G is a tree if and only if there is a unique path in G between
any two vertices.

Proof. The existence of a path between any two vertices is connectivity, and the
uniqueness is acyclicity. �

Proposition A.11. Suppose that T is a finite tree with at least two vertices.
Then T has at least two vertices of degree 1, called leaf vertices.

Proof. By induction on n, the base case n = 2 being the path graph P2. So
suppose that every tree on 2 ≤ k < n vertices has at least 2 leaves, and that T
is a tree on n vertices. Consider any edge e = vw in T , which is the unique path
between v and w in T . Removing e thus yields a disconnected graph T1tT2, where
v ∈ T1, w ∈ T2, and T1 and T2 are trees with fewer than n vertices.

First suppose that T1 and T2 each have at least 2 vertices. Then by the induc-
tion hypothesis, T1 and T2 each have at least 2 leaves, so that the disjoint union
has at least 4 leaves. Hence, at least 2 leaf vertices remain in T after replacing the
edge e = vw.

Now consider the case where T1 is the single vertex v, while T2 has at least 2
vertices. Then v is a leaf of the original tree T . Since T2 has at least 2 leaves by
the induction hypothesis, at least one remains in T after replacing e = vw, and this
leaf is distinct from v. �

Proposition A.12. Suppose that G is a multigraph on n vertices. The following
are equivalent:

(1) G is a tree;

(2) G is minimal connected: G is connected and removing any edge from G yields
a disconnected multigraph;

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

306 A

(3) G is maximal acyclic: G is acyclic and adding any edge between vertices of G
produces a cycle;

(4) G is connected and has n− 1 edges;

(5) G is acyclic and has n− 1 edges.

Proof. (1) =⇒ (2): Consider the removal of an edge e = vw from G. If after
removal there is still a path P from v to w, then P and v, e, w are two different
paths in G from v to w, contradicting uniqueness.

(2) =⇒ (3): If G contained a cycle, then removing any edge contained in
the cycle would not disconnect the graph, so G would not be minimal connected.
Hence G is acyclic. Consider any two vertices v, w of G. Since G is connected,
there exists a path P from v to w in G—choose P to be of minimal length, so that
no vertex or edge is repeated. But then adding a new edge of the form e = wv to G
would yield a cycle P, e, v.

(3) =⇒ (1): Consider the graph H obtained by adding an edge e = vw to G.
By assumption, H has a cycle of the form C = v, e, w, P . Then P must be a path
from w to v in G. Acyclicity implies that P is in fact the unique path from w to v
in G.

(1) =⇒ (4) and (5): We prove that G has n − 1 edges by induction on n, the
base case n = 1 being clear. So suppose that every tree on n− 1 vertices has n− 2
edges, and that G is a tree on n vertices. Choose a leaf vertex v, and let G′ be
the multigraph obtained from G by removing v and the unique edge incident to v.
Then G′ is a tree on n−1 vertices, hence has n−2 edges by the induction hypothesis.
It follows that G has n− 1 edges as required.

(4) =⇒ (5) and (1): Suppose that G is connected with n − 1 edges. To get a
contradiction, suppose that G has a cycle, and choose an edge e contained in the
cycle. Removing e does not disconnect the graph G, so G is not minimal connected.
Let G′ be any minimal connected subgraph of G containing all n vertices. By
(2) =⇒ (1), G′ is a tree with fewer than n− 1 edges, contradicting the implication
(1) =⇒ (4). Thus G, is acyclic, and hence a tree.

(5) =⇒ (4): Finally, suppose that G is acyclic with n − 1 edges. Again we
proceed by contradiction: suppose that G is not connected, and choose two vertices
v, w in different connected components. Then adding the edge e = vw does not pro-
duce a cycle, so G is not maximal acyclic. Let M be a maximal acyclic multigraph
on the same n vertices as G and containing G as a subgraph. By (3) =⇒ (1), M is
a tree with more than n− 1 edges, contradicting the implication (1) =⇒ (5). �

Definition A.13. A spanning forest of a multigraph G is a maximal (with respect
to inclusion of edge sets) acyclic subgraph F that contains all of the vertices of G.
A spanning tree is a connected spanning forest. Note that G has a spanning tree
if and only if G is connected, since by part 2 of Proposition A.12, a spanning tree
is simply a minimal connected subgraph containing all of the vertices of G. Every
multigraph has a spanning forest, obtained by choosing a spanning tree for each
connected component and forming the disjoint union.

Definition A.14. A multigraph G is k-edge connected it has at least 2 vertices
and if every submultigraph obtained from G by removing fewer than k edges is

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

A.2. Directed multigraphs 307

connected. The edge-connectivity of G is the largest k for which G is k-edge con-
nected. Referring to Example A.7, the path graph Pn has edge-connectivity 1,
the cycle graph Cn has edge-connectivity 2, the complete graph Kn has edge-
connectivity n− 1, and the banana graph Bn has edge-connectivity n.

Definition A.15. A multigraph G is k-connected if it has more than k vertices and
every submultigraph obtained from G by removing fewer than k vertices (together
with all incident edges) is connected. The connectivity of G is the largest k for
which G is k-connected. Referring to Example A.7, the path graph Pn has connec-
tivity 1 for n ≥ 2, the cycle graph Cn has connectivity 2 for n ≥ 3, the complete
graph Kn has connectivity n − 1 for n ≥ 1 (since it only has n vertices), and the
banana graph Bn has connectivity 1 for n ≥ 1 (since it only has 2 vertices).

A.2. Directed multigraphs

Definition A.16. A directed multigraph or multidigraph G = (V,E) is a pair
consisting of a set of vertices V and a multiset of directed edges E comprised of
ordered pairs (v, w) of vertices. In this case, we write vw for the directed edge (v, w),
which is distinct from the directed edge (w, v), denoted wv.

Definition A.17. A submultidigraph of a multidigraphG = (V,E) is a pair (V ′, E′)
with V ′ ⊆ V and E′ a submultiset of E such that every vertex appearing in an
edge from E′ is an element of V ′. If W ⊆ V , then the submultidigraph induced
by W is the pair (W,E′) where E′ consists of every edge in E whose endpoints are
both in W .

Definition A.18. We say that an edge e = vw in a multidigraph G emanates
from v. The vertex e− = v is the tail and e+ = w is the head of e. The outde-
gree of a vertex v is the number of edges emanating from v, denoted outdegG(v).
Equivalently, outdegG(v) is the number of edges with tail v. The indegree of v,
denoted indegG(v), is the number of edges with head v. A vertex v is a source if
indegG(v) = 0, and v is a sink if outdegG(v) = 0. If W ⊆ V and v ∈ V , then the
outdegree and indegree with respect to W are, respectively,

outdegW (v) := |{w ∈W : (v, w) ∈ E}|
indegW (v) := |{w ∈W : (w, v) ∈ E}|.

Thus, if v ∈ W , then these are the outdegree and indegree for v as a vertex in the
the subgraph of G induced by W . In particular, indegG(v) = indegV (v). If G is
clear from context, we write outdeg(v) and indeg(v) for outdegG(v) and indegG(v),
respectively.

Definition A.19. Every directed multigraph G has an underlying undirected multi-
graph Gud obtained by replacing each directed edge (v, w) by the undirected edge
{v, w}. It also has an underlying simple undirected graph formed from Gud by
setting the multiplicity of each of the edges of Gud equal to 1.

Definition A.20. IfG = (V,E) is an undirected multigraph, then an orientation O
on G is the choice of a directed edge (v, w) or (w, v) for each copy of the undirected
edge {v, w} appearing in the multiset E. An orientation O on G yields a directed
multigraph (G,O) with underlying undirected multigraph G.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

308 A

Definition A.21. A multidigraph G is connected (sometimes called weakly con-
nected) if its underlying undirected multigraph Gud is connected.

