Math 372 lecture for Monday, Week 10

Cycles and cuts in graphs

Let G = (V, E) be an undirected multigraph, not necessarily connected, and possibly
containing loop edges. By multigraph, we mean that E can be a multiset, i.e., there may be
more than one edge between a pair of vertices.

Definition 1. A cycle in a multigraph G is a path C = vy, e1,v9,€3,...,v, such v; = vy,
the first n — 1 vertices are distinct, and no edge is repeated. We consider two cycles to
be the same if they differ by a cyclic shift—i.e., cycles do not have distinguished starting
points. Note that a loop is a cycle of length 1. We treat multiple edges between the same
two vertices as distinct, so that the banana graph Bs, consisting of two vertices connected
by two edges, is a cycle. A multigraph with no cycles is called acyclic.

In order to develop the algebraic theory of cycles and cuts, we need to choose an ori-
entation O for the undirected multigraph G and consider the directed multigraph (G, O).
However, we will see that the main results are independent of the choice of orientation. If
the vertices of G are ordered as v, ..., vy, then we will generally choose the standard orien-
tation, which assigns the directed edge e = (v;,v;) to the undirected edge {v;,v;} whenever
i < j. In this case, we write e™ = v; and e™ = v;.

Let ZE be the free abelian group on the undirected edges of G. In the case where E is
a multiset, copies of edges are treated as distinct in ZF. For example, if G is the banana
graph Bo, mentioned above, then ZE ~ 7Z2. If g =Y ccE Ue € is an element of ZE, then the
support of g, denoted supp(g), is the set of edges e for which the coefficient a, is nonzero.

The orientation O allows us to define the boundary of an edge e € E as
Je:=et —e” €ZV.

Extending linearly defines the boundary map,

0: ZE — ZV.

If G is a simple graph, i.e., without multiple edges, then G is a 1-dimensional simplicial
complex, and this 0 is the usual simplicial boundary map. Fixing an ordering of the vertices
and of the edges realizes 0 as a matrix whose columns are indexed by the edges. See Figure 1
for an example.
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Figure 1. The oriented incidence matrix with respect to the standard orientation. Rows
and columns are labeled with vertex indices.



The cycle space. Consider a cycle C = ug, e1,u1, €9, ..., e, ui in the undirected graph G.
The sign of an edge e € E with respect to C' and the orientation O is o(e,C) = 1 if
C =wv,e,v is a loop at a vertex v, and otherwise

1 ife” =wu; and et = u;yq for some i,
o(e,C) =< —1 ifet =u; and e~ = u;41 for some 1,
0 otherwise (e does not occur in C).

We then identify C' with the formal sum ) . o(e,C)e € ZE. For notational convenience,
if e = uv, we denote —e by vu.

Example 2. For the graph in Figure 1 (with the standard orientation), the cycle

C = vy, {v1,v2}, v, {va,v3},v3,{v1,v3}, 01
is identified with
C=12+23-13=12+23+31 € ZE
where 12 := vyv9, etc. This cycle is shown on the left in Figure 3.

Definition 3. The (integral) cycle space, C C ZE, is the Z-span of all cycles.

Example 4. Let G be the oriented graph pictured in Figure 2. The cycle space is isomorphic
to Z? with basis e; — es, e3.

€1

Sl

€2

Figure 2. C ~ 72,

The cut space. A directed cut of G is an ordered partition of the vertices into two
nonempty parts. For each nonempty U C V', we get the directed cut, (U,U€). The cut-set
corresponding to U, denoted cf;, is the collection of edges with one vertex in U and the
other in the complement, U¢. For each e € F, define the sign of e in ¢j; with respect to the
orientation O by

1 ife” €U and et € U,
ole,cfr) =< —1 ifet €U and e~ € U¢,
0 otherwise (e does not occur in cj;).

We identify the cut-set cf; with the formal sum ) o(e, ¢fy)e € ZE. Thus, for instance,
cfre = —cj;. If G is not connected, there will be empty cut-sets, identified with 0 € ZE. A
vertex cut is the cut-set corresponding to a single vertex, U = {v}, and we write ¢}, for cj;
in that case. A minimal nonempty cut-set with respect to inclusion is called a bond. For

example, the cut-set C’EW vs} in Example 5 is not a bond.



Example 5. For the graph in Figure 1 (with the standard orientation), the cut-set corre-
sponding to {vy,v3} is
c}‘vz,vs} =—-12-13+24+ 34

= 21+31+24+34cZE.
It is shown on the right in Figure 3.
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Figure 3. The cycle C from Example 2 (left) and the cut-set c{,, ,,; from Example 5 (right).

