CS/Math 387 Homework for Wednesday, Week 2

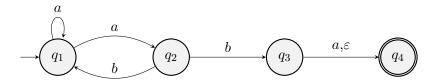
PROBLEM 1. Fix the alphabet be $\Sigma = \{0, 1\}$. Construct DFAs A and B such that L(A) is the language of all words with length divisible by 2 and L(B) is the language of all words with length divisible by 3. Use the Cartesian product construction from the text to create a DFA C such that $L(C) = L(A) \cup L(B)$, labeling states using elements from the relevant Cartesian product.

PROBLEM 2. Create DFAs for the listed languages on the alphabet $\Sigma = \{0, 1\}$.

- (a) Words with length divisible by either 2 or 3 but not both.
- (b) Nonempty words whose beginning and ending characters differ.

PROBLEM 3. Create an NFA accepting the language A of words ending in an odd number of 1s and an NFA accepting exactly the language B of words ending in 0. Combine these using the technique from the lecture to create an NFA recognizing the concatenation AB.

PROBLEM 4. Convert the following NFA into a DFA using the method from our text:



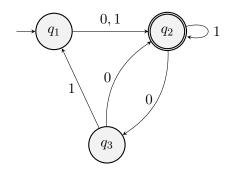
Label the states with states describing subsets of the original set of states, omitting states corresponding to unreachable states. Each state in your DFA should have arrows for a and for b.

PROBLEM 5. Find regular expressions for the following languages on $\Sigma = \{0, 1\}$:

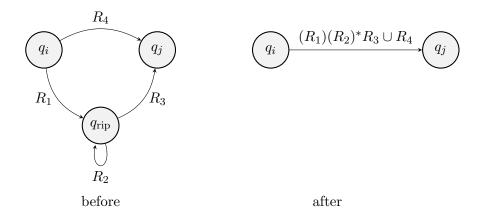
- (a) Words of even length with exactly two 1s. (Provide an explanation.)
- (b) Words not containing the substring 011. (Hint: $0^*(10^+)^*1^*$ gives words not containing the substring 110.) (No explanation needed if your solution is a slight modification of the hint's solution.)

PROBLEM 6. Create a DFA with no more than five states that excepts the language consisting of all words not containing the substring 011.

PROBLEM 7. Let A be the following DFA:



- (a) Convert A into an NFA having (i) an initial states with no transitions leading into it, and (ii) a single accept state having no transitions of it. The resulting NFA should have five states, including the initial state q_0 and the unique accepting state q_4 .
- (b) Recall the general prescription for ripping out a state given in the text:



Letting $q_i = q_2$, $q_j = q_1$, and $q_{rip} = q_3$, identify R_1, R_2, R_3 and R_4 . What regular expression labels the transition from q_1 to q_2 after ripping out q_3 (and making any trivial simplification of the regular expression)?

- (c) Repeat the previous part with $q_i = q_j = q_2$, and $q_{rip} = q_3$
- (d) Rip out state q_3 , and draw the resulting GNFA. The transitions will be labeled by regular expressions.
- (e) Rip out state q_2 , and draw the resulting GNFA.
- (f) Finally, rip out state q_1 and draw the resulting GNFA having two states.
- (g) What is the resulting regular expression for the language accepted by A?

PROBLEM 8. (Bonus problem for glory and fame!) The text describes a method for converting an NFA with n states into a DFA with 2^n states. Show that this bound is roughly tight. Specifically, show that for every n there exists a language that can be recognized with an (n+1)-state NFA but cannot be recognized by a DFA with fewer than 2^n states.