In Part 2 of this text, we use the generic term graph to mean a finite, connected
multidigraph, with loop edges allowed.

Definition A.22. A (directed) path in a multidigraph G is a sequence of directed
edges e1, e2, . . . , en such that e+

i = e−i+1 for 1 ≤ i ≤ n−1; such a path has length n.
A finite multidigraph is strongly connected if for all vertices v, w ∈ V there is a
directed path in G with e−1 = v and e+

n = w.

Definition A.23. A (directed) cycle in a multidigraph G is a directed path e1, e2,
. . . , en such that e+

n = e−1 , no other vertex appears more than once, and no directed
edge is repeated. We consider two cycles to be the same if they differ by a cyclic
shift. A multidigraph with no directed cycles is called acyclic.

Proposition A.24. Suppose that G is a finite acyclic multidigraph. Then G has
at least one sink and at least one source.

Proof. Start at any vertex v and begin walking along directed edges—the walk
will only stop when a sink is encountered. Since G is acyclic, the resulting directed
path will never close up to produce a directed cycle. By finiteness, this means the
walk must end at a sink after finitely many steps. Applying this argument to a
“wrong-way” walk yields the existence of a source. �

Definition A.25. Let G be a multidigraph and s ∈ V a chosen root vertex. A
directed spanning tree of G rooted at s is a subdigraph T with the property that for
every v ∈ V , there exists a unique directed path in T from v to s.

Proposition A.26. Suppose that G is a multidigraph, s ∈ V is fixed, and T is a
subdigraph. Then T is a directed spanning tree of G rooted at s if and only if

(1) T contains all vertices of G;

(2) T is acyclic;

(3) All non-root vertices v 6= s have outdegT (v) = 1, and outdegT (s) = 0.

Proof. Suppose that T is a directed spanning tree rooted at s. Then T clearly
contains all vertices of G. In addition, T must be acyclic, because the existence
of a directed cycle would violate the uniqueness of directed paths to s. Similarly,
two distinct edges emanating from a non-root vertex would also violate uniqueness.
Finally, any edge emanating from the root s would yield a cycle through s.

For the other direction, suppose that T satisfies all three stated conditions.
Let v 6= s be an arbitrary non-root vertex. Since each non-root vertex has outde-
gree 1 and there are no cycles in G, following the directed edges yields a unique
directed path from v to s. �

Proposition A.27. Suppose that T is a directed spanning tree rooted at s in the
multidigraph G. Then T ud is a spanning tree of the underlying undirected multi-
graph Gud. In particular, if G has n vertices, then T has n− 1 edges.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

A.2. Directed multigraphs 309

Proof. The underlying undirected multigraph T ud is connected and contains all
vertices of Gud. We must show that it is also acyclic as an undirected graph.
So suppose that T ud contains a cycle C, and let O denote the orientation on C
determined by the original directed tree T . Then (C,O) is a subdigraph of T ,
hence acyclic. By Proposition A.24, it follows that (C,O) contains a source, i.e.,
a vertex v with outdeg(C,O)(v) = 2. But then outdegT (v) ≥ 2, which contradicts
Proposition A.26. �

Definition A.28. An Eulerian cycle in a multidigraph G is an edge-disjoint union
of cycles that contains all of the edges of G. A multidigraph is Eulerian if it contains
an Eulerian cycle.

Proposition A.29. Suppose that G is a connected multidigraph with at least one
edge. Then G is Eulerian if and only if indegG(v) = outdegG(v) for all vertices v.

Proof. First suppose that C is an Eulerian cycle in G. Each subcycle of C passing
through a vertex v contributes 1 to the indegree of v and 1 to the outdegree. Since
each edge occurs exactly once in C, we see that indegG(v) = outdegG(v).

Now suppose that indegG(v) = outdegG(v) for all vertices v. In particular, G
has no sources or sinks, so that G must contain a directed cycle. Let C be an
edge-disjoint union of cycles with the maximal number of edges. If C does not
contain all edges of G, we will derive a contradiction. Consider the subgraph H
of G formed by the edges of G not contained in C. The subgraph H still has the
property that indegH(v) = outdegH(v) for all vertices v in H. As before, H must
contain a directed cycle. But this cycle can then be combined with C to produce a
larger edge-disjoint union, contradicting the maximality of C. �

Definition A.30. Let G be an undirected multigraph. Then the associated directed
multigraph Gdir is the multidigraph obtained from G by replacing each copy of the
undirected edge {v, w} by the pair of directed edges (v, w) and (w, v). By the
previous proposition, if G is connected then Gdir is Eulerian.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Appendix B

In this appendix, we collect some definitions, terminology, and basic results from
algebra.

B.1. Monoids, groups, rings, and fields

Definition B.1. A monoid is a set S together with an associative binary operation
? : S × S → S possessing an identity element e, meaning that every element s ∈ S
satisfies e ? s = s ? e = s. If the operation is commutative, then S is called a
commutative monoid ; in this case the operation is generally denoted by + and the
identity denoted by 0.

As an example of a commutative monoid, consider the set Nm of m-tuples of nat-
ural numbers with componentwise addition; the identity element is the zero vector
(0, 0, . . . , 0).

Definition B.2. A group is a monoid (G, ?) for which every element g ∈ G has
an inverse, denoted g−1 and satisfying g ? g−1 = g−1 ? g = e. An abelian group
(A,+) is a group in which the operation is commutative; in this case the inverse of
an element a ∈ A is denoted by −a and satisfies a+ (−a) = 0.

As an example of an abelian group, consider Zm with componentwise addition;
this is called the free abelian group of rank m. For another example, consider
Zm := {0, 1, 2, . . . ,m − 1} with the operation of addition modulo m; this is called
the cyclic group of order m.

A subgroup B of an abelian group A is a subset B ⊆ A that is itself a group
under the addition law of A. For any such subgroup B, the quotient group A/B is
defined to be the collection of distinct cosets {a+ B : a ∈ A} under the operation
(a+B) + (a′+B) := (a+ a′) +B; the identity element is the coset 0 +B = B. As
an example of the quotient construction, consider the subgroup mZ ⊂ Z consisting
of multiples of a fixed integer m > 0. Then Z/mZ = Zm, where we identify the
coset k +mZ with the element k ∈ Zm.

If G and H are groups, then a group homomorphism f : G → H is a mapping
that preserves the operations: f(g1 ? g2) = f(g1) ? f(g2) for all g1, g2 ∈ G. The

311

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

312 B

kernel of f is the subgroup of G given by ker(f) := f−1(e) where e is the identity
element of H. Continuing the previous example, the mapping Z → Z/mZ defined
by k 7→ k +mZ is a surjective group homomorphism with kernel mZ.

Definition B.3. Suppose that (G, ?) is a group and S is a set. A group action
of G on S is a mapping G× S → S (denoted by juxtaposition) satisfying

• es = s for all s ∈ S;

• (g ? h)s = g(hs) for all g, h ∈ G and s ∈ S.

Given such a group action, the stabilizer subgroup of s ∈ S is the subgroup of G
defined as Gs := {g ∈ G : gs = s}. The orbit of s ∈ S is the subset of S defined
as OG(s) := {gs : g ∈ G}. In the case where G and S are both finite, the orbit-
stabilizer theorem says that |G| = |Gs||OG(s)|.

Definition B.4. A commutative ring (with unity) is an abelian group (R,+) to-
gether with a second associative and commutative operation R × R → R (called
multiplication and denoted by juxtaposition) satisfying:

• r(s+ t) = rs+ rt for all r, s, t ∈ R (distributive law);

• there exists 1 ∈ R such that 1r = r for all r ∈ R (unity).

As examples, consider the ring of integers Z or the ring of integer-coefficient polyno-
mials Z[x] with the usual addition and multiplication of numbers and polynomials.
Also, the group Zm becomes a ring when multiplication is performed modulo m.

An ideal I of a commutative ring R is a subgroup that is closed under outside
multiplication: for all r ∈ R and i ∈ I we required that ri ∈ I. In this case, the
quotient ring R/I is the group of distinct cosets r+ I for r ∈ R with multiplication
given by (r + I)(r′ + I) := rr′ + I; the unity is give by the coset 1 + I.

If R and S are commutative rings with unity, then a ring homomorphism
f : R → S is a group homomorphism that also preserves unity and multiplica-
tion: f(1) = 1 and f(r1r2) = f(r1)f(r2) for all r1, r2 ∈ R. The kernel of f is
the ideal of R given by ker(f) := f−1(0). The mapping Z → Z/mZ defined by
k 7→ k +mZ is a surjective ring homomorphism with kernel mZ.

Definition B.5. A field is a commutative ring F with unity 1 6= 0 such that every
non-zero element a ∈ F has a multiplicative inverse, denoted a−1 and satisfying
aa−1 = 1.

As an example, consider the field of rational numbers Q, with the usual addition
and multiplication. Also, if p is any prime number, then the ring Zp with addition
and multiplication modulo p is a field.

B.2. Modules

Let R be a commutative ring with unity 1 6= 0. An R-module is an abelian group M
together with a mapping R×M →M called scalar multiplication satisfying, for all
r, s ∈ R and m,n ∈M :

(1) (r + s)m = rm+ sm

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

B.2. Modules 313

(2) r(m+ n) = rm+ rn

(3) (rs)m = r(sm)

(4) 1m = m.

A subgroup N of an R-module M is a submodule if rn ∈ N for all r ∈ R and
n ∈ N . In that case, the quotient module M/N is the group of cosets m + N for
m ∈M , with scalar multiplication given by r(m+N) := rm+N for all r ∈ R and
m ∈M .

A homomorphism of R-modulesM andN is a group homomorphism f : M → N
satisfying f(rm) = rf(m) for all r ∈ R and m ∈ M . The set of all R-module
homomorphisms from M to N is denoted HomR(M,N). It is, itself, naturally an
R-module letting (rf)(m) := r(f(m)) for all r ∈ R and f ∈ HomR(M,N), Two
R-modules M,N are isomorphic if there are R-module homomorphisms f : M → N
and g : N →M that are inverses of each other: g ◦ f = idM and f ◦ g = idN . If M
and N are isomorphic, we write M ' N .

Examples

(1) A Z-module is just an abelian group.

(2) If R is a field, an R-module is exactly a vector space over R.

(3) For any ring R, every ideal of R is an R-submodule.

(4) If f : M → N is a homomorphism of R-modules, then
(a) the kernel of f is the R-submodule of M defined by ker(f) := f−1(0);
(b) the image of f is the R-submodule of N defined by im(f) := f(M);
(c) the cokernel of f is the quotient R-module N/im(f);
(d) the mapping f is injective iff ker(f) = 0 and is surjective iff coker(f) = 0;

it is an isomorphism iff it is injective and surjective.

(5) For every set S and R-module N , let NS be the collection of all set-mappings
S → N . Then NS is an R-module with the usual addition of functions and
scalar multiplication defined by (rf)(s) := r(f(s)) for all r ∈ R, s ∈ S, and
f ∈ NS . If M is another R-module, then NM := HomR(M,N).

B.2.1. Direct products and sums. Suppose Mi is an R-module for each i ∈ I,
where I is some index set. The direct product of the Mi is the cartesian product∏
i∈IMi with R-module structure defined component-wise: (rm+m′)i := rmi+m

′
i

for all r ∈ R and m,m ∈
∏
i∈IMi. The direct sum of the Mi, denoted ⊕i∈IMi,

is the submodule of
∏
i∈IMi consisting of those elements with only finitely many

nonzero components. If I is finite, then ⊕i∈IMi =
∏
i∈IMi. If n is a positive

integer, then Mn :=
∏n
i=1M = ⊕ni=1M .

B.2.2. Free modules. An R-module M has a basis E ⊂M if

(1) E generates M : for each m ∈ M , we have m =
∑k
i=1 riei for some k ∈ N,

ri ∈ R, and ei ∈ E.

(2) E is linearly independent: if
∑k
i=1 riei = 0 for distinct e1, . . . , ek ∈ E, then

ri = 0 for all i.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

314 B

A module with a basis is called a free module.

Bases do not always exist. For example, the Z-module Z2 has no basis since
2a = 0 for all a ∈ Z2 even though 2 6= 0 in Z. On the other hand, if R is a field,
then an R-module is vector space over R and thus has a basis.

It turns out that any two bases of a free module have the same cardinality. This
cardinality is called the rank of the module. The rank of an arbitrary module M ,
denoted rk(M), is the maximal rank of a free submodule of M . Then M is a free
module of rank n ∈ N if and only if M ' Rn.

B.2.3. Finite generation and Noetherian modules. AnR-moduleM is finitely
generated if there exist finitely many generators m1,m2, · · · ,mn ∈ M such that
every element m ∈M may be written as m =

∑n
i=1 rimi for some ri ∈ R.

A commutative ring R is Noetherian if every ideal I ⊆ R is finitely generated
as an R-module. More generally, an R-module M is Noetherian is every submodule
N ⊆M is finitely generated. A fundamental result states that if R is a Noetherian
ring and M is a finitely generated R-module, then M is a Noetherian module—this
may be proved by induction on the number of generators for M .

B.2.4. Principle ideal domains. A principle ideal domain (PID) is a commu-
tative ring R such that every ideal I is generated by a single element I = (a) := Ra
for some a ∈ R. The extended Euclidean algorithm for finding the greatest common
divisor of two integers shows that Z is a PID.

Clearly, if R is a PID, then R is a Noetherian ring. It follows that the finitely
generated free module Rm is a Noetherian R-module. Hence, every submodule
of Rm is finitely generated. This fact plays a key role in the proof of the following
structure theorem for finitely generated modules over a principle ideal domain:

Theorem B.6 (Structure theorem for f.g. modules over a PID). Let R be a PID
and M a finitely generated R-module. Then there exists an integer r ≥ 0 and a
unique chain of k ≥ 0 principle ideals 0 6= (ak) ((ak−1) (· · · ((a1) 6= R such
that

M ' Rr ⊕R/(a1)⊕R/(a2)⊕ · · · ⊕R/(ak).

We provide a complete proof of this structure theorem in the case R = Z (i.e.,
abelian groups) in Section 2.4.

B.2.5. Exact sequences. A sequence of R-module homomorphisms

M ′
f−→M

g−→M ′′

is exact (or exact at M) if im(f) = ker(g). A short exact sequence of R-modules is
a sequence of R-module homomorphisms

0 −→M ′
f−→M

g−→M ′′ → 0

exact at M ′, M , and M ′′.

Exercise B.7. For a short exact sequence of R-modules as above,

(1) f is injective;

(2) g is surjective;

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

B.2. Modules 315

(3) M ′′ is isomorphic to coker(f);

(4) If R is a field, so that M ′, M , and M ′′ are vector spaces, then

dimM = dimM ′ + dimM ′′.

In general, a sequence of R-module mappings

· · · →Mi →Mi+1 → . . .

is exact if it is exact at each Mi (except the first and last, if they exist).

Consider a commutative diagram of R-modules with exact rows

M ′
f
//

φ′

��

M
g
//

φ

��

M ′′ //

φ′′

��

0

0 // N ′
h // N

k // N ′′ .

(By commutative, we mean φ ◦ f = h ◦ φ′ and φ′′ ◦ g = k ◦ φ.)

The snake lemma says there is an exact sequence

kerφ′ → kerφ→ kerφ′′ → cokerφ′ → cokerφ→ cokerφ′′.

