
Math 372 lecture for Friday, Week 9

Order complexes

Let P be a finite poset. Recall that a chain of length ` is a sequence of elements of P
of the form x0 < x1 < · · · < x`. Create a simplicial complex ∆(P ) corresponding
to P by taking the vertices to be the elements of P and the i-faces to be the chains
of length i. Note that a subset of a chain is again a chain. The facets of ∆(P ) are
the maximal chains of P .

To create the boundary mapping, we need to linearly order the vertices, i.e., the ele-
ments of P . We can do this arbitrarily, although we will always do this by refining the
given ordering on P . Denote the linear ordering by ≺, as opposed to the ordering <
on P . Then we will choose ≺ so that x < y implies x ≺ y.

Example. (Bruhat order on Sn). For this example, we will represent each permu-
tation π by the word consisting of the list π(1)π(2) . . . π(n). For example, if n = 3
and π(1) = 2, π(2) = 3, and π(3) = 1, we represent π by 231. An inversion of a
permutation π ∈ Sn is a pair 1 ≤ i < j ≤ n such that π(i) > π(j). Define `(π) to
be the number of inversions of π. So for example, `(123) = 0 and `(321) = 3, the
latter since 3 > 2, 3 > 1, and 2 > 1. The Bruhat order on Sn has covering rela-
tions π l τ if τ can be obtained from π by a transposition (swapping two elements)
and `(τ) = `(π) + 1.

The Hasse diagram for Bruhat order on Sn:

123

213 132

312231

321

=

a

b c

ed

f

The order complex for this poset has four facets:

abdf, abef, acdf, acef.

These represent four solid tetrahedra sharing the edge af and forming a three di-
mensional triangulation of a solid sphere. It thus has no homology (i.e., all of the
homology groups are 0).
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Definition. The (reduced) Euler characterisic of a d-dimensional simplicial com-
plex ∆ is

χ̃(∆) :=
∑
i∈Z

(−1)i dim H̃i(∆) =
d∑

i=0

(−1)iβ̃i.

Exercise. Show that

χ̃(∆) = −f−1 + f0 − f1 + · · ·+ fd,

where fi = |Fi|, the number of faces of dimension i.

Proposition. (Philip Hall’s theorem) Give an finite poset P , let P̂ be the poset
formed from P by adjoining 0̂ and 1̂ where 0̂ < p < 1̂ for all p ∈ P . Let ci be
the number of chains of the form 0̂ = p0 < · · · < pi = 1̂. (In particular, c0 = 0
and c1 = 1.) Then

µP̂ (0̂, 1̂) = χ̃(∆(P )) = c0 − c1 + c2 − · · · .

Proof. Using results from the homework, we have

µP̂ (0̂, 1̂) =
1

ζ
(0̂, 1̂)

=
1

δ + (ζ − δ)
(0̂, 1̂)

= (δ − (ζ − δ) + (ζ − δ)2 − · · · )(0̂, 1̂)

= δ(0̂, 1̂)− (ζ − δ)(0̂, 1̂) + (ζ − δ)2(0̂, 1̂)− · · ·

= c0 − c1 + c2 − · · ·
= 0− f−1 + f0 − · · ·
= χ̃(∆(P )).

�

Corollary. Let P be a locally finite poset, and P ∗ be its dual poset, equal to P as
a set but with s < t in P ∗ if t < s in P . (So the Hasse diagram for P ∗ is the flip of
that for P .) Then for all s < t in P , we have

µP (s, t) = µP ∗(t, s).
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Proof. Let Q be the subposet of P formed from the interval [s, t] by removing s

and t, and let Q∗ be its dual. Then Q̂ ' [s, t], and

µQ̂(0̂, 1̂) = µP (s, t).

Similarly
µQ̂∗(0̂, 1̂) = µP ∗(s, t).

However, the ci’s for Q and for Q∗ are equal. �
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