Definition 6. The (integral) cut space, C* C ZFE, is the Z-span of all cut-sets.

Exercise 7. If U is a nonempty subset of V(G), the subgraph of G induced by U, denoted
G[U], is the graph with vertex set U and edge multiset consisting of those edges with
both ends in U. If G is connected, show that the cut-set corresponding to a nonempty set
U C V(G) is a bond if and only if G[U| and G[U¢] are connected. If G is not connected,
show that its bonds are exactly the bonds of its connected components.

Bases for cycle and cut spaces. A spanning forest for G is a maximal subset F C E
that contains no cycles, and such that every vertex of G is on some edge in F. A spanning
tree for G is a connected spanning forest. (Thus, a spanning forest consists of the union of
spanning trees, one for each connected component of the graph.)

Proposition 8. Suppose that G is a multigraph on n vertices. The following are equivalent:
(1) G is a tree;
(2) G is minimal connected: G is connected and removing any edge from G yields a dis-
connected multigraph;

(3) G is maximal acyclic: G is acyclic and adding any edge between vertices of G produces
a cycle;

(4) G is connected and has n — 1 edges;

(5) G is acyclic and has n — 1 edges.

Fix a spanning forest F' for GG, and for notational purposes, identify F' with its set of
edges. Let F'©:= E\ F.

Exercise 9. Show that for each e € F¢, the graph with edges F'U{e} has a unique cycle, c.,
such that o(e,c.) = 1. (This holds even if e is a loop.)



Pick e € F'. The forest F' is a disjoint union of spanning trees of the connected compo-
nents of GG, and one of these spanning trees, say T', contains e. Removing e disconnects T’
into two connected components 7~ and T where e~ is contained in 7. Let U be the
vertices of T~. Define the cut-set ¢} := ¢};, and note that o(e, c}) = 1.

Exercise 10. Show that the cut-sets ¢} are bonds.

Theorem 11.

(1) The kernel of the boundary mapping is the cycle space: ker 0 = C.

(2) Let F be a spanning forest of G. Then {ce : e € F°} is a Z-basis for C and {c} : e € F}
is a Z-basis for C*.

(3) rankz C = |E| — |V| + K, and rankz C* = |V| — k where k is the number of connected
components of G.

(4) C=(CH't:={f€ZE: (f,g) =0 for all g € C*} where { , ) is defined for e,e’ € E by
1 ife=¢,

(e,e!) = (e, e) = {0 ifeste

and extended linearly for arbitrary pairs in ZE.

(5) If G is connected, then the following sequence is exact, i.e., the image of each mapping
1s equal to the kernel of the mapping that follows it:

N I 0.

0 C 7E

Proof. It is clear that C C kerd. For the opposite inclusion, consider an arbitrary f =
Y ecp Ge€ € ZE. Fix a spanning forest F', and define

g:=f- Z QeCe.
ecFe¢

Then 0f = g and supp(g) € F. If g # 0, then the union of the edges in supp(g) is
a subforest of F' with at least one edge; choose a leaf vertex v in this subforest. Then
v € supp(dyg), and hence, df = dg # 0. So if f € kerd, then g =0, i.e.,

f= Z aece € C.
ecFec
The proves part 1.

For part 2, we have just seen that {c. : e € F} spans ker 0. These elements are linearly
independent since ¢, N F° = {e}. To see that {c} : e € F'} is a basis for C*, first note that
each cut-set is a linear combination of vertex cuts:

Exercise 12. Show that for each nonempty U C V,

o= g .

velU

Hence, the vertex cuts span C*. However, each vertex cut is a linear combination of the c:



Exercise 13. Show that for each v € V,
i Y - ¥ oa
ecF:e—=v ecF:et=v

(One way to proceed: First argue that we may assume G is connected. Then analyze the
above expression in terms of the components of F' after removing all edges incident on v.)

Hence, {c} : e € F'} spans the cut space. Linear independence of the ¢ follows from the
fact that ¢t N F' = {e}.

For part 3, first note that we have just shown that both the cycle and cut space have
Z-bases, hence it makes sense to consider their ranks. Since the number of edges in a tree
is one less than the number of its vertices, we have

rankz C* = |F| = |V| — &,
and
ranky C = |F°| = |E| — |F| = |E| — |V | + k.
For part 4, let f = . pace. For each v € V,

(ficy) = Z Qe — Z Qe,

e:e”=v e:et=v
which is the negative of the coefficient of v in 9f. Thus, (f,c;) = 0 for all v € V if and only
if f € kerd = C. Since the vertex cuts span C*, the result follows.

Part 5 is left as an exercise. O

Remark 14. The number ranky C is known as the cycle rank or cyclomatic number of G.