If f is injective, then so is kerφ′ → kerφ, and if k is surjective, so is cokerφ →
cokerφ′′.

Exercise B.8. Prove the snake lemma.

Exercise B.9. Show that the following are equivalent for a short exact sequence

0 −→M ′
f−→M

g−→M ′′ → 0

(1) There exists a homomorphism f ′ : M →M ′ such that f ′ ◦ f = idM ′ .

(2) There exists a homomorphism g′ : M ′′ →M such that g ◦ g′ = idM ′′ .

(3) There exists an isomorphism h : M →M ′⊕M such that the following diagram
commutes:

0 // M ′
f

// M
g

//

h
��

M ′′ // 0

M ′ ⊕M ′′
π1

dd

π2

99

where π1 and π2 are the projection mappings onto the first and second compo-
nents, respectively.

Definition B.10. A short exact sequence satisfying any of the conditions in Ex-
ercise B.9 is called split exact.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Glossary of Symbols

Div(G) divisor group 9

deg(D) degree of a divisor 10

Divk(G), Div+(G) degree k divisors, nonnegative divisors 10

D
v−→ D′, D

W−→ D′ vertex and set firings/lendings for divisors 10

D ∼ D′ linear equivalence of divisors 11

[D] divisor class 12

Jac(G), Pic(G) Jacobian and Picard groups 14

|D| complete linear system 15

M(G) group of firing scripts 20

div(σ) divisor of a firing script 20

Prin(G) principal divisors 20

L Laplacian 21, 102

Ṽ non-sink vertices 25, 97

Config(G) group of configurations 25, 97

deg(c) degree of a configuration 25

L̃ reduced Laplacian 26, 101

Picd(G) degree d part of the Picard group 55

Sq Abel-Jacobi map 56

O orientation 62

317

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

318 Glossary of Symbols

indegO, outdegO orientation indegree, outdeg 62

D(O), c(O) divisor, configuration corresponding to an orientation 63

g |E| − |V |+ 1, genus (cycle rank) 65

r(D) rank of divisor D 69

Orev reversed orientation 71

c◦ stabilization of c 93

 sequence of legal vertex firings 93

e−, e+ tail and head of a directed edge 96, 307

outdeg(v), indeg(v) outdegree and indegree of a vertex 96, 307

c
v−→ c′, c

σ−→ c′ vertex and script firings for configurations 98

L, L̃ Laplacian and reduced Laplacian lattices 103

cmax maximal stable configuration 104

a~ b stable addition 105

S(G) sandpile group of G 107

supp(c) support of a configuration 120

ζτ threshold density 144

B(G, s) basic alive divisors 144

βv(c) burst size 146

ζst stationary density 147

φ∗(D) push-forward of D by φ 198

φ∗(D) pull-back of D by φ 201

grd complete linear system for rank r, degree d divisor 208

µ(G) minimal number of generators for S(G) 232

C integral cycle space 246

C∗ integral cut space 247

M(G) cycle matroid of G 258

T (G;x, y) Tutte polynomial of G 259

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Glossary 319

χ̃(∆) reduced Euler characteristic of a simplicial complex 272

Ci(∆) i-chains of ∆ 280

∂i i-th boundary mapping 280

H̃i(∆), β̃i(∆) i-th reduced homology group and Betti number 282

K(∆) critical group of ∆ 287

degG(v) degree of vertex 303

Pn, Cn, Kn, Bn path, cycle, complete, and banana graphs 304

outdegW (v), indegW (v) outdegree and indegree with respect to a subset 307

Zm cyclic group of order m 311

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Bibliography

1. L. Babai and E. Toumpakari, A structure theory of the sandpile monoid for directed
graphs, arXiv:1401.3309, to appear in Journal of Combinatorics.

2. R. Bacher, P. de la Harpe, and T. Nagnibeda, The lattice of integral flows and the
lattice of integral cuts on a finite graph, Bull. Soc. Math. France 125 (1997), no. 2,
167–198.

3. S. Backman, Riemann-Roch theory for graph orientations, Adv. Math. 309 (2017),
655–691.

4. P. Bak, C. Tang, and K. Weisenfeld, Self-organized criticality: an explanation of 1/f
noise, Phys. Rev. Lett. 59 (1987), no. 4, 381–384.

5. M. Baker, Specialization of linear systems from curves to graphs, Algebra Number
Theory 2 (2008), no. 6, 613–653, With an appendix by Brian Conrad.

6. M. Baker and S. Norine, Riemann-Roch and Abel-Jacobi Theory on a Finite Graph,
Adv. Math. 215 (2007), 766–788.

7. , Harmonic morphisms and hyperelliptic graphs, Int. Math. Res. Not. IMRN
(2009), no. 15, 2914–2955.

8. M. Baker and F. Shokrieh, Chip Firing Games, Potential Theory on Graphs, and
Spanning Trees, J. Combinatorial Theory Series A 120 (2013), no. 1, 164–182.

9. M. Baker and Y. Wang, The Bernardi Process and Torsor Structures on Spanning
Trees, International Mathematics Research Notices (2017).

10. M. Beck and S. Robins, Computing the Continuous Discretely, 2 ed., Undergraduate
Texts in Mathematics, Springer-Verlag, New York, 2015, Integer-Point Enumeration
in Polyhedra.

11. B. Benson, D. Chakrabarty, and P. Tetali, G-parking functions, acyclic orientations
and spanning trees, Discrete Math. 310 (2010), no. 8, 1340–1353.

12. S. Bhupatiraju, J. Hanson, and A. A. Járai, Inequalities for critical exponents in d-
dimensional sandpiles, arXiv:1602.06475, 2016.

13. N. Biggs, Algebraic potential theory on graphs, Bull. London Math. Soc. 29 (1997),
no. 6, 641–682.

14. , Chip-firing and the critical group of a graph, J. Algebraic Combin. 9 (1999),
no. 1, 25–45.

321

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

http://arxiv.org/abs/1401.3309
https://arxiv.org/abs/1602.06475

322 Bibliography

15. , The Tutte polynomial as a growth function, J. Algebraic Combin. 10 (1999),
no. 2, 115–133. MR 1719148

16. A. Björner, The homology and shellability of matroids and geometric lattices, Matroid
applications, Encyclopedia Math. Appl., vol. 40, Cambridge Univ. Press, Cambridge,
1992, pp. 226–283. MR 1165544 (94a:52030)

17. A. Björner and L. Lovász, Chip-firing games on directed graphs, J. Algebraic Combin.
1 (1992), no. 4, 305–328.

18. A. Björner, L. Lovász, and P. W. Shor, Chip-firing games on graphs, European J.
Combin. 12 (1991), no. 4, 283–291. MR 1120415

19. M. Boij, J. C. Migliore, R. M. Miró-Roig, U. Nagel, and F. Zanello, On the shape of
a pure O-sequence, Mem. Amer. Math. Soc. 218 (2012), no. 1024, viii+78.

20. B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, vol. 184,
Springer, 1998.

21. B. Bond and L. Levine, Abelian networks I. Foundations and examples, SIAM J.
Discrete Math. 30 (2016), no. 2, 856–874.

22. M. Brandt, An alternative proof of a theorem by Gessel, https://math.berkeley.

edu/~brandtm/research/divisors.pdf, 2015.

23. M. Chan, T. Church, and J. A. Grochow, Rotor-routing and spanning trees on planar
graphs, Int. Math. Res. Not. IMRN (2015), no. 11, 3225–3244.

24. M. Chan, D. Glass, M. Macauley, D. Perkinson, C. Werner, and Q. Yang, Sandpiles,
spanning trees, and plane duality, SIAM J. Discrete Math. 29 (2015), no. 1, 461–471.

