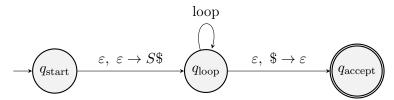
Math 387 Group problems, Wednesday Week 2

PROBLEM 1. Let A be the following CFG from our text (Example 2.25):

$$S \to aTb|b$$

 $T \to Ta|\varepsilon$.

The text describes the construction for the following PDA that recognizes L(A):



The loop has the following transitions:

$$\begin{split} \varepsilon, \ S &\to aTb|b \\ \varepsilon, \ T &\to Ta|\varepsilon \\ a, \ a &\to \varepsilon \\ b, \ b &\to \varepsilon. \end{split}$$

Here, for instance, the notation ε , $S \to aTb|b$ is shorthand for two transitions: ε , $S \to aTb$ and ε , $S \to b$. Also, for example, the transition ε , $S \to aTb$, means that if S is at the top of the stack, one can pop S and push aTb without reading any input.

- (a) Describe L(A).
- (b) Show how the PDA accepts *aaab* one step at a time. List the new state, the transition, and the stack. The first step is

$$\begin{array}{c|c} \text{transition} & q_{\text{start}} \xrightarrow{\varepsilon, \varepsilon \to S\$} & q_{\text{loop}} \\ \hline \text{stack} & \text{empty} \longrightarrow & S\$ \end{array}$$

PROBLEM 2. Let $\Sigma = \{0, 1\}$, and consider the language $L = \{w : w \text{ contains at least three 1s}\}$.

- (a) Find a regular expression for L.
- (b) Convert that regular expression into an NFA recognizing L.
- (c) Find a CFG for the language.
- (d) Convert your CFG into a PDA using the algorithm in the text (as in Problem 1).

PROBLEM 3. Let $\Sigma = \{0, 1\}$, and consider the language $L = \{0^m 1^n : m \neq n\}$.

- (a) Find a CFG generating L using at most three variables.
- (b) Convert your CFG into a PDA using the algorithm in the text (as in Problem 1).
- (c) Is L regular? Prove or disprove.

PROBLEM 4. (Bonus) Our goal in this problem is to show that the representation of objects can affect whether or not a given set can be recognized by a machine. Consider a set A

of natural numbers. Let $B_k(A)$ be the set of strings that represent numbers from A in base k (with no leading zeros). For example, if $A = \{3,5\}$ then $B_2(A) = \{11,101\}$ and $B_3(A) = \{10,12\}$. We can think of $B_k(A)$ as a language with a k-symbol alphabet. Give a set A for which $B_2(A)$ is regular but $B_3(A)$ is not (and prove it).