
Math 372 lecture for Monday, Week 10

Cycles and cuts in graphs

Let G = (V,E) be an undirected multigraph, not necessarily connected, and possibly
containing loop edges. By multigraph, we mean that E can be a multiset, i.e., there may be
more than one edge between a pair of vertices.

Definition 1. A cycle in a multigraph G is a path C = v1, e1, v2, e2, . . . , vn such v1 = vn,
the first n − 1 vertices are distinct, and no edge is repeated. We consider two cycles to
be the same if they differ by a cyclic shift—i.e., cycles do not have distinguished starting
points. Note that a loop is a cycle of length 1. We treat multiple edges between the same
two vertices as distinct, so that the banana graph B2, consisting of two vertices connected
by two edges, is a cycle. A multigraph with no cycles is called acyclic.

In order to develop the algebraic theory of cycles and cuts, we need to choose an ori-
entation O for the undirected multigraph G and consider the directed multigraph (G,O).
However, we will see that the main results are independent of the choice of orientation. If
the vertices of G are ordered as v1, . . . , vn, then we will generally choose the standard orien-
tation, which assigns the directed edge e = (vi, vj) to the undirected edge {vi, vj} whenever
i < j. In this case, we write e+ = vj and e− = vi.

Let ZE be the free abelian group on the undirected edges of G. In the case where E is
a multiset, copies of edges are treated as distinct in ZE. For example, if G is the banana
graph B2, mentioned above, then ZE ' Z2. If g =

∑
e∈E ae e is an element of ZE, then the

support of g, denoted supp(g), is the set of edges e for which the coefficient ae is nonzero.

The orientation O allows us to define the boundary of an edge e ∈ E as

∂e := e+ − e− ∈ ZV.

Extending linearly defines the boundary map,

∂ : ZE → ZV.
If G is a simple graph, i.e., without multiple edges, then G is a 1-dimensional simplicial
complex, and this ∂ is the usual simplicial boundary map. Fixing an ordering of the vertices
and of the edges realizes ∂ as a matrix whose columns are indexed by the edges. See Figure 1
for an example.
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Figure 1. The oriented incidence matrix with respect to the standard orientation. Rows
and columns are labeled with vertex indices.
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The cycle space. Consider a cycle C = u0, e1, u1, e2, . . . , ek, uk in the undirected graph G.
The sign of an edge e ∈ E with respect to C and the orientation O is σ(e, C) = 1 if
C = v, e, v is a loop at a vertex v, and otherwise

σ(e, C) =


1 if e− = ui and e+ = ui+1 for some i,

−1 if e+ = ui and e− = ui+1 for some i,

0 otherwise (e does not occur in C).

We then identify C with the formal sum
∑

e∈E σ(e, C)e ∈ ZE. For notational convenience,
if e = uv, we denote −e by vu.

Example 2. For the graph in Figure 1 (with the standard orientation), the cycle

C = v1, {v1, v2}, v2, {v2, v3}, v3, {v1, v3}, v1

is identified with

C = 12 + 23− 13 = 12 + 23 + 31 ∈ ZE
where 12 := v1v2, etc. This cycle is shown on the left in Figure 3.

Definition 3. The (integral) cycle space, C ⊂ ZE, is the Z-span of all cycles.

Example 4. LetG be the oriented graph pictured in Figure 2. The cycle space is isomorphic
to Z2 with basis e1 − e2, e3.
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Figure 2. C ' Z2.

The cut space. A directed cut of G is an ordered partition of the vertices into two
nonempty parts. For each nonempty U ( V , we get the directed cut, (U,U c). The cut-set
corresponding to U , denoted c∗U , is the collection of edges with one vertex in U and the
other in the complement, U c. For each e ∈ E, define the sign of e in c∗U with respect to the
orientation O by

σ(e, c∗U ) =


1 if e− ∈ U and e+ ∈ U c,

−1 if e+ ∈ U and e− ∈ U c,

0 otherwise (e does not occur in c∗U ).

We identify the cut-set c∗U with the formal sum
∑

e∈E σ(e, c∗U )e ∈ ZE. Thus, for instance,
c∗Uc = −c∗U . If G is not connected, there will be empty cut-sets, identified with 0 ∈ ZE. A
vertex cut is the cut-set corresponding to a single vertex, U = {v}, and we write c∗v for c∗U
in that case. A minimal nonempty cut-set with respect to inclusion is called a bond. For
example, the cut-set c∗{v2,v3} in Example 5 is not a bond.
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Example 5. For the graph in Figure 1 (with the standard orientation), the cut-set corre-
sponding to {v2, v3} is

c∗{v2,v3} = −12− 13 + 24 + 34

= 21 + 31 + 24 + 34 ∈ ZE.
It is shown on the right in Figure 3.
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Figure 3. The cycle C from Example 2 (left) and the cut-set c∗{v2,v3} from Example 5 (right).

Definition 6. The (integral) cut space, C∗ ⊂ ZE, is the Z-span of all cut-sets.