25. S. H. Chan, Abelian sandpile model and Biggs-Merino for directed graphs,
arXiv:1412.4837, 2015.

26. R. Cori and Y. Le Borgne, The sand-pile model and Tutte polynomials, Adv. in Appl.
Math. 30 (2003), no. 1-2, 44–52, Formal power series and algebraic combinatorics
(Scottsdale, AZ, 2001).

27. , On computation of Baker and Norine’s rank on complete graphs, Electron. J.
Combin. 23 (2016), no. 1, Paper 1.31, 47.

28. R. Cori and D. Rossin, On the sandpile group of dual graphs, European J. Combin.
21 (2000), no. 4, 447–459.

29. Robert Cori, Dominique Rossin, and Bruno Salvy, Polynomial ideals for sandpiles and
their Gröbner bases, Theoret. Comput. Sci. 276 (2002), no. 1-2, 1–15.

30. S. Corry, Genus bounds for harmonic group actions on finite graphs, Int. Math. Res.
Notices 2011 (2011), no. 19, 4515–4533.

31. , Harmonic Galois theory for finite graphs, Galois-Teichmueller Theory and
Arithmetic Geometry (H. Nakamura, F. Pop, L. Schneps, and A. Tamagawa, eds.),
vol. 63, Advanced Studies in Pure Mathematics, no. 19, Math. Soc. of Japan, 2012,
pp. 121–140.

32. , Maximal harmonic group actions on finite graphs, Discrete Mathematics 338
(2015), no. 5, 784–792.

33. The Sage Developers, Sagemath, the Sage Mathematics Software System, 2018, http:
//www.sagemath.org.

34. D. Dhar, Self-organized critical state of sandpile automaton models, Phys. Rev. Lett.
64 (1990), no. 14, 1613–1616. MR 1044086

35. , The abelian sandpile and related models, Physica A 263 (1999), no. 4, 4–25.

36. , Studying self-organized criticality with exactly solved models, arXiv:cond-
mat/9909009, 1999.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

https://math.berkeley.edu/~brandtm/research/divisors.pdf
https://math.berkeley.edu/~brandtm/research/divisors.pdf
http://arxiv.org/abs/1412.4837
http://www.sagemath.org
http://www.sagemath.org
https://arxiv.org/abs/cond-mat/9909009
https://arxiv.org/abs/cond-mat/9909009

Bibliography 323

37. , Theoretical studies of self-organized criticality, Phys. A 369 (2006), no. 1,
29–70.

38. D. Dhar and S. N. Majumdar, Equivalence between the abelian sandpile model and the
q → 0 limit of the potts model, Physica A 185 (1992), 129–145.

39. R. Diestel, Graph Theory, fourth ed., Graduate Texts in Mathematics, vol. 173,
Springer, Heidelberg, 2010. MR 2744811 (2011m:05002)

40. A. M. Duval, C. J. Klivans, and J. L. Martin, Simplicial matrix-tree theorems, Trans.
Amer. Math. Soc. 361 (2009), no. 11, 6073–6114.

41. , Critical groups of simplicial complexes, Ann. Comb. 17 (2013), no. 1, 53–70.

42. , Simplicial and cellular trees, vol. Recent Trends in Combinatorics, IMA Vol-
umes in Mathematics and its Applications, no. 159, pp. 713–752, Springer, 2016.

43. J. Ellenberg, What is the sandpile torsor?, https://mathoverflow.net/questions/83552,
2011.

44. C. Fish, A. Grant, et al., Web sandpiles, http://www.reed.edu/~davidp/web_

sandpiles, 2017.

45. P. Flajolet, P. J. Grabner, P. Kirschenhofer, and H. Prodinger, On Ramanujan’s Q-
function, J. Comput. Appl. Math. 58 (1995), no. 1, 103–116.

46. A. Gabrielov, Asymmetric abelian avalanches and sandpile, preprint 93-65, MSI, Cor-
nell University, 1993.

47. I. M. Gessel, Enumerative applications of a decomposition for graphs and digraphs,
Discrete Mathematics 139 (1995), no. 1-3, 257–271.

48. E. Goles and M. Margenstern, Universality of the chip-firing game, Theoret. Comput.
Sci. 172 (1997), no. 1-2, 121–134.

49. E. Goles and E. Prisner, Source reversal and chip firing on graphs, Theoret. Comput.
Sci. 233 (2000), no. 1-2, 287–295.

50. C. Greene and T. Zaslavsky, On the interpretation of Whitney numbers through
arrangements of hyperplanes, zonotopes, non-Radon partitions, and orientations of
graphs, Trans. Amer. Math. Soc. 280 (1983), no. 1, 97–126.

51. B. Gutenberg and C. F. Richter, Frequency of earthquakes in California, Bull. Seismol.
Soc. Amer. 34 (1944), 185–188.

52. J. Guzmàn and C. Klivans, Chip-firing and energy minimization on m-matrices,
arXiv:1403.1635, 2014.

53. , Chip-firing on general invertible matrices, arXiv:1508.04262, 2015.

54. Kestent H., Renewal theory for functionals of a Markov chain with general state space,
Ann. Probability 2 (1974), 355–386.

55. B. Head, Sandpile App, http://www.reed.edu/~davidp/sand/program/program.

html, 2009.

56. A. E. Holroyd, L. Levine, K. Mészáros, Y. Peres, J. Propp, and D. B. Wilson, Chip-
firing and rotor-routing on directed graphs, In and Out of Equilibrium II (V. Sido-
ravicius and M. E. Vares, eds.), Progress in Probability, vol. 60, Birkhauser, 2008,
pp. 331–364.

57. S. Hopkins and D. Perkinson, Bigraphical arrangements, Trans. Amer. Math. Soc. 368
(2016), no. 1, 709–725.

58. T. Hoppenfeld, The Structure of the Jacobian Group of a Graph, http://www.reed.
edu/~davidp/homepage/students/hoppenfeld.pdf, 2014.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

https://mathoverflow.net/questions/83552
http://www.reed.edu/~davidp/web_sandpiles
http://www.reed.edu/~davidp/web_sandpiles
http://arxiv.org/abs/1403.1635
http://arxiv.org/abs/1508.04262
http://www.reed.edu/~davidp/sand/program/program.html
http://www.reed.edu/~davidp/sand/program/program.html
http://www.reed.edu/~davidp/homepage/students/hoppenfeld.pdf
http://www.reed.edu/~davidp/homepage/students/hoppenfeld.pdf

324 Bibliography

59. S. Janson, D. E. Knuth, T. L uczak, and B. Pittel, The birth of the giant component,
Random Structures Algorithms 4 (1993), no. 3, 231–358, With an introduction by the
editors.

60. G. Kalai, Enumeration of Q-acyclic simplicial complexes., Israel J. Math. 45 (1983),
no. 4, 337–351.

61. N. Kalinin and M. Shkolnikov, Tropical curves in sandpiles, C. R. Math. Acad. Sci.
Paris 354 (2016), no. 2, 125–130.

62. V. Kiss and L. Tóthmérész, Chip-firing games on Eulerian digraphs and NP-hardness
of computing the rank of a divisor on a graph, arXiv:1407.6958, 2014.

63. D. E. Knuth, The art of computer programming. Vol. 1, Addison-Wesley, Reading,
MA, 1997, Fundamental algorithms, Third edition [of MR0286317].

64. G. Kreweras, Une famille de polynômes ayant plusieurs propriétés énumeratives, Pe-
riod. Math. Hungar. 11 (1980), no. 4, 309–320.

65. D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing times, American
Mathematical Society, Providence, RI, 2009, With a chapter by James G. Propp and
David B. Wilson.

66. L. Levine, Threshold state and a conjecture of Poghosyan, Poghosyan, Priezzhev and
Ruelle, Comm. Math. Phys. 335 (2015), no. 2, 1003–1017.

