PROBLEM 1. Prove that $SPACE(n^k) \subsetneq SPACE(n^{\log(n)})$.

PROBLEM 2. Show that if $NP = P^{SAT}$, then NP = coNP.

PROBLEM 3. IS NTIME $(n^2) \subsetneq$ PSPACE? Explain.

PROBLEM 4. To prove that $P^{TQBF} = NP^{TQBF}$ we use the following flag of complexity classes $NP^{TQBF} \subseteq NPSPACE = PSPACE \subseteq P^{TQBF}$.

Justify each step.

Problem 5.

- (a) Construct AND and OR gates using BPs.
- (b) Consider the arithmetized versions of the BP you created for AND and OR gates. Let the label a of the starting node be 1, as in Sipser's lecture. Considering the Boolean variables x_1 and x_2 as indeterminates, what is the output polynomial of each of your BPs?
- (c) Check that each polynomial gives the right values when the variables are assigned bit values.

PROBLEM 6. Show that BPP \subseteq PSPACE.