Math 372 lecture for Wednesday, Week 10

The discrete Laplacian

Let G = (V,E)) be an undirected, connected, multigraph with vertex set V' =
{v1,...,v,}. For convenience, assume G has no loops. Last time, we defined the
boundary mapping

8: ZE — 7V,

determined by d(e) = e™ — e~ for each e € E. Ordering the vertices and then using
lexicographic ordering on the edges, as usual, boundary mapping becomes a matrix,
and we can take its transpose

o' ZV — ZE.

(More formally, define ZE* := Homg(ZE*,Z) to be the set of all Z-linear mappings
ZE — 7, and identify ZE with ZE* by e — x. for each e € E where y. is the
characteristic function for e. Similarly, define ZV* and identify it with ZV. Then we
get a mapping

v & nE
defined by ¢ — ¢ o 0 for each function ¢: ZV — 7Z. Fixing our usual bases for ZV
and ZE turns 0 into a matrix and 9* into the transpose 0".)

Definition. The Laplacian of G is the mapping (or matrix)
L:=LG):=000":7V = 7ZV.

Example. Consider the diamond graph G:
Uy
V2 V3

U1

The Laplacian of G is

-1 -1 0 0 0 j é (1) 8 2 -1 -1
1 0 -1 -1 0 -1 3 -1 -1
_ t __ _ —
L=00=1"9 1 1 0 -1 8_]1‘ (1)(1) -1 -1 3 -1
0 0 0 1 1 00 -1 1 0 -1 —1



The (weighted) adjacency matriz for G is the n x n matrix A where A;; is the
number of edges joining v; to v;. For each vertex v € V, define degs(v) to be
the number of edges with an endpoint equal to v. Then define the diagonal ma-
trix D = diag(degg(v1), -+ ,dega(v,)).

Proposition 1. The Laplacian of Gis L = D — A.

Proof. Let m = |E|. For 1 <i < j <n, we have
(00");; Zaka,w

=3 a0
k=0
= —Aiy = Li

since
—1 if {v;,v;} is the k-th edge,
Oir0jk, = )
0 otherwise.

Since L, D, and A are symmetric, we also have L;; = (09");; for i > j. That leaves
the case where ¢ = j:

(88" Z D30k
= Z Oix Ok
k=0
=Dy
since

5 ~J1 ifv;is on the k-th edge,
ok 0 otherwise.

As an immediate corollary, we get:

Corollary 2. The sum of the rows and the sum of the columns of L are both 0 € R".



(Another way to see the corollary: L = 99" implies that 9y o L = 0 where 9, is the 0-
th boundary map, represented by the matrix [1 1 ... 1]. (We will call dy the degree
mapping, below.) This says the sum of the rows of L is 0. Since L is symmetric, the
sum of the columns must then be 0, also.)

Definition. The Picard group of G is the abelian group
Pic(G) :=ZV/im(L).

Recall the exact sequence from last time:

0sCo7ZES7v Y5 7 50

Here, if f = > . a,v for some a, € Z, then deg(f) := > o a. In particu-
lar, deg(v) = 1, which would usually not be equal to deg.(v), the number of edges
incident on v, despite the similarity in notation. Let ZV{ denote the kernel of the
degree mapping, i.e., the set of those f = > ., a,v such that > _, a, = 0. The
exact sequence says that im d C ZVj. Then, since L = 9 o 9', we have

imL C im0 C ZVj.

Definition. The Jacobian group or critical group of G is

Jac(G) :=7ZVy/im L.

Proposition 3. Fix any ¢ € V. Then there is an isomorphism

¢: Pic(G) = Z @ Jac(QG)
f = (deg(f), f — deg(f)q).

Proof. First notice that ¢ is well-defined: if f, f' € ZV and f = f' modimlL,
write f' = f 4+ h where h € im L. We saw above that everything in the image of L
has degree 0. Therefore,

deg(f') = deg(f + h) = deg(f) + deg(h) = deg(f).

The inverse to ¢ is the mapping defined by (d, g) — g + dg. O

3



Definition. Fix ¢ € V. The reduced Laplacian of G (with respect to q) is the matrix L
obtained by removing the row and column indexed by ¢ from the Laplacian L.

Proposition 4. Fix ¢ =v; € V = {vy,...,v,}. Then there is a Z-linear isomophism

Y Jac(G) = Z"'/im(L)

> a;v; mod im(L) — (ay,...,d;,...,a,) mod im(L).

Proof. Without loss of generality, take j = 1. We will first verify that ¢ is well-
defined. Think of L as an n x n matrix. For each i let the i-th column of L be denoted
by ¢; and let ¢; be the vector ¢; with its first entry removed. Thus, the columns of
the reduced Laplacian are l,, ..., /,. We need to show that 1((;) € im(L) for each i.
That follows immediately for i > 1, since 1 (¢;) = {;. For i =1, use Corollary 2, which

says that > " ¢; = 0. It follows that ¢; = — )", ¢; and thus
i—2

maps to 0 under ¢ if ¢ = j and maps to a column of L, otherwise. Therefore, 1 is
well-defined.

To show 1 is an isomorphism, we exhibit its inverse:

p: 2"/ im(L): — Jac(G)

(as,...,a,) mod im(L) — (— > r ,a;,a9,...,a,) mod im(L).
Reasoning as above, we see p(f;) = (; for i = 2,...,n. Thus, p is well-defined.
Recalling that the sum of the coefficients of any element of Jac(G) is 0, it is clear
that p is inverse to . 0

Example. Let G be the diamond graph from the first example. Then
Pic(G) ~ Z*/ Span, {(2, -1, —1,0),(—1,3,—1,—-1),(~1,-1,3,-1),(0,—1,—1,2)}.

and
JaC(G) = ZS/Spa‘nZ {(37 _]-7 _1)7 (_]-7 37 _1)7 (_17 _]-7 2)} )

choosing ¢ = v; in Proposition 3.