Exercise 7. If U is a nonempty subset of V (G), the subgraph of G induced by U , denoted
G[U ], is the graph with vertex set U and edge multiset consisting of those edges with
both ends in U . If G is connected, show that the cut-set corresponding to a nonempty set
U ( V (G) is a bond if and only if G[U ] and G[U c] are connected. If G is not connected,
show that its bonds are exactly the bonds of its connected components.

Bases for cycle and cut spaces. A spanning forest for G is a maximal subset F ⊆ E
that contains no cycles, and such that every vertex of G is on some edge in F . A spanning
tree for G is a connected spanning forest. (Thus, a spanning forest consists of the union of
spanning trees, one for each connected component of the graph.)

Proposition 8. Suppose that G is a multigraph on n vertices. The following are equivalent:

(1) G is a tree;

(2) G is minimal connected: G is connected and removing any edge from G yields a dis-
connected multigraph;

(3) G is maximal acyclic: G is acyclic and adding any edge between vertices of G produces
a cycle;

(4) G is connected and has n− 1 edges;

(5) G is acyclic and has n− 1 edges.

Fix a spanning forest F for G, and for notational purposes, identify F with its set of
edges. Let F c := E \ F .

Exercise 9. Show that for each e ∈ F c, the graph with edges F ∪{e} has a unique cycle, ce,
such that σ(e, ce) = 1. (This holds even if e is a loop.)
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Pick e ∈ F . The forest F is a disjoint union of spanning trees of the connected compo-
nents of G, and one of these spanning trees, say T , contains e. Removing e disconnects T
into two connected components T− and T+ where e− is contained in T−. Let U be the
vertices of T−. Define the cut-set c∗e := c∗U , and note that σ(e, c∗e) = 1.

Exercise 10. Show that the cut-sets c∗e are bonds.

Theorem 11.

(1) The kernel of the boundary mapping is the cycle space: ker ∂ = C.

(2) Let F be a spanning forest of G. Then {ce : e ∈ F c} is a Z-basis for C and {c∗e : e ∈ F}
is a Z-basis for C∗.

(3) rankZ C = |E| − |V | + κ, and rankZ C∗ = |V | − κ where κ is the number of connected
components of G.

(4) C = (C∗)⊥ := {f ∈ ZE : 〈f, g〉 = 0 for all g ∈ C∗} where 〈 , 〉 is defined for e, e′ ∈ E by

〈e, e′〉 := δ(e, e′) =

{
1 if e = e′,

0 if e 6= e′

and extended linearly for arbitrary pairs in ZE.

(5) If G is connected, then the following sequence is exact, i.e., the image of each mapping
is equal to the kernel of the mapping that follows it:

0 // C // ZE ∂ // ZV
deg

// Z // 0.

Proof. It is clear that C ⊆ ker ∂. For the opposite inclusion, consider an arbitrary f =∑
e∈E aee ∈ ZE. Fix a spanning forest F , and define

g := f −
∑
e∈F c

aece.

Then ∂f = ∂g and supp(g) ⊆ F . If g 6= 0, then the union of the edges in supp(g) is
a subforest of F with at least one edge; choose a leaf vertex v in this subforest. Then
v ∈ supp(∂g), and hence, ∂f = ∂g 6= 0. So if f ∈ ker ∂, then g = 0, i.e.,

f =
∑
e∈F c

aece ∈ C.

The proves part 1.

For part 2, we have just seen that {ce : e ∈ F c} spans ker ∂. These elements are linearly
independent since ce ∩ F c = {e}. To see that {c∗e : e ∈ F} is a basis for C∗, first note that
each cut-set is a linear combination of vertex cuts:

Exercise 12. Show that for each nonempty U ( V ,

c∗U =
∑
v∈U

c∗v.

Hence, the vertex cuts span C∗. However, each vertex cut is a linear combination of the c∗e:
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Exercise 13. Show that for each v ∈ V ,

c∗v =
∑

e∈F :e−=v

c∗e −
∑

e∈F :e+=v

c∗e.

(One way to proceed: First argue that we may assume G is connected. Then analyze the
above expression in terms of the components of F after removing all edges incident on v.)

Hence, {c∗e : e ∈ F} spans the cut space. Linear independence of the c∗e follows from the
fact that c∗e ∩ F = {e}.

For part 3, first note that we have just shown that both the cycle and cut space have
Z-bases, hence it makes sense to consider their ranks. Since the number of edges in a tree
is one less than the number of its vertices, we have

rankZ C∗ = |F | = |V | − κ,
and

rankZ C = |F c| = |E| − |F | = |E| − |V |+ κ.

For part 4, let f =
∑

e∈E aee. For each v ∈ V ,

〈f, c∗v〉 =
∑

e:e−=v

ae −
∑

e:e+=v

ae,

which is the negative of the coefficient of v in ∂f . Thus, 〈f, c∗v〉 = 0 for all v ∈ V if and only
if f ∈ ker ∂ = C. Since the vertex cuts span C∗, the result follows.

Part 5 is left as an exercise. �

Remark 14. The number rankZ C is known as the cycle rank or cyclomatic number of G.


