
Math 372 lecture for Wednesday, Week 11

Matrix-tree theorem

Let G = (V,E) be a directed graph. For this means that V is a finite set of vertices and E
is a finite multiset of directed edges. A directed edge is an ordered pair (u, v) with u, v ∈ V .
It is not necessary to assume G is connected in any sense. A subgraph of G is a directed
graph whose vertices and directed edges form sub(multi)sets of V and E, respectively.

The Laplacian for a directed graph. For v ∈ V , let outdegG(v) be the number of edges
in G of the form (v, w) for some w ∈ V . Fix an ordering of the vertices v1, · · · , vn, and
define

D = diag(outdegG(vi))i=1,...,n.

Define the directed n×n adjacency matrix A by letting Aij be the number of directed edges
starting at vi, i.e., of the form (vi, w) for some w ∈ V . Then the Laplacian matrix for G is

L := D −At,

where At is the transpose of A. (In the literature, what we are calling L would often be
called the transpose of the Laplacian.) The columns of L define firing rules in a chip-firing
game on G.

Definition. A (directed) spanning tree of G rooted at s ∈ V is a subgraph T such that for
all v ∈ V , there exists a unique directed path in T from v to s. The vertex s is the root or
sink of the tree.

If T is a directed spanning tree of G rooted at s, then one may show that (i) T contains all
of the vertices of G (hence, the word “spanning”); (ii) T contains no directed cycles; and
(iii) for all vertices v of G, the outdegree of v in T is 0 if v = s, and is 1, otherwise. In
particular, T contains no multiple edges.

Example. The graph pictured below has three directed edges and one undirected edge:

s

v1

v2
.

The determinant of its reduced Laplacian with respect to s is

det

(
3 0
−2 1

)
= 3,

which is the number of spanning trees rooted at s, as shown below:
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s

v1

v2 s

v1

v2 s

v1

v2
.

Note that second two trees are different since the multiple edges of the form (v1, v2) are
counted as distinct.

Let L be the Laplacian matrix of G relative to an ordering of the vertices, v1, . . . , vn. For
each k ∈ {1, . . . , n}, let L(k) denote the (n − 1) × (n − 1) matrix formed by removing the
k-th row and column of L. This is the reduced Laplacian for G with respect to vk.

Matrix-tree Theorem. The determinant of L(k) is the number of spanning trees of G
rooted at vk.

Proof. Since a permutation of the vertices induces a corresponding permutation of the
rows and columns of L, it suffices to consider the case k = n. For ease of notation, we write
L̃ := L(n). Letting aij denote the number of times (vi, vj) appears as an edge of G, we have

L̃ =


∑

i 6=1 a1i −a21 −a31 . . . −an−1,1
−a12

∑
i 6=2 a2i −a32 . . . −an−1,2

...
...

...
. . .

...
−a1,n−1 −a2,n−1 −a3,n−1 . . .

∑
i 6=n−1 an−1,i


where

∑
i 6=k aki denotes the sum over i ∈ {1, . . . , n} \ {k}. Each column encodes the rule

for reverse-firing the corresponding vertex. �

Let Sn−1 be the permutation group on {1, . . . , n − 1}. Recall that the sign of σ ∈ Sn−1
is sgn(σ) := (−1)t where t is the number of factors in any expression for σ as a product
of transpositions—it records whether an even or odd number of swaps is required to create
the permutation σ. Let Fix(σ) be the set of fixed points of σ:

Fix(σ) := {i ∈ {1, . . . , n− 1} : σ(i) = i}.

Then
det L̃ =

∑
σ∈Sn−1

sgn(σ)L̃σ(1),1 · · · L̃σ(n−1),n−1, (1)

where

L̃σ(k),k =

{∑
i 6=k ak,i if k ∈ Fix(σ)

−ak,σ(k) otherwise.

The idea now is to expand (1) into signed monomials in the aij and to think of each
monomial as a directed graph by identifying aij with the directed edge (vi, vj) labeled with
the number of times this edge appears in G, i.e., with aij , itself:
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vi vj

aij
.

We then show that after cancellation due to the signs of the permutations, the remaining
monomials correspond exactly to the distinct spanning trees rooted at vn. Each monomial
itself—a product of various aij—is an integer which counts the number of times its cor-
responding spanning tree occurs as a spanning tree of G. (Recall that since G may have
repeated edges, a spanning tree may occur more than once.)

We pause now for an extended example. For those readers wishing to skip ahead, the end
of the example is marked with a line.

