
Simplicial complexes

1. First definitions.

An (abstract) simplicial complex ∆ on a finite set S is a collection of subsets of S, closed
under the operation of taking subsets. The elements of a simplicial complex ∆ are called
faces. An element σ ∈ ∆ of cardinality i + 1 is called an i-dimensional face or an i-face
of ∆. The empty set, ∅, is the unique face of dimension −1. Faces of dimension 0, i.e.,
elements of S, are vertices and faces of dimension 1 are edges.

The maximal faces under inclusion are called facets. To describe a simplicial complex,
it is often convenient to simply list its facets—the other faces are exactly determined as
subsets. The dimension of ∆, denoted dim(∆), is defined to be the maximum of the
dimensions of its faces. A simplicial complex is pure if each of its facets has dimension
dim(∆).

Example 1. If G = (V,E) is a simple connected graph (undirected with no multiple edges
or loops), then G is the pure one-dimensional simplicial complex on V with E as its set of
facets.

Example 2. Figure 1 pictures a simplicial complex ∆ on the set [5] := {1, 2, 3, 4, 5}:

∆ := {∅, 1, 2, 3, 4, 5, 12, 13, 23, 24, 34, 123},

writing, for instance, 23 to represent the set {2, 3}.
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Figure 1. A 2-dimensional simplicial complex, ∆.

The sets of faces of each dimension are:

F−1 = {∅} F0 = {1, 2, 3, 4, 5}

F1 = {12, 13, 23, 24, 34} F2 = {123}.

Its facets are 5, 24, 34, and 123. The dimension of ∆ is 2, as determined by the facet 123.
Since not all of the facets have the same dimension, ∆ is not pure.
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2. Simplicial homology

Let ∆ be an arbitrary simplicial complex. By relabeling, if necessary, assume its vertices
are [n] := {1, . . . , n}. For each i, let Fi(∆) be the set of faces of dimension i, and define the
group of i-chains to be the free abelian group with basis Fi(∆):

Ci = Ci(∆) := ZFi(∆) := {
∑

σ∈Fi(∆) aσ σ : aσ ∈ Z}.

The boundary of σ ∈ Fi(∆) is

∂i(σ) :=
∑
j∈σ

sign(j, σ) (σ \ j),

where sign(j, σ) = (−1)k−1 if j is the k-th element of σ when the elements of σ are listed
in order, and σ \ j := σ \ {j}. Extending linearly gives the i-th boundary mapping,

∂i : Ci(∆)→ Ci−1(∆).

If i > n − 1 or i < −1, then Ci(∆) := 0, and we define ∂i := 0. We sometimes simply
write ∂ for ∂i if the dimension i is clear from context.

Example 3. Suppose σ = {1, 3, 4} = 134 ∈ ∆. Then σ ∈ F2(∆), and

sign(1, σ) = 1, sign(3, σ) = −1, sign(4, σ) = 1.

Therefore,
∂(σ) = ∂2(134) = 34− 14 + 13.

The (augmented) chain complex of ∆ is the complex

0 −→ Cn−1(∆)
∂n−1

−→ · · ·
∂2
−→ C1(∆)

∂1
−→ C0(∆)

∂0
−→ C−1(∆) −→ 0.

The word complex here refers to the fact that ∂2 := ∂ ◦ ∂ = 0, i.e., for each i, we have
∂i−1 ◦ ∂i = 0.
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Figure 2. Two boundary mapping examples. Notation: if i < j, then we write i j
for ij and i j for −ij.

Figure 2 gives two examples of the application of a boundary mapping. Note that

∂2(12) = ∂0(∂1(12)) = ∂0(2− 1) = ∅ − ∅ = 0.

The reader is invited to verify ∂2(123) = 0.

