Math 372 lecture for Wednesday, Week 8

Möbius inversion for posets

Let P be a finite poset with Möbius function μ and zeta function ζ . Let K be a field, and recall that $\mathcal{I}(P)$ is the incidence algebra of P whose elements are functions $\xi \colon \operatorname{Int}(P) \to K$, and if $\xi, \eta \in \mathcal{I}(P)$, then

$$(\xi\eta)(x,y) := \sum_{z \in [x,y]} \xi(x,z)\eta(z,y)$$

for all intervals $[x, y] \in \text{Int}(P)$. We now define right and left actions of $\mathcal{I}(P)$ on K^P . If $f \in K^P$, i.e., if $f \colon P \to K$, and $\xi \in \mathcal{I}(P)$, let

$$(f\xi)(t) = \sum_{s:s \le t} f(s)\xi(s,t)$$

and

$$(\xi f)(t) = \sum_{s:s \ge t} f(s)\xi(t,s),$$

respectively, for all $f \in K^P$, $\xi \in \mathcal{I}(P)$, and $t \in P$.

Theorem. (Möbius inversion) For all $f, g \in K^P$

$$g(t) = \sum_{s:s \le t} f(s) \quad \forall t \in P \quad \Leftrightarrow \quad f(t) = \sum_{s:s \le t} \mu(s,t)g(s) \quad \forall t \in P$$
$$g(t) = \sum_{s:s \ge t} f(s) \quad \forall t \in P \quad \Leftrightarrow \quad f(t) = \sum_{s:s \ge t} \mu(t,s)g(s) \quad \forall t \in P.$$

Proof. Since $\mu = \zeta^{-1}$,

$$g = f\zeta \quad \Leftrightarrow \quad f = g\mu$$
$$g = \zeta f \quad \Leftrightarrow \quad f = \mu g.$$

The principle of inclusion-exclusion as an instance of Möbius inversion.

Product posets. Given posets P and Q, define their product $P \times Q$ to be the Cartesian product with ordering

$$(p,q) \le (p',q') \quad \Leftrightarrow \quad p \le q \text{ and } p' \le q'.$$

If P and Q are locally finite, then so is $P \times Q$, and we have the following equation for Möbius functions:

$$\mu_{P \times Q}((p,q), (p',q')) = \mu_P(p,p')\mu_Q(q,q').$$

To see this, compute:

$$\sum_{\substack{(p,q)\leq(a,b)\leq(p',q')}}\mu_P(p,a)\mu_Q(q,b) = \left(\sum_{p\leq a\leq p'}\mu_P(p,a)\right)\left(\sum_{q\leq b\leq q'}\mu_Q(q,b)\right)$$
$$= \delta_P(p,p')\delta_Q(q,q')$$
$$= \delta_{P\times Q}((p,q),(p',q')).$$

Möbius function of the boolean poset B_n . Define the poset $\mathbf{2} := \{0, 1\}$ with 0 < 1. Then $\mu(0, 0) = \mu(1, 1) = 1$, and $\mu(0, 1) = -1$. We have an isomorphism of posets

$$2^{n} = 2 \times \cdots \times 2 \xrightarrow{\sim} B_{n}$$
$$(a_{1}, \dots, a_{n}) \mapsto \{i \in [n] : a_{i} = 1\}.$$

Let $T \subseteq S \subseteq [n]$, and use the above isomorphism to identify T with (t_1, \ldots, t_n) and S with (s_1, \ldots, s_n) where $t_i, s_i \in \{0, 1\}$ for all i. Then,

$$\mu_{B_n}(T,S) = \prod_{i=1}^n \mu_2(t_i,s_i) = (-1)^{|S| - |T|}.$$

Principle of inclusion-exclusion (PIE). Letting K be any field, Möbius inversion then says that for all $f, g: B_n \to K$

$$g(S) = \sum_{T:T \subseteq S} f(T) \quad \forall S \subseteq [n] \quad \Leftrightarrow \quad f(S) = \sum_{T:T \subseteq S} (-1)^{|S| - |T|} g(T) \quad \forall S \subseteq [n],$$

and dually,

$$g(S) = \sum_{T:T \supseteq S} f(T) \quad \forall S \subseteq [n] \quad \Leftrightarrow \quad f(S) = \sum_{T:T \supseteq S} (-1)^{|T| - |S|} g(T) \quad \forall S \subseteq [n].$$

As an instance, suppose that A_1, \ldots, A_n are subsets of some finite set A. Define $f: B_n \to \mathbb{Q}$ by

$$f(S) = |\{a \in A : a \in A_i \text{ iff } i \in S\}|$$

for all $S \subseteq [n]$. Thus, f(S) is the cardinality of the set of elements of A that form a region in the Venn diagram for A_1, \ldots, A_n . The "outer" region is counted by

$$f(\emptyset) = |A \setminus \left(\bigcup_{i \in [n]A_i} \right)| = |A| - |A_1 \cup \dots \cup A_n| = |A_1^c \cap \dots \cap A_n^c|$$

In particular, if $A = \bigcup_{i \in [n]A_i}$, then $f(\emptyset) = 0$.

Define

$$g(S) = \sum_{T:T\supseteq S} f(T).$$

Then

$$g(S) = \begin{cases} |\cap_{i \in S} A_i| & \text{if } S \neq \emptyset \\ |A| & \text{if } S = \emptyset. \end{cases}$$

Apply the (second version) of Möbius inversion to get

$$f(\emptyset) = \sum_{T:T \supset \emptyset} (-1)^{|T|} g(T)$$

= $|A| - \sum_{i} |A_i| + \sum_{i < j} |A_i \cap A_j| - \sum_{i < j < k} |A_i \cap A_j \cap A_k| + \dots + (-1)^n |A_1 \cap \dots \cap A_n|.$

On the other hand, we have, $f(\emptyset) = |A| - |A_1 \cup \cdots \cup A_n|$. The **principle of inclusion-exclusion** follows:

$$|A_1 \cup \dots \cup A_n| = \sum_i |A_i| - \sum_{i < j} |A_i \cap A_j| + \sum_{i < j < k} |A_i \cap A_j \cap A_k| + \dots + (-1)^{n-1} |A_1 \cap \dots \cap A_n|.$$