67. L. Levine, W. Pegden, and C. K. Smart, Apollonian structure in the Abelian sandpile,
Geom. Funct. Anal. 26 (2016), no. 1, 306–336.

68. , The Apollonian structure of integer superharmonic matrices, Ann. of Math.
(2) 186 (2017), no. 1, 1–67.

69. D. J. Lorenzini, Arithmetical graphs., Math. Ann. 285 (1989), no. 3, 481–501.

70. , A finite group attached to the Laplacian of a graph, Discrete Math. 91 (1991),
no. 3, 277–282.

71. , Arithmetical properties of Laplacians of graphs, Linear and Multilinear Alge-
bra 47 (2000), no. 4, 281–306.

72. , Smith normal form and Laplacians, J. Combin. Theory Ser. B 98 (2008),
no. 6, 1271–1300.

73. C. Merino López, Chip firing and the Tutte polynomial, Ann. Comb. 1 (1997), no. 3,
253–259. MR 1630779 (99k:90232)

74. James Oxley, Matroid Theory, Oxford Graduate Texts in Mathematics, no. 3, Oxford
UP, 2006.

75. I. Pak, Computation of Tutte polynomials of complete graphs, http://www.math.ucla.
edu/~pak/papers/Pak_Computation_Tutte_polynomial_complete_graphs.pdf,
1993.

76. W. Pegden and C. K. Smart, Convergence of the Abelian sandpile, Duke Math. J. 162
(2013), no. 4, 627–642.

77. D. Perkinson, Sage thematic tutorial: The abelian sandpile model, 2018, http://doc.
sagemath.org/html/en/thematic_tutorials/sandpile.html.

78. D. Perkinson, Q. Yang, and K. Yu, G-parking functions and tree inversions, Combi-
natorica 37 (2017), no. 2, 269–282.

79. K. Perrot and T. V. Pham, Chip-firing game and a partial Tutte polynomial for Euler-
ian digraphs, Electron. J. Combin. 23 (2016), no. 1, Paper 1.57, 34.

80. R. J. Plemmons, M-matrix characterizations. I. Nonsingular M-matrices, Linear Al-
gebra and Appl. 18 (1977), no. 2, 175–188.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

http://arxiv.org/abs/1407.6958
http://www.math.ucla.edu/~pak/papers/Pak_Computation_Tutte_polynomial_complete_graphs.pdf
http://www.math.ucla.edu/~pak/papers/Pak_Computation_Tutte_polynomial_complete_graphs.pdf
http://doc.sagemath.org/html/en/thematic_tutorials/sandpile.html
http://doc.sagemath.org/html/en/thematic_tutorials/sandpile.html

Bibliography 325

81. V. Reiner, Lectures on matroids and oriented matroids, http://www-users.math.umn.
edu/~reiner/Talks/Vienna05/index.html, 2005.

82. S. Ross, A first course in probability, second ed., Macmillan Co., New York; Collier
Macmillan Ltd., London, 1984.

83. J. P. Sethna, Statistical Mechanics: Entropy, Order Parameters and Complexity, Ox-
ford Master Series in Physics, Oxford UP, 2006.

84. E. R. Speer, Asymmetric abelian sandpile models, J. Statist. Phys. 71 (1993), no. 1-2,
61–74.

85. R. P. Stanley, Cohen-Macaulay complexes, Higher combinatorics (Proc. NATO Ad-
vanced Study Inst., Berlin, 1976), Reidel, Dordrecht, 1977, pp. 51–62. NATO Adv.
Study Inst. Ser., Ser. C: Math. and Phys. Sci., 31.

86. , Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Math-
ematics, vol. 62, Cambridge University Press, Cambridge, 1999, With a foreword by
Gian-Carlo Rota and appendix 1 by Sergey Fomin.

87. , Algebraic combinatorics, Undergraduate Texts in Mathematics, Springer,
New York, 2013, Walks, trees, tableaux, and more.

88. H. N. V. Temperley, On the mutual cancellation of cluster integrals in Mayer’s fugacity
series, Proc. Phys. Soc. 83 (1964), 3–16.

89. W. T. Tutte, The dissection of equilateral triangles into equilateral triangles, Proc.
Cambridge Philos. Soc. 44 (1948), 463–482.

90. D. Wagner, The critical group of a directed graph, arXiv:math/0010241, 2000.

91. M. E. Walter, Earthquakes and weatherquakes: mathematics and climate change, No-
tices of the AMS 57 (2010), no. 10, 1278–1284.

92. N. W. Watkins, G. Pruessner, S. C. Chapman, N. B. Crosby, and H. J. Jensen, 25
years of self-organized criticality: concepts and controversies, Space Sci. Rev. 198
(2016), 3–44.

93. H. S. Wilf, generatingfunctionology, third ed., A K Peters, Ltd., Wellesley, MA, 2006.

94. C. H. Yuen, Geometric bijections between spanning trees and break divisors, J. Combin.
Theory Ser. A 152 (2017), 159–189.

95. D. Zeilberger, A combinatorial approach to matrix algebra, Discrete Math. 56 (1985),
no. 1, 61–72.

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

http://www-users.math.umn.edu/~reiner/Talks/Vienna05/index.html
http://www-users.math.umn.edu/~reiner/Talks/Vienna05/index.html
https://arxiv.org/abs/math/0010241

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Index

2-isomorphism, 262
Whitney’s theorem, 263

Abel-Jacobi map, 54–58
definition, 56
injectivity and edge-connectivity, 57
is universal for harmonic functions, 57
surjectivity and genus, 66

abelian property
for dollar game, 10
for sandpiles, 98–99

abelian sandpile, see Markov chain,
abelian sandpile model

accessible vertex, 97

banana graph, 304
basic alive divisor, 144
burning sandpile, 120–123

and test for recurrent sandpiles, 120
definition, 120
existence and uniqueness, 121

burning script, 120
algorithm, 123
for undirected graphs, 123

burst size, 146
upper bound for, 160

canonical divisor, 71
Cayley’s formula, 172, 191, 218

higher-dimensional, 292
Chinese remainder theorem, 32
Clifford’s theorem, 73
complete graph, 304

and parking functions, 217

Cori-Le Borne algorithm for
computing rank of a divisor on, 218

divisors on, 215–226

Jacobian/sandpile group for, 40

size of sandpile group of, 218

stationary density of, 275

Tutte polynomial for, 266

complete linear system

and convex polytopes, 28–31

and edge-connectivity, 49

definition, 15

harmonic morphisms and trees, 208

of divisors on Cn, 41

configuration, 24–28, 97

definition, 25, 97

degree of, 25, 97

relation to Jacobian group, 26

script-firing, 25

stabilization of, 98, 114

existence, 101

uniqueness, 100

superstabilization of, 50

superstable, 50–54

and acyclic orientations, 64

definition, 50

maximal, 61, 65

relation to q-reduced divisors, 50

vertex and set-firing, 25

legal, 50

Cori-Le Borgne algorithm

for computing ranks of divisors
on Kn, 218

cuts, see cycles and cuts

327

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

328 Index

cycle graph, Cn, 304
cycle rank, cyclomatic number, 65
cycles and cuts, 245–254

bond, 247
cut, directed, 246
cycle and cut spaces, 246, 247

bases and dimensions, 248
duality for plane graphs, 251
orthogonality, 248

relation to sandpile group, 249
vertex cut, 247

degree
of configuration, 25, 97
of divisor, 10
of harmonic morphism, 200
of sandpile, 97

deletion-contraction
and the Tutte polynomial, 259
for matroids, 259
proof of matrix-tree theorem, 170
universal property, 261

determinantal divisor, 35
Dhar’s algorithm, 50–54

and acyclic orientations, 63–67
and tree bijections, 175–190
efficient implementation of, 54
for recurrents, 120, 127
pseudocode for superstables, 51

divisor, 9
alive, 82–84, 141–142
avalanche, 141
basic alive divisor, 144
basic decomposition, 145
canonical, 71
class of, 12
complete linear system of, 15
corresponding to an orientation, 63
degree of, 10
effective, 12

and edge-connectivity, 49
legal firing/toppling of vertex, 141
lending or borrowing move from, 10
linear equivalence of, 11
maximal stable, 83
principal, 20
q-reduced, 46–49

algorithm for, 46, 54
and edge-connectivity, 49
existence and uniqueness of, 48
relation to dollar game, 48
relation to superstables, 50

rank, 69–71
and degree, 70, 71, 73
and edge-connectivity, 70, 208
definition, 69
for divisors on complete graphs,