Figure 3 shows the boundary of σ = 1234, the solid tetrahedron. Figure 4 helps to
visualize the fact that ∂2(σ) = 0. The orientations of the triangles may be thought of as
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Figure 3. ∂3 for a solid tetrahedron. Notation: if i < j < k, then we write
i j

k

for

ijk and
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k

for −ijk.

inducing a “flow” along the edges of the triangles. These flows cancel to give a net flow
of 0. This should remind you of Stokes’ theorem from multivariable calculus.
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Figure 4. As seen in Figure 3, the boundary of a solid tetrahedron consists of oriented
triangular facets.

Example 4. Let ∆ be the simplicial complex on [4] with facets 12, 3, and 4 pictured in
Figure 5. The faces of each dimension are:

F−1(∆) = {∅}, F0(∆) = {1, 2, 3, 4}, F1(∆) = {12}.
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Figure 5. Simplicial complex for Example 4.

Here is the chain complex for ∆:
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0 C1(∆) C0(∆) C−1(∆) 0.
∂1 ∂0

12 2− 1

1
2
3
4

∅

In terms of matrices, the chain complex is given by

0 Z Z4 Z 0.
∂1 ∂0


−1
1
0
0


1
2
3
4

12

(
1 1 1 1

)
∅

1 2 3 4

The sequence is not exact since rk(im ∂1) = rk ∂1 = 1, whereas by rank-nullity, rk(ker(∂0)) =
4− rk ∂0 = 3.

Definition 5. For i ∈ Z, the i-th (reduced) homology of ∆ is the abelian group

H̃i(∆) := ker ∂i/ im ∂i+1.

In particular, H̃n−1(∆) = ker(∂n−1), and H̃i(∆) = 0 for i > n − 1 or i < 0. Elements of
ker ∂i are called i-cycles and elements of im ∂i+1 are called i-boundaries. The i-th (reduced)
Betti number of ∆ is the rank of the i-th homology group:

β̃i(∆) := rk H̃i(∆) = rk(ker ∂i)− rk(∂i+1).

Remark 6. To define ordinary (non-reduced) homology groups, Hi(∆), and Betti num-
bers βi(∆), modify the chain complex by replacing C−1(∆) with 0 and ∂0 with the zero map-

ping. The difference between homology and reduced homology is that H0(∆) ' Z⊕ H̃0(∆)

and, thus, β0(∆) = β̃0(∆) + 1. All other homology groups and Betti numbers coincide.
From now on, we use “homology” to mean reduced homology.

In general, homology can be thought of as a measure of how close the chain complex is

to being exact. In particular, H̃i(∆) = 0 for all i if and only if the chain complex for ∆ is
exact. For the next several examples, we will explore how exactness relates to the topology
of ∆.

The 0-th homology group measures “connectedness”. Write i ∼ j for vertices i and j in
a simplicial complex ∆ if ij ∈ ∆. An equivalence class under the transitive closure of ∼ is
a connected component of ∆.

Exercise 7. Show that β̃0(∆) is one less than the number of connected components of ∆.

For instance, for the simplicial complex ∆ in Example 4,

β̃0(∆) = rk H̃0(∆) = rk(ker ∂0)− rk(∂1) = 3− 1 = 2.
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Example 8. The hollow triangle,

1 2

3

∆ = {∅, 1, 2, 3, 12, 13, 23}

has chain complex

0 Z3 Z3 Z 0.
∂1 ∂0

−1 −1 0
1 0 −1
0 1 1

1
2
3

12 13 23

(
1 1 1

)
∅

1 2 3

It is easy to see that rk(∂1) = rk(ker ∂0) = 2. It follows that β̃0(∆) = 0, which could have
been anticipated since ∆ is connected. Since rk(∂1) = 2, rank-nullity says rk(ker ∂1) = 1,

whereas ∂2 = 0. Therefore, β̃1(∆) = rk(ker ∂1) − rk(∂2) = 1. In fact, H̃1(∆) is generated
by the 1-cycle

23− 13 + 12 =

1 2

3

.

If we would add 123 to ∆ to get a solid triangle, then the above cycle would be a boundary,
and there would be no homology in any dimension. Similarly, a solid tetrahedron has no
homology, and a hollow tetrahedron has homology only in dimension 2 (of rank 1).

