
Math 372 lecture for Monday, Week 13

Distributive lattices

Let P be a poset. A greatest lower bound for x, y ∈ P is an element v ∈ P that is a lower
bound, i.e., v ≤ x and v ≤ y, and such that for all w ∈ P

w ≤ x and w ≤ y =⇒ w ≤ v.

A least upper bound for elements x, y ∈ P is an element u ∈ P that is an upper bound, i.e.,
x ≤ u and y ≤ u, and such that for all w ∈ P ,

x ≤ w and y ≤ w =⇒ u ≤ w.

A greatest lower bound for x and y, if it exists, is unique. It is called the meet of x and y
and denoted x ∧ y A least upper bound for x and y, if it exists, is unique. It is called the
join of x and y and denoted x ∨ y.

A lattice is a poset L in which every pair of elements x, y ∈ L as a meet and a join. Here
are Hasse diagrams for all lattices with five elements:

Here is a poset that is not a lattice:

Distributive lattices. Let L be a lattice. Then L is distributive if for all x, y, z ∈ L,

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

One may show that this condition is equivalent to the condition that

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Examples of distributive lattices include the Boolean posets Bn, the nonnegative integers N,
and Young’s lattice (of partitions of integers). Here are two examples of lattices that are
not distributive:
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Diamond lattice, M3
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1̂

0̂

Pentagon lattice, N5

These examples characterize non-distributive lattices.

Proposition. A lattice is distributive if and only if none of its sublattices is isomorphic to
M3 or N5.

A sublattice of a lattice is a subset that is closed under the meet and join operations of the
original lattice.

Example. Here is an example of a lattice that contains N5 as a subset by not a sublattice:

y

x a

z

1̂

0̂̂0

A distributive lattice.

A lattice is finitary if it is locally finite (meaning that each of its intervals is finite) and if
it has a unique smallest element 0̂.

Given any poset P , we now describe a way of constructing an distributive lattice. An order
ideal or down-set in P is a subset I of P such that if x ∈ I and y ≤ x, then y ∈ P . A principal
order ideal is an order ideal generated by a single element, i.e., of the form {y : y ≤ x} for
some x ∈ P . For each x ∈ P we denote the corresponding principal order ideal by

Λx := {y ∈ P : y ≤ x} .

Let J(P ) be the set of all order ideals of P and give it a poset structure by inclusion of
subsets of P . Then J(P ) is a lattice in which the meet operation is intersection and the
join operation is union (as subsets of P ).

An element x in a lattice L is join irreducible if x 6= 0̂ and if it is not possible to write x = y∨z
with y < x and z < x. In other words, x is join irreducible if it covers exactly one element.
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Example. Hasse diagrams for a poset P and its lattice of join irreducibles J(P ) appear
below. Subsets are listed as words, e.g., {a, b, d} = abd. The join irreducibles in J(P ) are
circled.

a b

c d

P

∅

a b

abab

abcd

bd

abdabc

J(P )

The following theorem is quoted from Stanley’s Enumerative Combinatorics, Volume 1:

Theorem. (Fundamental theorem for finitary distributive lattices) Let P be a poset in
which every principal order ideal is finite. Then the poset Jf (P ) of finite order ideals
of P , ordered by inclusion, is a finitary distributive lattice. Conversely, if L is a finitary
distributive lattice and P is its subposet of join-irreducibles, then every principal order ideal
of P is finite, and L ' Jf (P ).

Young’s lattice. Let Y be the infinite path graph with vertex set Z and edges {i, i+ 1}
for all i ∈ Z. Let D ∈ Div(Y ) be given by

D(i) =

{
2 if i = 0

1 otherwise.

Then F(D) is isomorphic to Young’s lattice:
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The proof is obtained by looking at the path that runs along the top of each diagram. It
extends infinitely in the (−1, 1) and in the (1, 1) directions and has bumps along the top of
the Young diagram. The method of decoding the lines and bumps into the numbers 0, 1,
and 2 is listed in blue on the left.

Theorem. Let P be a poset in which every principal order ideal is finite. Define a poset P̃
by adding elements α and β to P , then defining

α < β < x

for all x ∈ P . Let G = G(P ) be the Hasse diagram for P̃ . For each x ∈ P , let n(x) be the
number of covers of x in P . Define D ∈ Div(G) by

D(x) =


0 if x ∈ {α, β},
degG(x) if x is a minimal element of P ,

n(x) otherwise.

Then the firing graph F(D) has no cycles, and when considered as a poset, F(D) ' Jf (P ).

Proof. Homework. �

Example. Apply the construction in the theorem to the zigzag poset example, above:
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a b
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The divisor described in the theorem is D = 2a+ 2b, and its firing graph is pictured below:
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