
Math 372 lecture for Friday, Week 10

Quick introduction to Smith normal form

These notes are intended as help with the homework due next Wednesday. The
complete context for the material presented here will be presented over the next
couple of days.

Let M be an m× n matrix with integer coefficients, and consider the cokernel of M ,
defined by

cok(M) := Zm/ imM.

So the cokernel of M is the set of integer vectors (a1, . . . , am) for which we add vectors
as usual, but such that any vector that is a column of M is thought of as the zero
vector.

Example. Let M = [5], a 1× 1 matrix. Then cok(M) = Z/5Z.

Example. Let M = diag(2, 3), a 2× 2 diagonal matrix. Then

cok(M) = Z2/ Span

{(
2
0

)
,

(
0
3

)}
∼−→ Z/2Z⊕ Z/3Z

(a, b) 7→ (a mod 2, b mod 3).

Setting (2, 0) equal to (0, 0) in Z2, just means we can work modulo 2 in the first
coordinate. Similarly, we can work modulo 3 in the second coordinate.

Example. Let M = diag(0, 0, 1, 2, 3). Then

cok(M) ' Z/0Z⊕ Z0Z⊕ Z/1Z⊕ Z/2Z⊕ Z/3Z ∼−→ Z⊕ Z⊕ Z/2Z⊕ Z/3Z
(a, b, c, d, e) 7→ (a, b, d, e).

Here, we use the fact that Z/0Z = Z and Z/1Z = {0}. For instance, in cok(M),
the third coordinate is always equivalent to 0 modulo 1, hence, we can drop that
coordinate in our isomorphism.

Definition. The integer row (resp., column) operations on an integer matrix consist
of the following:

1. swapping two rows (resp., columns);

2. negating a row (resp., column);

3. adding one row (resp., column) to a different row (resp., column).
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Claim. By performing integer row and column operations, the matrix M can be
transformed into a diagonal matrix D, i.e., Dij = 0 for i 6= j. To make the final form
unique, one may insist that the diagonal elements satisfy Di,i|Di+1,i+1 for all i. Start
with the the identity matrix Im and perform all of the same row operations on Im
as used in the reduction of M to D to create a matrix U . Similarly, start with In
and perform the same column operations on it as used in the reduction of M to D
to create a matrix V . Then both U and V have inverses that are integer matrices
(equivalently, det(U) = ±1 and det(V ) = ±1), and

UMV = D.

Roughly, the algorithm for reduction to a diagonal matrix goes like this: Use column
operations to put the gcd of the elements in the first row into the 1, 1-position of the
matrix. Then use the first column to make the other entries in the first row equal
to 0. Continuing, use row operations to put the gcd of the first column into the 1, 1-
position, Then use row operations to make the other entries in the first column equal
to 0. By this time, you may have put nonzero entries in the first row again. Repeat.
Eventually, every entry in the first row and column besides the 1, 1-entry will be 0.
Proceed inductively: now only use row and column operations not involving the first
row and column.

Example. Let’s figure out the structure of Pic(G) for the graph pictured below:

v1

v2 v3

v4

The Laplacian matrix is

L =


2 −1 −1 0
−1 4 −1 −2
−1 −1 3 −1

0 −2 −1 3

 .
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Perform integer row and column operations to diagonalize L:
2 −1 −1 0
−1 4 −1 −2
−1 −1 3 −1

0 −2 −1 3

 c1→c1+c2−−−−−→


1 −1 −1 0
3 4 −1 −2
−2 −1 3 −1
−2 −2 −1 3



c2→c2+c1−−−−−→
c3→c3+c1


1 0 0 0
3 7 2 −2
−2 −3 1 −1
−2 −4 −3 3



r2→r2−3r1−−−−−−−−−−−−−→
r3→r3+2r1,r4→r4+2r1


1 0 0 0
0 7 2 −2
0 −3 1 −1
0 −4 −3 3



c2→c2−3c3−−−−−−→


1 0 0 0
0 1 2 −2
0 −6 1 −1
0 5 −3 3



c3→c3−2c2−−−−−−→
c4→c4+2c2


1 0 0 0
0 1 0 0
0 −6 13 −13
0 5 −13 13



r3→r3+6r2−−−−−−→
r4→r4−5r2


1 0 0 0
0 1 0 0
0 0 13 −13
0 0 −13 13



c4→c4+c3−−−−−→


1 0 0 0
0 1 0 0
0 0 13 0
0 0 −13 0



r4→r4+r3−−−−−−→


1 0 0 0
0 1 0 0
0 0 13 0
0 0 0 0

 .
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Apply the row operations above to I4 to get U and apply the column operations to I4
to get V : 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 r2→r2−3r1−−−−−−−−−−−−−→
r3→r3+2r1,r4→r4+2r1


1 0 0 0
−3 1 0 0

2 0 1 0
2 0 0 1



r3→r3+6r2−−−−−−→
r4→r4−5r2


1 0 0 0
−3 1 0 0
−16 6 1 0

17 −5 0 1



r4→r4+r3−−−−−−→


1 0 0 0
−3 1 0 0
−16 6 1 0

1 1 1 1

 = U.


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 c1→c1+c2−−−−−→


1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1



c2→c2+c1−−−−−→
c3→c3+c1


1 1 1 0
1 2 1 0
0 0 1 0
0 0 0 1



c2→c2−3c3−−−−−−→


1 −2 1 0
1 −1 1 0
0 −3 1 0
0 0 0 1



c3→c3−2c2−−−−−−→
c4→c4+2c2


1 −2 5 −4
1 −1 3 −2
0 −3 7 −6
0 0 0 1



4



c4→c4+c3−−−−−→


1 −2 5 1
1 −1 3 1
0 −3 7 1
0 0 0 1

 = V.

We then have

ULV =


1 0 0 0
−3 1 0 0
−16 6 1 0

1 1 1 1




2 −1 −1 0
−1 4 −1 −2
−1 −1 3 −1

0 −2 −1 3




1 −2 5 1
1 −1 3 1
0 −3 7 1
0 0 0 1



=


1 0 0 0
0 1 0 0
0 0 13 0
0 0 0 0


Therefore,

Pic(G) = cok(L) ' Z/1Z⊕ Z/1Z⊕ Z/13Z⊕ Z ' Z⊕ Z/13Z.
The explicit isomorphism would be essentially given by the matrix U (as we will see)
and goes like this

Pic(G) = Z4/ im(L)→ Z/1Z⊕ Z/1Z⊕ Z/13Z⊕ Z → Z/13Z⊕ Z

(a, b, c, d) 7→ U


a
b
c
d

 =


a

−3a + b
−16a + 6b + c
a + b + c + d

 7→ (−16a + 6b + c, a + b + c + d).

You can check that each column of L is sent to (0, 0) under this mapping, and thus
the mapping is well-defined.

To find the structure of Jac(G), first take the reduced Laplacian with respect to
any vertex, then apply the procedure illustrated above. For instance, the reduced
Laplacian with respect to v1 is

L̃ =

 4 −1 −2
−1 3 −1
−2 −1 3

 .

The diagonalized version of L̃ will be 1 0 0
0 1 0
0 0 13

 ,

and so Jac(G) ' Z/13Z.
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