Exercise 9. Compute the Betti numbers for the simplicial complex formed by gluing two
(hollow) triangles along an edge. Describe generators for the homology.

Example 10. Consider the simplicial complex pictured in Figure 6 with facets 14, 24, 34, 123.
It consists of a solid triangular base whose vertices are connected by edges to the vertex 4.
The three triangular walls incident on the base are hollow.
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Figure 6. Simplicial complex for Example 10.
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What are the Betti numbers? The chain complex is:

0 Z Z6 Z4 Z 0.
∂2 ∂1 ∂0


1
−1
0
1
0
0


123

12
13
14
23
24
34

−1 −1 −1 0 0 0
1 0 0 −1 −1 0
0 1 0 1 0 −1
0 0 1 0 1 1

1
2
3
4

12 13 14 23 24 34

( 1 1 1 1 )∅
1 2 3 4

By inspection, rk(∂2) = 1 and rk(∂1) = rk(ker ∂0) = 3. Rank-nullity gives rk(ker ∂1) =

6 − 3 = 3. Therefore, β̃0 = β̃2 = 0 and β̃1 = 2. It is not surprising that β̃0 = 0, since ∆ is
connected. Also, the fact that β̃2 = 0 is easy to see since 123 is the only face of dimension
2, and its boundary is not zero. Seeing that β̃1 = 2 is a little harder. Given the cycles
corresponding to the three hollow triangles incident on vertex 4, one might suppose β̃1 = 3.
However, as conveyed in Figure 7, those cycles are not independent: if properly oriented
their sum is the boundary of the solid triangle, 123; hence, their sum is 0 in the first
homology group.
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(12 + 24− 14) + (23 + 34− 24) + (14− 34− 13) = (12 + 23− 13)︸ ︷︷ ︸
∂2( 123 )

Figure 7. A tetrahedron with solid base and hollow walls. Cycles around the walls sum to
the boundary of the base, illustrating a dependence among the cycles in the first homology

group.

2.1. A quick aside on algebraic topology. Algebraic topology seeks an assignment of
the form X 7→ α(X) where X is a topological space and α(X) is some algebraic invariant (a
group, ring, etc.). If X ' Y as topological spaces, i.e., if X and Y are homeomorphic, then
we should have α(X) ' α(Y ) as algebraic objects—this is what it means to be invariant.
The simplicial homology we have developed provides the tool for creating one such invariant.

Let X be a 2-torus—the surface of a donut. Draw triangles on the surface so that
neighboring triangles meet vertex-to-vertex or edge-to-edge. The triangulation is naturally
interpreted as a simplicial complex ∆. An amazing fact, of fundamental importance, is that
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the associated homology groups do not depend on the choice of triangulation! In this way,
we get an assignment

X 7→ H̃i(X) := H̃i(∆),

and, hence, also X 7→ β̃i(X) := β̃i(∆), for all i.

In a course on algebraic topology, one learns that these homology groups do not see
certain aspects of a space. For instance, they do not change under certain contraction
operations. A line segment can be continuously morphed into a single point, and the same
goes for a solid triangle or tetrahedron. So these spaces all have the homology of a point—in
other words: none at all (all homology groups are trivial). A tree is similarly contractible
to a point, so the addition of a tree to a space has no effect on homology. Imagine the tent
with missing walls depicted in Figure 6. Contracting the base to a point leaves two vertices
connected by three line segments. Contracting one of these line segments produces two
loops meeting at a single vertex. No further significant contraction is possible—we are not
allowed to contract around “holes” (of any dimension). These two loops account for β̃1 = 2
in our previous calculation. As another example, imagine a hollow tetrahedron. Contracting
a facet yields a surface that is essentially a sphere with three longitudinal lines connecting
its poles, thus dividing the sphere into 3 regions. Contracting two of these regions results in
a sphere—a bubble—with a single vertex drawn on it. No further collapse is possible. This
bubble accounts for the fact that β̃2 = 1 is the only nonzero Betti number for the sphere.
(Exercise: verify that β̃2 = 1 in this case.)
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