
Math 372 lecture for Wednesday, Week 8

Möbius inversion for posets

Let P be a finite poset with Möbius function µ and zeta function ζ. Let K be a
field, and recall that I(P ) is the incidence algebra of P whose elements are func-
tions ξ : Int(P )→ K, and if ξ, η ∈ I(P ), then

(ξη)(x, y) :=
∑

z∈[x,y]

ξ(x, z)η(z, y)

for all intervals [x, y] ∈ Int(P ). We now define right and left actions of I(P ) on KP .
If f ∈ KP , i.e., if f : P → K, and ξ ∈ I(P ), let

(fξ)(t) =
∑
s:s≤t

f(s)ξ(s, t)

and
(ξf)(t) =

∑
s:s≥t

f(s)ξ(t, s),

respectively, for all f ∈ KP , ξ ∈ I(P ), and t ∈ P .

Theorem. (Möbius inversion) For all f, g ∈ KP

g(t) =
∑
s:s≤t

f(s) ∀t ∈ P ⇔ f(t) =
∑
s:s≤t

µ(s, t)g(s) ∀t ∈ P

g(t) =
∑
s:s≥t

f(s) ∀t ∈ P ⇔ f(t) =
∑
s:s≥t

µ(t, s)g(s) ∀t ∈ P.

Proof. Since µ = ζ−1,

g = fζ ⇔ f = gµ

g = ζf ⇔ f = µg.

�

The principle of inclusion-exclusion as an instance of Möbius inversion.

Product posets. Given posets P and Q, define their product P×Q to be the Cartesian
product with ordering

(p, q) ≤ (p′, q′) ⇔ p ≤ q and p′ ≤ q′.
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If P and Q are locally finite, then so is P × Q, and we have the following equation
for Möbius functions:

µP×Q((p, q), (p′, q′)) = µP (p, p′)µQ(q, q′).

To see this, compute:

∑
(p,q)≤(a,b)≤(p′,q′)

µP (p, a)µQ(q, b) =

( ∑
p≤a≤p′

µP (p, a)

)( ∑
q≤b≤q′

µQ(q, b)

)

= δP (p, p′)δQ(q, q′)

= δP×Q((p, q), (p′, q′)).

Möbius function of the boolean poset Bn. Define the poset 2 := {0, 1} with 0 < 1.
Then µ(0, 0) = µ(1, 1) = 1, and µ(0, 1) = −1. We have an isomorphism of posets

2n = 2× · · · × 2
∼−→ Bn

(a1, . . . , an) 7→ {i ∈ [n] : ai = 1} .

Let T ⊆ S ⊆ [n], and use the above isomorphism to identify T with (t1, . . . , tn) and S
with (s1, . . . , sn) where ti, si ∈ {0, 1} for all i. Then,

µBn(T, S) =
n∏

i=1

µ2(ti, si) = (−1)|S|−|T |.

Principle of inclusion-exclusion (PIE). Letting K be any field, Möbius inversion then
says that for all f, g : Bn → K

g(S) =
∑

T :T⊆S

f(T ) ∀S ⊆ [n] ⇔ f(S) =
∑

T :T⊆S

(−1)|S|−|T |g(T ) ∀S ⊆ [n],

and dually,

g(S) =
∑

T :T⊇S

f(T ) ∀S ⊆ [n] ⇔ f(S) =
∑

T :T⊇S

(−1)|T |−|S|g(T ) ∀S ⊆ [n].

As an instance, suppose that A1, . . . , An are subsets of some finite set A. De-
fine f : Bn → Q by

f(S) = | {a ∈ A : a ∈ Ai iff i ∈ S} |.
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for all S ⊆ [n]. Thus, f(S) is the cardinality of the set of elements of A that form a
region in the Venn diagram for A1, . . . , An. The “outer” region is counted by

f(∅) = |A \
(
∪i∈[n]Ai

)
| = |A| − |A1 ∪ · · · ∪ An| = |Ac

1 ∩ · · · ∩ Ac
n|.

In particular, if A = ∪i∈[n]Ai
, then f(∅) = 0.

Define
g(S) =

∑
T :T⊇S

f(T ).

Then

g(S) =

{
| ∩i∈S Ai| if S 6= ∅
|A| if S = ∅.

Apply the (second version) of Möbius inversion to get

f(∅) =
∑

T :T⊃∅

(−1)|T |g(T )

= |A| −
∑
i

|Ai|+
∑
i<j

|Ai ∩ Aj| −
∑
i<j<k

|Ai ∩ Aj ∩ Ak|+ · · ·+ (−1)n|A1 ∩ · · · ∩ An|.

On the other hand, we have, f(∅) = |A|−|A1∪· · ·∪An|. The principle of inclusion-
exclusion follows:

|A1∪· · ·∪An| =
∑
i

|Ai|−
∑
i<j

|Ai∩Aj|+
∑
i<j<k

|Ai∩Aj∩Ak|+· · ·+(−1)n−1|A1∩· · ·∩An|.
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