Math 372 lecture for Monday, Week 13

Distributive lattices

Let P be a poset. A greatest lower bound for x,y € P is an element v € P that is a lower
bound, i.e., v < z and v < y, and such that for all w € P

w<zandw <y =—=w<lw.

A least upper bound for elements z,y € P is an element u € P that is an upper bound, i.e.,
x < wu and y < u, and such that for all w € P,

r<wandy<w = u<w.

A greatest lower bound for x and y, if it exists, is unique. It is called the meet of x and y
and denoted x Ay A least upper bound for z and y, if it exists, is unique. It is called the
join of x and y and denoted = V y.

A lattice is a poset L in which every pair of elements x,y € L as a meet and a join. Here
are Hasse diagrams for all lattices with five elements:
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Here is a poset that is not a lattice:

Distributive lattices. Let L be a lattice. Then L is distributive if for all z,y,z € L,
xV(yNz)=(xVy A(zV=z).

One may show that this condition is equivalent to the condition that
cA(yVz)=(xAy)V(zAz).

Examples of distributive lattices include the Boolean posets B,,, the nonnegative integers N,
and Young’s lattice (of partitions of integers). Here are two examples of lattices that are
not distributive:
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Diamond lattice, M3 Pentagon lattice, N5

These examples characterize non-distributive lattices.

Proposition. A lattice is distributive if and only if none of its sublattices is isomorphic to
M3 or N5.

A sublattice of a lattice is a subset that is closed under the meet and join operations of the
original lattice.

Example. Here is an example of a lattice that contains N5 as a subset by not a sublattice:

A distributive lattice.

A lattice is finitary if it is locally finite (meaning that each of its intervals is finite) and if
it has a unique smallest element 0.

Given any poset P, we now describe a way of constructing an distributive lattice. An order
ideal or down-setin P is a subset I of P such that if x € [ and y < x, then y € P. A principal
order ideal is an order ideal generated by a single element, i.e., of the form {y:y <z} for
some x € P. For each x € P we denote the corresponding principal order ideal by

Ay ={yeP:y<uz}.

Let J(P) be the set of all order ideals of P and give it a poset structure by inclusion of
subsets of P. Then J(P) is a lattice in which the meet operation is intersection and the
join operation is union (as subsets of P).

An element z in a lattice L is join irreducible if x # 0 and if it is not possible to write x = yVz
with y < z and z < z. In other words, z is join irreducible if it covers exactly one element.



Example. Hasse diagrams for a poset P and its lattice of join irreducibles J(P) appear
below. Subsets are listed as words, e.g., {a,b,d} = abd. The join irreducibles in J(P) are
circled.
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The following theorem is quoted from Stanley’s Enumerative Combinatorics, Volume 1I:

Theorem. (Fundamental theorem for finitary distributive lattices) Let P be a poset in
which every principal order ideal is finite. Then the poset Jy(P) of finite order ideals
of P, ordered by inclusion, is a finitary distributive lattice. Conversely, if L is a finitary
distributive lattice and P is its subposet of join-irreducibles, then every principal order ideal
of P is finite, and L ~ J;(P).

Young’s lattice. Let Y be the infinite path graph with vertex set Z and edges {i,i + 1}
for all i € Z. Let D € Div(Y') be given by

(i) = {2 ifi =0

1 otherwise.

Then F(D) is isomorphic to Young’s lattice:
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The proof is obtained by looking at the path that runs along the top of each diagram. It
extends infinitely in the (—1,1) and in the (1, 1) directions and has bumps along the top of
the Young diagram. The method of decoding the lines and bumps into the numbers 0, 1,
and 2 is listed in blue on the left.

Theorem. Let P be a poset in which every principal order ideal is finite. Define a poset P
by adding elements a and 8 to P, then defining

a<f<zx

for all z € P. Let G = G(P) be the Hasse diagram for P. For each z € P, let n(z) be the
number of covers of x in P. Define D € Div(G) by

0 if z € {a, B},
D(z) = < deg(z) if x is a minimal element of P,
n(x) otherwise.

Then the firing graph (D) has no cycles, and when considered as a poset, F(D) ~ J¢(P).

Proof. Homework. O

Example. Apply the construction in the theorem to the zigzag poset example, above:






