
Math 372 lecture for Wednesday, Week 9

Simplicial complexes: examples

Let ∆ ⊂ 2[n] be a d-dimensional simplicial complex. For each i ∈ Z we have the space
of i-dimensional chains Ci := Ci(∆,Q) := QFi, the vector space of formal sums of i-
dimensional faces of ∆. We have Ci = 0 for i < −1 and i > d, and since F−1 = {∅},
we have C−1 = Q. The boundary mapping ∂i : Ci → Ci−1 is defined as follows:
if σ = σ1 . . . σi+1 ∈ Fi where the σk are the vertices of σ and σ1 < · · · < σi+1 , then

∂i(σ) =
i+1∑
k=1

(−1)k−1σ1 . . . σ̂k . . . σi+1

= σ2σ3σ4 . . . σi+1 − σ1σ3σ4 . . . σi+1 + σ1σ2σ4 . . . σi+1 + · · · .

for −1 ≤ 1 ≤ d and ∂i = 0, otherwise. Recall the definitions of the reduced homology
groups and Betti numbers:

H̃i := H̃i(∆) := ker ∂i/ im ∂i+1

β̃i := β̃i(∆) := dim H̃i = nullity(∂i)− rank(∂i+1).

Examples.

I.1.

1 2 3 4

0→ Q4

(
1 1 1 1

)
−−−−−−−−−−−→

∂0
Q→ 0

We have rank(∂0) = 1, and hence by the rank-nullity theorem, nullity = 4 − 1 = 3.
The only non-vanishing homology group is

H̃0(∆) = ker ∂0/ im ∂1 = ker ∂0 = Span
{

2− 1, 3− 1, 4− 1
}

β̃0 = 3.

Question: What are the homology groups and Betti numbers for ∆ =
{

1, . . . , n
}

for general n ≥ 1?
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I.2.

1 2 3 4

5 6

0→ Q2



−1 0
0 −1
0 0
0 0
1 0
0 1


−−−−−−−−−→

∂1
Q6

(
1 1 1 1 1 1

)
−−−−−−−−−−−−−−−−→

∂0
Q→ 0

We have

rank(∂0) = 1, nullity(∂0) = 6− 1 = 5

rank(∂1) = 2, nullity(∂1) = 0.

Therefore, β̃0 = 5− 2 = 3 and β̃1 = 0. The same as in example I.

Homology:

H̃0 = ker ∂0/ im ∂1 = Span{2− 1, 3− 1, 4− 1, 5− 1, 6− 1}/ Span
{

5− 1, 6− 2
}

' Span{2− 1, 3− 1, 4− 1}

In H̃0, we have 5 = 1 and 6 = 2, which means, 5− 1 = 0 and 6− 1 = 2− 1.

Question: How does this example generalize?

II.1

1 2

3

0→ Q3


−1 −1 0

1 0 −1
0 1 1


−−−−−−−−−−−−−→

∂1
Q3

(
1 1 1

)
−−−−−−−−→

∂0
Q→ 0
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We have

rank(∂0) = 1, nullity(∂0) = 3− 1 = 2

rank(∂1) = 2, nullity(∂1) = 3− 2 = 1.

Therefore, β̃0 = 2− 2 = 0 and β̃1 = 1.

Homology:
H̃1 = ker ∂1/ im ∂2 = ker ∂1 = Span{23− 13 + 12}.

A picture of the generator for H̃1:

1 2

3

II.2.

1
2

3

4
5

0→ Q5



−1 0 0 0 −1
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 1


−−−−−−−−−−−−−−−−−−−−−→

∂1
Q3

(
1 1 1 1 1

)
−−−−−−−−−−−−−→

∂0
Q→ 0

We have

rank(∂0) = 1, nullity(∂0) = 5− 1 = 4

rank(∂1) = 4, nullity(∂1) = 5− 4 = 1.

Therefore, β̃0 = 4− 4 = 0 and β̃1 = 1.

Homology:

H̃1 = ker ∂1/ im ∂2 = ker ∂1 = Span{12 + 23 + 34 + 45− 15}
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The first homology is generated by a cycle of edges.

Question: What happens in homology if we start with the triangle and subdivide
its edges arbitrarily?

III.1.

1 2

34 5

Let’s compute the first homology.

0 −−→
∂2

Q7



−1 −1 −1 0 0 0 0
1 0 0 −1 −1 0 0
0 1 0 1 0 −1 −1
0 0 1 0 0 1 0
0 0 0 0 1 0 1


−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∂1
Q5

We have rank ∂1 = 4, and so nullity∂1 = 7− 4 = 3. Therefore β̃1 = 3. The homology
is generated by the cycles surrounding the three bounded faces of the complex as
drawn above:

H̃1 = ker ∂1 = Span{23− 13 + 12, 34− 14 + 13, 35− 25 + 23}

III.2.

