PROBLEM 1. Review.

- (a) Suppose that $f: \mathbb{N} \to \mathbb{N}$ where f(n) is at least $O(\log(n))$. What does it mean to say space constructible?
- (b) Name a function f(n) that is in O(n) but not o(n). Show the relevant calculation.
- (c) State the space hierarchy theorem.
- (d) Where is space constructibility used in the proof of the space hierarchy theorem?
- (e) For any two rational numbers $0 \le a < b$, show that $n^a \in o(n^b)$ and hence, via the space hierarchy theorem, $SPACE(n^a) \subsetneq SPACE(n^b)$. Show the relevant calculation. (Here, we are using the fact that n^c is space constructible for any rational number c.)
- (f) Savitch's theorem says $NL \subseteq SPACE(\log^2(n))$. Use this to prove that $NL \subsetneq PSPACE$. Show the relevant calculation.
- (g) State the time hierarchy theorem.
- (h) Prove that $\text{TIME}(n^2) \subsetneq \text{TIME}(n^3)$. Show the relevant calculation.

Problem 2.

- (a) We know that PATH is NL-complete, i.e., everything in NL is log space reducible to PATH. Prove that PATH is coNL-complete.
- (b) We have seen that $\overline{\text{PATH}}$ is in NL. Explain why this implies NL = coNL.

PROBLEM 3.

- (a) Prove that $\text{TIME}(2^n) = \text{TIME}(2^{n+1})$.
- (b) Prove that $\text{TIME}(2^n) \subsetneq \text{TIME}(2^{2n})$.

Problem 4.

- (a) Explain why A_{NFA} is in NL.
- (b) Prove that A_{NFA} is NL-complete by giving a reduction from PATH.