218
formula for, 86
lower bound for, 70
NP-hard to compute, 70

script-firing, 20
stability, 83
stable/stabilizable, 141
vertex and set-firing, 10

legal, 47
Weierstrass points of, 87
winnable, unwinnable, 13

maximal unwinnable, 61, 65
dollar game

decided by q-reducing, 48
first example, 7–9
greedy algorithm for, 43–45
higher-dimensional, 295
household-solutions for, 206
restatement of, 13, 15, 22, 54–56

duality between recurrents and
superstables, 124, 240

Dyck path, 220

effective divisor, see divisor, effective
elementary divisors, 32
Eulerian digraph, 309

equivalent condition for, 309
exact sequence, 314

short, 314
split exact, 315

externally active edge, 180, 266

field, 312
finitely generated abelian group, 32–33

definition, 32
elementary divisors, invariant factors,

primary factors of, 32
rank of, 33
structure theorem for, 32
torsion element of, 33

firing script, 20, 98
divisor of, 20
uniqueness, 103

forbidden subconfiguration, 125–127
forest, 305

spanning, 306

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Index 329

genus, 65
globally accessible vertex, 97
graph morphism, 195, 196

push-forward mapping for divisors,
196

graph, directed, 307–309
connected

strongly, 308
weakly, 308

cycle in, 308
directed spanning tree for, 308
Eulerian cycle of, 309
path in, 308
subdigraph, 307

induced, 307
underlying simple undirected graph,

307
underlying undirected graph, 307
see also graph, undirected, see also

tree
graph, undirected, 303–307

acyclic, 305, 308
associated digraph, 309
connected, 303
connected components, 303
cycle in, 305
cycle matroid for, 258
degree of vertex, 303
edge-connectivity, 306
hyperelliptic, 212
loop, 303
morphism, 195
path in, 303
plane duality, 250
quotient, 212
simple, 303
spanning forest of, 306
spanning tree of, 306
subgraph, 303

induced, 303
see also graph, directed, see also tree

greedy algorithm
and injectivity of pull-back, 202
and matroids, 276
and the dollar game, 43
and uniqueness of stabilization, 84,

114
better than benevolence, 59
for burning script, 122
uniqueness of script for, 45

group, 311

action, 312
homomorphism, 311

h-vector conjecture, 269–273
proof for cographic matroids, 273

harmonic function, 24, 56
universal property, 57

harmonic morphism, 195–211
and hyperelliptic graphs, 212
and quotient graphs, 212
compositions of, 212
definition, 196
degenerate, 200
degree, 200
horizontal multiplicity of, 196
pull-back mapping for divisors, 201

injectivity of, 202
preserves linear equivalence, 201

push-forward mapping for divisors,
198
comparing ranks, 207
preserves linear equivalence, 196
surjectivity of, 200

surjectivity of, 200
trees and complete linear systems,

208
vertical multiplicity of, 201

indegree, 96
of a vertex, 307
with respect to subset, 307

internally active edge, 266
invariant factors

of a f.g abelian group, 32
of a matrix, 35

Jacobian group, 14–15
definition, 14
of complete graph, 40
of cycle graph, 40
of one-point join, 40
relation to sandpile group, 230
size of, 38
structure of, 31

Kreweras’ formula, 184
Kruskal’s algorithm, 276

Laplacian, 19–39
and vertex firing, 103
definition, 19, 102
higher-dimensional, 287
kernel of, 23, 174

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

330 Index

Laplacian matrix, 21
lattice, 103
reduced Laplacian, 26–28, 101–103

cokernel is isomorphic to sandpile
group, 105

definition, 26, 101
higher-dimensional, 291
kernel of, 27
relation to the Jacobian group, 26,

38
relation to continuous Laplacian, 23
relation to the Picard group, 22

least action principle, 99–100
for configurations, 99
for divisors, 142
for M -matrices, 239

legal firing sequence, 98
lending and borrowing moves, 10, 25
linear equivalence of divisors, 11–14

definition, 11
local confluence property, 99

M -matrix, 238
equivalent conditions for, 239
recurrents and superstables for, 239

duality, 240
existence and uniqueness, 240

Markov chain, 131–159
abelian sandpile model, 133

recurrent states are recurrent
sandpiles, 136

stationary density of, 147
stationary distribution is uniform,

140
toppling probabilities encoded in

the Laplacian, 140
accessible state, 134
aperiodic, 139
associated directed graph, 132
definition, 132
essential/inessential state, 135
fixed-energy sandpile, 141–151

comparison with abelian sandpile,
144

definition, 142
epicenter, 144
threshold, 143
threshold density, 144
threshold state, 144

irreducible, 134
random walk on a group, 137
recurrent state, 135

renewal theorem, 155
stationary distribution, 136

existence and uniqueness, 139
transient state, 135
transition matrix for, 132

matrix-tree theorem, 166
edge-weighted version, 172
higher-dimensional, 291
proof by deletion-contraction, 170
proof by sign-reversing transposition,

166
matroid, 257–273

graphic/cycle matroid, 258
and greedy algorithms, 276
basis for, 258
bridge, 259
cographic, 273
definition, 257
deletion-contraction, 259
determines sandpile group, 262
dual, 258
independent sets of, 258
linear, 258
loop, 259
rank of, 258
uniform, 258
universal property, 261

matroid complex, 273
Merino’s theorem, 263–266

and Gessel’s formula, 268
for complete graphs, 266
implies h-vector conjecture for

cographic matroids, 273
module, 312

direct products and sums, 313
homomorphism, 313
quotient by submodule, 313
snake lemma, 315

modules
exact sequences of, 314
finitely generated, 314
free, 313
Noetherian, 314

monoid, 311
multicomplex, 270

O-sequence, 271
odometer function, 146
orientation, 62, 307

acyclic, 62
and maximal superstables, 64

corresponding configuration, 63

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Index 331

corresponding divisor, 63
indegree sequence for, 62
reversed, 71
sink or source vertex for, 62

outdegree, 96, 307
with respect to subset, 307

parking functions, 215–218
and superstables on Kn, 217
characterization of, 216
count, 217, 227
definition, 215

path graph, Pn, 304
Picard group, 14–15

definition, 14
structure of, 31

plane duality, 250–254
and the sandpile group, 252

poset (partially ordered set), 270
order ideal in, 270

q-reduced, see divisor, q-reduced
quotient graph, 212

Ramanujan Q-function, 275
rank, see divisor, rank
reduced Laplacian, see Laplacian,

reduced Laplacian
Riemann surfaces, 74–82

branched coverings of, 204–206
divisors and mappings to projective

space, 81
Riemann-Hurwitz formula, 205
Riemann-Roch theorem, 75

Riemann-Hurwitz formula
and quotient graphs, 212
for graphs, 203
for Riemann surfaces, 205