Example. Take n = 10 and σ = (2, 7)(3, 5, 9) ∈ S9. The set of fixed points is Fix(σ) =
{1, 4, 6, 8} and sgn(σ) = sgn((2, 7)) sgn((3, 5, 9)) = (−1)·1 = −1. The term in the expansion
of det L̃ corresponding to σ is

sgn(σ)L̃σ(1),1L̃σ(2),2 · · · L̃σ(9),9
= (−1)(a1,2 + · · ·+ a1,10)(−a2,7)(−a3,5)(a4,1 + · · ·+ a4,10)

′

· (−a5,10)(a6,1 + · · ·+ a6,10)
′(−a7,2)(a8,1 + · · ·+ a8,10)

′(−a9,3),

where the prime symbol on a factor indicates the term of the form ai,i should be omitted
from the enclosed sum. Continuing,

= (−1)[

σ(1)=1︷ ︸︸ ︷
(a1,2 + . . . )

σ(4)=4︷ ︸︸ ︷
(a4,1 + . . . )′

σ(6)=6︷ ︸︸ ︷
(a6,1 + . . . )′

σ(8)=8︷ ︸︸ ︷
(a8,1 + . . . )′ ]

· [ (−a2,7)(−a7,2)︸ ︷︷ ︸
(2,7)

(−a3,5)(−a5,9)(−a9,3)︸ ︷︷ ︸
(3,5,9)

].

Question: Which monomials, identified with directed graphs, appear in the expansion of
the above?

Answer: For each fixed point i of σ, we get a choice of any edge of the form
vi vj

aij

where j ∈ {1, . . . , 10} and j 6= i. For each non-trivial cycle of σ, there is only one choice:

(2,7)

v2

v7

a2,7 a7,2 (3,5,9)

v3

v5

v9

a3,5 a5,9

a9,3

Figure 1 considers three monomials coming from the expansion of the term in det L̃ corre-
sponding to σ. Each monomial m corresponds to a directed graph Gm. Column F shows
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the part of Gm that comes from choices for the fixed points of σ, and column C shows the
part that comes from the nontrivial cycles. Note that, as in example (c), these two parts
may share vertices. There may be an edge connecting a fixed point vertex to a cycle vertex
in Gm. Example (b) shows that it is not necessary for v10 to occur in Gm. In general, v10
does not appear if and only if each vertex in Gm has a path to a directed cycle (since the
outdegree for each non-root vertex is 1).

F C monomial

(a)

v1

v10 v4 v6

v8 v2

v7 v3

v5

v9

a1,10 a2,7 a3,5 · · · a9,3

(b)

v4

v1 v6

v8 v2

v7 v3

v5

v9

a1,8 a2,7 a3,5 · · · a9,3

(c)

v4
v6

v10

v1

v5

v8 v2

v7 v3

v5

v9

a1,5 a2,7 a3,5 · · · a9,3

Figure 1: Monomials and corresponding graphs for Example .

Finally, it is important to determine the sign of each monomial corresponding to σ in the
expansion of det L̃. The sign is determined by sgnσ and by the number of factors of the
form −aij that go into the calculation of the monomial. With these two considerations in
mind, it is straightforward to see that the resulting sign is (−1)# non-trivial cycles of σ. For
instance, consider the monomial in example (a) in Figure 1. It appears in the expansion of
det L̃ in the term

sgn((2, 7)(3, 5, 9)) a1,10a4,8a6,4a8,6︸ ︷︷ ︸
Fix(σ) = {1, 4, 6, 8}

(−a2,7)(−a7,2)︸ ︷︷ ︸
(2, 7)

(−a3,5)(−a5,9)(−a9,3)︸ ︷︷ ︸
(3, 5, 9)

.

Each cycle of σ ultimately contributes a factor of −1:

sgn((2, 7))(−a2,7)(−a7,2) = −1 · a2,7a7,2
sgn((3, 5, 9))(−a3,5)(−a5,9)(−a9,3) = −1 · a3,5a5,9a9,3.

We now return to the proof. The monomials in the expansion of (1) correspond exactly
with signed, weighted, ordered pairs (F,C) of graphs F and C formed as follows:

4



1. Choose a subset X ⊆ {1, . . . , n− 1} (representing the fixed points of some σ).

2. Make any loopless, directed (not necessarily connected) graph F with vertices {1, . . . , n}
such that

outdegF (i) =

{
1 if i ∈ X
0 if i /∈ X.

3. Let C be any vertex-disjoint union of directed cycles of length at least 2 (i.e., no loops)
such that C contains all of the vertices {1, . . . , n− 1} \X.

Each of these ordered pairs of graphs (F,C) is associated with an element of Sn−1, with
the vertices of outdegree one in F determining the fixed points and with C determining the
cycles. In general, this is a many-to-one relationship, given the choices in step (2). The
weight of (F,C), denoted wt(F,C) is the product of its labels—those aij such that (vi, vj)
occurs in either F or C—multiplied by (−1)γ where γ is the number of cycles in C. For
instance, for each of the three examples in Figure 1, the number of cycles in C is 2, so the
weight is just the listed monomial, without a sign change. With this notion of weight, it
then follows in general that

det L̃ =
∑
(F,C)

wt(F,C).