1 2

34 5

For first homology, note that ∂2(134) = 34− 14 + 13. We get

Q



0
1
−1

0
0
1
0


−−−−−−→

∂2
Q7



−1 −1 −1 0 0 0 0
1 0 0 −1 −1 0 0
0 1 0 1 0 −1 −1
0 0 1 0 0 1 0
0 0 0 0 1 0 1


−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∂1
Q5
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We have nullity(∂1) = 7 − 4 = 3 and rank ∂2 = 1. Therefore β̃1 = 3 − 1 = 2. The
homology is generated by the cycles surrounding the two unfilled bounded faces of
the complex:

H̃1 = ker ∂1 im ∂2 = Span{23− 13 + 12, 34− 14 + 13, 35− 25 + 23}/ Span
{

34− 14 + 13
}

' Span{23− 13 + 12, 35− 25 + 23}

The cycle 34− 14 + 13 is the boundary of the shaded face, and thus has become 0 in
the homology group.

Question: How does this example generalize?

Exercise. Draw the following simplicial complexes, determine their Betti numbers,
and describe bases for their homology groups. Recall that a facet of a simplicial
complex is a face that is maximal with respect to inclusion. So we can describe
a simplicial complex by just listing its facets. The whole simplicial complex then
consists of the facets and all of their subsets.

1. ∆ with facets 123, 24, 34, 45, 56, 57, 89, 10.

2. ∆ with facets 123, 14, 24, and 34.

3. ∆ with facets 123, 124, 134, 234, 125, 135, 235. (Two hollow tetrahedra glued
along a face.)

Let ∆ be the simplicial complex from Exercise 3, above. It is called the equa-
torial bipyramid:

1

23

4

5

In each dimension i except 2, every i-cycle is an i-boundary. For instance, in
dimension 0, we have that 5 − 4 is a 0-cycle since its boundary is ∅ − ∅ = 0.
However, since 14 and 15 are part of the simplicial complex, we see

∂i(−15 + 14) = −(5− 1) + (4− 1) = 5− 4
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is a boundary. Thus, in H̃1, we have that 5− 4 = 0. Similarly,

14− 34 + 35− 15

is a 1-cycle of ∆, and it is the boundary of −134 + 135.

However, H̃2 ' Q2. Notice, that the solid tetrahedra 1234 and 1235 are not part
of ∆. We can still imagine there boundaries, though, and these are generators
for H̃2. Their boundaries will be 2-cycles, since ∂2 = 0, however, these 2-cycles
are not boundaries of ∆. So they are nonzero in H̃2.

If we added 1234 to ∆, we would get a simplicial complex with H̃2 ' Q.

Let ∆ be a simplicial complex, and consider the homology of ∆ with coefficients
in Z. This means that Ci := ZFi and the boundary mappings ∂i : ZFi → ZFi−1 are
only Z-linear.

For a hint at the difference between Z-coefficients and Q-coefficients, note that

Q2/ SpanQ {(0, 2)} ' Q, and Z2/ SpanZ {(0, 2)} ' Z× Z/2Z.

The space Z2/ SpanZ {(0, 2)} is a Z-module, meaning it is like a vector space but with
the scalars being the ring Z rather than a field. It has a free part isomorphic to Z
and a torsion part, isomorphic to Z/2Z. In general, if v1, . . . , vk ∈ Zn,

M := Zn/ SpanZ{v1, . . . , vk} ' Zr ⊕ (Z/d1Z⊕ · · · ⊕ Z/d`Z)

for some r and some integers d1, . . . , d`. The free part of M is Zr, and we say M has
rank r. The torsion part of M is (Z/d1Z⊕ · · · ⊕ Z/d`Z).

To start to get an idea of the difference for simplicial complexes, let ∆ be the trian-
gulation of the real projective plane given below:

∆ = 5

64

5

6 4

1 2

3

Where edges appear twice, it is understood that they should be glued together. This
space might look contractible (although something complicated is clearly happening
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on the boundary), and in fact, over Q, all of its homology groups are trivial. Working
over the integers, though, something interesting happens in dimension 2. Consider
orienting all ten triangles in the counterclockwise direction and adding them to get
a 2-chain α. We have

∂2(α) = 45 + 56− 46 + 45 + 56− 46

= 2
(
45 + 56− 46

)
.

Letting β := 45 + 56 − 46, we have that 2β ∈ im(∂2). Therefore, 2β = 0 ∈ H̃2 :=

ker ∂1/ im ∂2. If we were working over Q, this would also imply that β is 0 in H̃2

(since ∂(α/2) = β). But over Z, it turns out that β is nonzero in homology. In fact,
we have

H̃2(∆,Z) ' Z/2Z.
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