

February 27, 2023

Deciding whether a Turing machine language is regular

Let $\operatorname{REGULAR}_{TM} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ is regular} \}.$

Theorem 5.3. REGULAR $_{TM}$ is undecidable.

Proof. Suppose *R* decides $\operatorname{REGULAR}_{TM}$. We will use it to construct a TM *S* that decides the undecidable language A_{TM} :

S = "On input $\langle M, w \rangle$, where M is a TM and w is a string:

1. Construct the following TM N.

2. N = "On input *x*:

- 1. If x has the form $0^n 1^n$ for some $n \ge 0$, then **accept**.
- 2. If x does not have this form, run M on input w and accept if M accepts w."
- 3. Run *R* on input $\langle N \rangle$.

4. If *R* accepts, then **accept**; if *R* rejects, then **reject**."

 $\begin{array}{l} R \text{ accepts } \Leftrightarrow L(N) = \Sigma^* \Leftrightarrow w \text{ accepted by } M; \\ R \text{ rejects } \Leftrightarrow L(N) = \{0^n 1^n : n \geq 0\} \Leftrightarrow w \text{ not accepted by } M. \end{array}$

Deciding whether Turing machine's language reversible

Let $T = \{ \langle M \rangle : M \text{ is a TM and } L(M) = L(M)^R \}.$ Then T is undecidable.

Proof. Suppose *R* decides *T*. We will use it to construct a TM *S* that decides the undecidable language A_{TM} :

S = "On input $\langle M, w \rangle$, where M is a TM and w is a string:

1. Construct the following TM N.

2. N = "On input x:

1. If x = 01, then **accept**.

2. If $x \neq 01$ run *M* on input *w* and accept if *M* accepts *w*."

3. Run *R* on input $\langle N \rangle$.

4. If R accepts, accept; if R rejects, reject."

 $\begin{array}{l} R \text{ accepts} \Leftrightarrow L(N) = \Sigma^* \Leftrightarrow w \text{ accepted by } M; \\ R \text{ rejects} \Leftrightarrow L(N) = \{01\} \Leftrightarrow w \text{ not accepted by } M. \end{array}$

Rice's theorem

A property P of recognizable languages is a set of Turing-recognizable languages.

A property *P* is *non-trivial* if $P \neq \emptyset$ and *P* is not the set of all recognizable languages.

Rice's theorem. Let P be a non-trivial property of recognizable languages. Then the language

 $P_{TM} = \{ \langle M \rangle : M \text{ is a Turing machine with } L(M) \in P \}$

is undecidable.

To prove: $P_{TM} = \{ \langle M \rangle : M \text{ is a Turing machine with } L(M) \in P \}$ is undecidable.

Proof. Suppose P_{TM} is decidable by a TM R.

To get a contradiction, we will use R to construct a TM deciding A_{TM} .

We may assume $\emptyset \notin P$.

Reason: If $\emptyset \in P$, then consider

 $\overline{P} = \{A : A \text{ is recognizable and } A \notin P\}.$

Then, $\emptyset \notin \overline{P}$; and \overline{P} is non-trivial; Let

 $\overline{P}_{TM} = \{ \langle M \rangle : M \text{ is a Turing machine with } L(M) \in \overline{P} \}.$

 \overline{P}_{TM} is decidable if and only if P_{TM} is decidable. We would then let R be a decider for \overline{P}_{TM} .

To prove: $P_{TM} = \{ \langle M \rangle : M \text{ is a Turing machine with } L(M) \in P \}$ is undecidable.

Proof. Suppose P_{TM} is decidable by a TM R.

To get a contradiction, we will use R to construct a TM deciding A_{TM} .

We may assume $\emptyset \notin P$.

Since *P* is non-trivial, there exists some language $A \in P$.

Say A is recognized by a TM M_A .

• P_{TM} is decidable by a TM R.

▶ $\emptyset \notin P$, $A \in P$, recognized by TM M_A .

Given $\langle M, w \rangle$, construct a TM N:

N = "On input *x*:

1. Simulate M on w.

2. If *M* accepts *w*, then simulate M_A on *x*.

```
3. If M_A accepted x, then accept.
```

"

If *M* accepts *w*, then L(N) = A. If *M* does not accept *w*, then $L(N) = \emptyset$.

N = "On input x:

- 1. Simulate M on w.
- 2. If M accepts w, then simulate M_A on x.
- 3. If M_A accepted x, then **accept**.

,,

If *M* accepts *w*, then L(N) = A; if not, $L(N) = \emptyset$.

Decider *H* for A_{TM} :

- H = "On input $\langle M, w \rangle$:
 - 1. Construct N from $\langle M, w \rangle$.
 - 2. Feed $\langle N \rangle$ to *R*, the decider for P_{TM} .

3. If *R* accepts, then **accept**; if *R* rejects, then **reject**.

R decides $P_{TM} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \in P \}.$

Applicability of Rice's theorem

 $T = \{ \langle M \rangle : M \text{ is a TM and } L(M) = L(M)^R \}$ is undecidable.

Proof. Define $P = \{A : A \text{ recognizable and } A = A^R\}$. The *P* is a property of recognizable languages, and *P* is non-trivial, e.g., $\{01, 10\} \in P$ and $\{01\} \notin P$. The result follows from Rice's theorem.

Applicability of Rice's theorem

 $H = \{\langle M \rangle : M \text{ is a TM and } M \text{ never writes a blank}$ over a non-blank symbol $\}.$

Rice's theorem is not applicable since

 $P = \{A : A \text{ recognizable by a TM } M \text{ that}$ never writes a blank over a non-blank} = {all recognizable languages} $EQ_{TM} = \{ \langle M, N \rangle : M \text{ and } N \text{ are TMs and } L(M) = L(N) \}.$

Rice's theorem is not applicable because the property here concerns a pair of recognizable languages.

See the link on our course homepage.