
CS/Math 387 Homework for Friday, Week 7

Problem 1. Recall the definition of big-O notation. Suppose f, g : N → R≥0. We say
f(n) = O(g(n)) if there exists an integer c ≥ 1 and and a positive integer n0 such that
f(n) ≤ cg(n) for all n ≥ n0.

(a) Prove from the definition of big-O notation that n + n2 = O(n2).
(b) Suppose that f(n) = O(n) + O(n log(n)) (this means that there exist integers c, c′ ≥ 1

and an integer n0 such that n ≥ n0 implies f(n) ≤ cn + c′n log(n)). Carefully prove
that f(n) = O(n log(n)).

Problem 2. True or False. No proof required.
(a) 2n = O(n) (b) n2 = O(n) (c) n2 = O(n log2(n))

(d) n log(n) = O(n2) (e) 3n = 2O(n) (f) 22
n

= O(22
n
).

Problem 3. True or False. No proof required.
(a) n = o(2n) (b) 2n = o(n2) (c) 2n = o(3n)
(d) 1 = o(n) (e) n = o(log(n)) (f) 1 = o(1/n).

Problem 4.

(a) Show that the complexity class P is closed under the concatenation operation. That
is, show that if A,B ∈ P , then AB ∈ P .

(b) Show that the complexity class P is closed under complementation. That is, show that
if A ∈ P , then A := Σ∗ \A ∈ P .

For both proofs, you should provide an outline for an algorithm as in Sipser’s text: give a list
of stages and show that each step in each stage uses a polynomial number of steps. (Here,
as usual, polynomial number means polynomial in the input size.) Number your stages,
indicate the run times for each step, and indicate the number of iterations of any loop that
appears as in Sipser’s text using big-O notation. Compute the total run time.

Problem 5. An undirected simple graph G is 3-colorable if each of its vertices can be
assigned one of three colors in such a way no two adjacent vertices have the same color.
(Adjacent vertices are vertices that share an edge.) Define the language

3COLOR = {〈G〉 : G is 3-colorable}.

(a) Give some examples of graphs that are 3-colorable and some that are not.
(b) How many ways are there to color a graph with m nodes using 3 colors if there is no

restriction on the colors of adjacent vertices?
(c) Show that 3COLOR is in NP by giving a numbered algorithm in the style of those

given in Sipser’s text. Give the run time for each stage and the total run time in big-O
notation.

Problem 6. Let n, b be integers with n ≥ 1 and b ≥ 2.

(a) There are two parts to this first problem:
1



2

(i) Show that the number of digits of n base b is blogb(n)c+ 1.
(ii) Why isn’t it the number of digits dlogb(n)e?

(Hint: n has r digits base b if and only if n is between which two powers of b? Be
careful with the endpoints of that interval.)

(b) Let u(n) be the length of n written in unary: n =

n−times︷ ︸︸ ︷
1 · · · 1 . Show that u(n) 6= O(log(n)).

(c) Consider the operation d : N → N defined by d(n) = bn/2c. Next, define h : N → N
by h(n) = min{k : d(k)(n) = 0}. Here, d(k) denotes k-fold composition. Is h(n) =
O(log(n))? Prove or disprove.

Problem 7. (bonus) Consider the language

MODEXP = {〈a, b, c,m〉 : a, b, c,m are positive integers written in binary and ab = c mod m}.
Show that MODEXP ∈ P . Note that the most obvious algorithm does not run in polynomial
time. Hint: first try the case where b is a power of 2.