Riemann-Roch theorem for graphs,
69–85

statement and proof, 71–72
ring, 312

ideal in, 312
quotient by ideal, 312

rotor-router model, 186–188
and a free transitive action of S(G)

on spanning trees, 188

sandpile
and tropical curves, 109
building a Turing machine, 115
burst size for recurrent, 146
definition, 97

degree of, 97
duality between recurrents and

superstables, 124
images of, 108–109
maximal stable, 104
monoid, 105, 115
recurrent, 103–108

accessible from maximal stable
sandpile, 104

definition, 104
test for, 120, 126, 127

scaling limit, 109
stabilization of, 98, 114

existence, 101
uniqueness, 100

stable addition, 105
superstable

definition, 124
sandpile graph, 97
sandpile group

and plane duality, 252
as a principal ideal, 115
bijections with spanning trees,

174–190
calculating the identity, 107
cyclic, 236
definition, 107
dependence on sink, 229–232
effect of removing a bridge or loop,

129
effect of removing an edge, 235
introduction to, 91–95
isomorphic to Jacobian iff graph is

Eulerian, 232

isomorphic to cok(L̃), 105
minimal number of generators for,

232–238
number of superstables of each

degree, 148, 265
of complete graph, 40
of cycle graph, 40
of one-point join, 40
orders of elements, 114
relation to cycles and cuts, 249, 255
relation to Jacobian group, 230
size equals number of rooted

spanning trees, 172

size is det(L̃), 107
script-firing

for configurations, 98, 123
for divisors, 20

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

332 Index

legal, 124
self-organized criticality (SOC),

240–242
selfish vertex, 120
set-firing

for configurations, 123
for divisors, 10, 47
legal, 47, 50, 124

simplicial complex, 271
f -vector, 272
h-vector, 272
k-skeleton of, 287
acyclic in positive codimension

(APC), 291
Betti numbers of, 282
boundary mapping, 245, 280
chain complex of, 280
chains, group of, 280
critical groups of, 287–295

definition, 287
relation to reduced Laplacian, 291
structure as an abelian group, 288

cycles and boundaries of, 282
dimension, 272
Euler characteristic, 272, 299
examples
n-simplex, 297
equatorial bipyramid, 289
Klein bottle, 298
real projective plane, 286
sphere, 297
torus, 298

face, 271
facet, 272
firing faces of, 292–295
flow game for, 295
homology groups of, 282

how to compute, 285–286
Laplacians for, 287
matrix-tree theorem for, 291
matroid complex, 273
pure, 272
spanning trees of, 288–292

and acyclicity, 290, 291
sink, 97

in digraph, 307
Smith normal form, 33–36

definition, 35
existence and uniqueness of, 35

snake lemma, 315
source in digraph, 307

spanning tree
and depth-first search, 182
and eigenvalues of the Laplacian, 173
and kernel of the Laplacian, 174
another counting formula for, 173
bijections with S(G), 174–190
count for complete bipartite graph,

192
Dhar’s tree bijection algorithm, 175

and external activity, 179–182
and tree inversions, 182–186

directed, rooted, 166
inversion number for, 184
κ-inversion number, 185
matrix-tree theorem, 166
of a simplicial complex, 288
random sampling, 188–190
see also tree

stable addition, 105
stable/unstable vertex, 98
stationary density, 147

and unicycles, 274
of a tree, 160
of banana graph, 149, 161
of complete graph, 275
of cycle graph, 149

superstable configuration, see
configuration, superstable

threshold density, 144
of a tree, 160
of banana graph, 149, 161
of cycle graph, 149

threshold density theorem, 151–159
statement and proof, 152

torsor, 55, 188
tree, 305

equivalent conditions for, 305
internal and external activity, 266
of a simplicial complex, 292
rooted spanning, 308
spanning, 306
stationary and threshold density, 160
see also spanning tree

tree ordering, 47
tropical curves, 109
Turing machine, 115
Tutte polynomial, 257–273

and internal/external activity, 267
definition, 259
determined by deletion-contraction,

259

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

Index 333

for the complete graph, 268
special values of, 261

unicycle, 274

vertex firing, 10, 98
legal, 98
reverse-firing, 98

Weierstrass points, 87
Whitney twist, 262

and 2-isomorphisms, 263
winnable, unwinnable divisor, 13

see also dollar game

Zelda, 7

Author's preliminary version was made available with permission of the publisher, the American Mathematical Society

	mbk114-t
	mbk114
	Preface
	Part 1. Divisors
	Chapter 1. The dollar game
	1.1. An initial game
	1.2. Formal definitions
	1.3. The Picard and Jacobian groups
	Notes
	Problems for Chapter 1

	Chapter 2. The Laplacian
	2.1. The discrete Laplacian
	2.2. Configurations and the reduced Laplacian
	2.3. Complete linear systems and convex polytopes
	2.4. Structure of the Picard group
	Notes
	Problems for Chapter 2

	Chapter 3. Algorithms for winning
	3.1. Greed
	3.2. q-reduced divisors
	3.3. Superstable configurations
	3.4. Dhar's algorithm and efficient implementation
	3.5. The Abel-Jacobi map
	Notes
	Problems for Chapter 3

	Chapter 4. Acyclic orientations
	4.1. Orientations and maximal unwinnables
	4.2. Dhar's algorithm revisited
	Notes
	Problems for Chapter 4

	Chapter 5. Riemann-Roch
	5.1. The rank function
	5.2. Riemann-Roch for graphs
	5.3. The analogy with Riemann surfaces
	5.4. Alive divisors and stability
	Notes
	Problems for Chapter 5

	Part 2. Sandpiles
	Chapter 6. The sandpile group
	6.1. A first example
	6.2. Directed graphs
	6.3. Sandpile graphs
	6.4. The reduced Laplacian
	6.5. Recurrent sandpiles
	6.6. Images of sandpiles on grid graphs
	Notes
	Problems for Chapter 6

	Chapter 7. Burning and duality
	7.1. Burning sandpiles
	7.2. Existence and uniqueness
	7.3. Superstables and recurrents
	7.4. Forbidden subconfigurations
	7.5. Dhar's burning algorithm for recurrents.
	Notes
	Problems for Chapter 7

	Chapter 8. Threshold density
	8.1. Markov Chains
	8.2. The fixed-energy sandpile
	8.3. The threshold density theorem
	Notes
	Problems for Chapter 8

	Part 3. Topics
	Chapter 9. Trees
	9.1. The matrix-tree theorem
	9.2. Consequences of the matrix-tree theorem
	9.3. Tree bijections
	Notes
	Problems for Chapter 9

	Chapter 10. Harmonic morphisms
	10.1. Morphisms between graphs
	10.2. Branched coverings of Riemann surfaces
	10.3. Household-solutions to the dollar game
	Notes
	Problems for Chapter 10

	Chapter 11. Divisors on complete graphs
	11.1. Parking functions
	11.2. Computing ranks on complete graphs
	Problems for Chapter 11

	Chapter 12. More about sandpiles
	12.1. Changing the sink
	12.2. Minimal number of generators for S(G)
	12.3. M-matrices
	12.4. Self-organized criticality
	Problems for Chapter 12

	Chapter 13. Cycles and cuts
	13.1. Cycles, cuts, and the sandpile group
	13.2. Planar duality
	Problems for Chapter 13

	Chapter 14. Matroids and the Tutte polynomial
	14.1. Matroids
	14.2. The Tutte polynomial
	14.3. 2-isomorphisms
	14.4. Merino's Theorem
	14.5. The Tutte polynomials of complete graphs
	14.6. The h-vector conjecture
	Notes
	Problems for Chapter 14

	Chapter 15. Higher dimensions
	15.1. Simplicial homology
	15.2. Higher-dimensional critical groups
	15.3. Simplicial spanning trees
	15.4. Firing rules for faces
	Notes
	Problems for Chapter 15

	Appendix
	Appendix A.
	A.1. Undirected multigraphs
	A.2. Directed multigraphs

	Appendix B.
	B.1. Monoids, groups, rings, and fields
	B.2. Modules

	Glossary of Symbols
	Bibliography