Let Ω denote the set of ordered pairs (F,C), constructed as above, but such that either F
or C contains a directed cycle. We show that the monomials corresponding to elements of
Ω cancel in pairs in the expansion of (1) by constructing a sign reversing transposition on Ω.
Given (F,C) ∈ Ω, pick the cycle γ of the disjoint union F t C with the vertex of smallest
index. Then if γ is in F , move it to C, and vice versa. Formally, if the cycle is in F , define
F ′ = F \{γ} and C ′ = C∪{γ}, and if it is in C, define F ′ = F ∪{γ} and C ′ = C \{γ}. This
defines a transposition (F,C) 7→ (F ′, C ′) on Ω such that wt(F,C) = −wt(F ′, C ′) since the
number of cycles in C differs from the number of cycles in C ′ by one. See Figure 2 for an
example. It follows that in the sum

∑
wt(F,C), terms paired by the transposition cancel,

(F,C) =

(F ′, C ′) =

v4

v1 v6

v8

,

v2

v7 v3

v5

v9

v4

v1
,
v1 v6

v8 v2

v7 v3

v5

v9

Figure 2: Sign reversing transposition.

leaving only those terms wt(F,C) for which the transposition is undefined, i.e., those (F,C)
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such that the graph F tC contains no cycles. In this case, the corresponding permutation
is the identity permutation, C = ∅, and F is a spanning tree rooted at vn. The weight,
wt(F,C), counts the number of times this spanning tree occurs as a spanning tree of G due
to G having multiple edges.

Consequences of the matrix-tree theorem

We now obtain several corollaries of the matrix-tree theorem.

Corollary. Let G be an undirected multigraph. Then the order of Jac(G) is the number
of directed spanning trees of G rooted at the sink.

Proof. We have seen that Jac(G) ' Zn−1/ im L̃ where L̃ is the reduced Laplacian of G with
respect to any vertex. Let D be the Smith normal form for L̃, and write D = UL̃V for some
integer invertible matrices U and V . Then we have seen that U defines an isomorphism
Zn−1/ im L̃ ' Zn−1/ im(D), and Zn−1/ im(D) '

∏n−1
i=1 Z/diZ where the di are the diagonal

entries of D. Therefore, the number of elements in the group Zn−1/ im(D) is det(D).
Since U and V are invertible over the integers, we have det(D) = det(UL̃V ) = ±L̃. By the
matrix-tree theorem L̃ is nonnegative since it counts the number of spanning trees of G,
and we know det(D) is nonnegative. Putting this all together:

| Jac(G)| = |Zn−1/ im(D)| = det(D) = det(L̃) = # spanning trees of G.

�

A tree on n labeled vertices is a connected undirected graph with n labeled vertices and no
cycles.

Corollary. (Cayley’s formula) The number of trees on n labeled vertices is nn−2.

Proof. Let L̃ be the reduced Laplacian matrix of the complete graph Kn. Then by the
matrix-tree theorem, Cayley’s number is det(L̃). In homework, we showed this determinant
is nn−2. �

Let L(ij) denote the matrix obtained from the Laplacian L of G by removing the i-th row
and j-th column.

Corollary. The ij-th cofactor, (−1)i+j detL(ij), of L is the number of directed spanning
trees rooted at the j-th vertex.

Proof. We have (−1)i+j detL(ij) = detL(jj) since the sum of the rows of L is the zero
vector (exercise for the reader). The result then follows from the matrix-tree theorem.

Corollary. Let G be a directed graph with n vertices. Suppose the Laplacian matrix of G
has eigenvalues µ1, . . . , µn with µn = 0. For each vertex v, let κv be the number of directed
spanning trees of G rooted at v. Then,

µ1 · · ·µn−1 =
∑
v

κv.
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In other words, the product of these eigenvalues is the total number of rooted trees.

Proof. We may assume the vertex set is 1, . . . , n, with the i-th column of L corresponding
to vertex i. First note that since L is singular, a zero eigenvalue µn always exists. Factoring
the characteristic polynomial of L, we have

det(L− Inx) = (µ1 − x) · · · (µn − x).

We calculate the coefficient of x in this expression in two ways. Since µn = 0, by expanding
the right-hand side, we see the coefficient is −µ1 . . . µn−1. Now consider the left-hand side.
For each i, let ri denote the i-th row of L, and let ei denote the i-th standard basis vector.
Then

det(L− Inx) = det(r1 − e1x, . . . , rn − enx).

By multilinearity of the determinant, letting L̃i denote the reduced Laplacian with respect
to vertex i, the coefficient of x is

n∑
i=1

det(r1, . . . , ri−1,−ei, ri+1, . . . , rn) = −
n∑
i=1

det(L̃i) = −
n∑
i=1

κi.

�

Remark. If G is undirected, or more generally, if G is Eulerian (which means that for each
vertex v, the number of edges directed into v is equal to the number of edges directed out
of v) then the number of spanning trees rooted at a vertex is independent of the particular
vertex. Calling this number κ, the previous Corollary says in this case that

κ =
µ1 . . . µn−1

n
.
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