Math 372 lecture for Friday, Week 8

Möbius inversion examples

We first recall a few things from the last lecture.

Möbius inversion. If P is finite and $f, g: P \to K$, then

$$\begin{split} g(t) &= \sum_{s:s \leq t} f(s) \quad \forall t \in P \quad \Leftrightarrow \quad f(t) = \sum_{s:s \leq t} \mu(s,t)g(s) \quad \forall t \in P \\ g(t) &= \sum_{s:s \geq t} f(s) \quad \forall t \in P \quad \Leftrightarrow \quad f(t) = \sum_{s:s \geq t} \mu(t,s)g(s) \quad \forall t \in P. \end{split}$$

Product posets. If P, Q are posets, then $P \times Q$ is a poset with

$$(p,q) \le (p',q') \quad \Leftrightarrow \quad p \le q \text{ and } p' \le q'.$$

and

$$\mu_{P \times Q}((p,q),(p',q')) = \mu_P(p,p')\mu_Q(q,q').$$

Boolean poset. We saw that $B_n \simeq 2^n$ as posets and used the product rule to show

$$\mu_{B_n}(T,S) = (-1)^{|S| - |T|}$$

for all $T \subseteq S \subseteq [n]$.

Principle of inclusion-exclusion. As a special case of Möbius inversion for B_n we showed that if A_1, \ldots, A_n are subsets of some finite set A, then

$$|A_1 \cup \dots \cup A_n| = \sum_i |A_i| - \sum_{i < j} |A_i \cap A_j| + \sum_{i < j < k} |A_i \cap A_j \cap A_k| + \dots + (-1)^{n-1} |A_1 \cap \dots \cap A_n|.$$

We now give a couple more applications of Möbius inversion.

Derangements revisited. For each $S \subseteq [n]$, let f(S) be the number of elements $\pi \in \mathfrak{S}_n$ whose set of fixed points is exactly S:

$$f(S) = |\{\pi \in \mathfrak{S}_n : \pi(i) = i \text{ iff } i \in S\}|,$$

and let g(S) be the number of elements $\pi \in \mathfrak{S}_n$ whose set of fixed points includes S:

$$g(S) = |\{\pi \in \mathfrak{S}_n : \pi(i) = i \text{ for all } i \in S\}|.$$

An easy counting argument and Möbius inversion then gives the number of derangments D_n :

$$D_n = f(\emptyset)$$

= $\sum_{T:\emptyset\subset T} (-1)^{|T|} g(T)$
= $\sum_{T:\emptyset\subset T} (-1)^{|T|} (n - |T|)!$
= $\sum_{i=1}^n \sum_{|T|=i} (-1)^i (n - i)!$
= $\sum_{i=1}^n (-1)^i {n \choose i} (n - i)!$
= $n! \sum_{i=1}^n \frac{(-1)^i}{i!}.$

Thus,

$$\frac{D_n}{n!} = \sum_{i=1}^n \frac{(-1)^i}{i!} = 1 - 1 + \frac{1}{2} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!}.$$

A curiosity. What is the probability that a random function $f: [n] \to [n]$ has no fixed points? To answer this, note that to create a such a function, the only restriction is that $f(i) \in [n] \setminus \{i\}$ for each *i*. Hence, for each *i* there are (n-1) choices for f(i). This means the total number of such functions is $(n-1)^n$. The total number of functions $[n] \to [n]$ with no restrictions is n^n . Thus, the probability we are looking for is

$$\frac{(n-1)^n}{n^n} = \left(1 - \frac{1}{n}\right)^n.$$

As $n \to \infty$, we have

$$\left(1-\frac{1}{n}\right)^n \to \frac{1}{e}.$$

Divisibility poset. Let $\mathbb{W} := \mathbb{Z}_{>0} = \{1, 2, ...\}$, the set of positive integers with a poset structure defined by divisibility: for $a, b \in \mathbb{W}$, let $a \leq b$ if a|b, i.e., if there exists an integer k such that b = ka.

Given $n \in \mathbb{W}$ consider the interval [1, n] as a subposet of \mathbb{W} . The Möbius function of [1, n] is equal to the Möbius function of \mathbb{W} restricted to [1, n]. Möbius inversion

applied to $[1, d] \subset \mathbb{W}$ says that for $f, g: [1, d] \to K$,

$$f(n) = \sum_{d:d|n} g(d) \quad \Leftrightarrow \quad g(n) = \sum_{d:d|n} \mu_{\mathbb{W}}(d,n) f(d).$$

Our goal now is to find a formula for $\mu_{\mathbb{W}}$. Factor *n* into primes: $n = \prod_{i=1}^{k} p_i^{e_i}$ where each p_i is a prime number and each e_i is a positive integer. Then $a \in [1, n]$ if and only if a|n, which is equivalent to saying $a = \prod_{i=1}^{k} p_i^{f_i}$ where $0 \leq f_i \leq e_i$ for $i = 1, \ldots, k$. Thus, there is an isomorphism of posets

$$\mathbb{W} \supset [1, n] \xrightarrow{\sim} \{0, 1, \dots, e_1\} \times \dots \times \{0, 1, \dots, e_k\}$$
$$a = \prod_{i=1}^k p_i^{f_i} \mapsto (f_1, \dots, f_k),$$

where each $\{0, 1, \ldots, e_i\}$ is a subset of \mathbb{N} with the *usual* ordering of natural numbers. Recall that

$$\mu_{\mathbb{N}}(i,j) = \begin{cases} 1 & \text{if } j = i \\ -1 & \text{if } j = i+1 \\ 0 & \text{if } j > i+1. \end{cases}$$

Suppose that $d = \prod_{i=1}^{k} p_i^{d_i}$. Using the above isomorphism, we identify [d, n] with a product poset and compute

$$\mu_{\mathbb{W}}(d,n) = \prod_{i=1}^{k} \mu_{\mathbb{N}}(d_i, e_i) = \begin{cases} 0 & \text{if } e_i - d_i > 1 \text{ for some } i, \\ (-1)^{\ell} & \text{where } \ell = |\{i : e_i - d_i = 1\}|, \\ 1 & \text{if } e_i = d_i. \end{cases}$$

When we were discussing Dirichlet series, we defined the Möbius function $\mu: \mathbb{Z}_{>0} \to \{-1, 0, 1\}$ as the unique multiplicative function such that

$$\mu(p^e) = \begin{cases} 1 & \text{if } e = 0\\ -1 & \text{if } e = 1\\ 0 & \text{if } e > 0 \end{cases}$$

for each prime p and $e \ge 0$. We see that

$$\mu\left(\frac{n}{d}\right) = \mu\left(\prod_{i=1}^{k} p_i^{e_i - d_i}\right) = \prod_{i=1}^{k} \mu\left(p_i^{e_i - d_i}\right) = \mu_{\mathbb{W}}(d, n).$$

Möbius inversion on the poset \mathbb{W} thus recovers the classical Möbius inversion formula: if $f(n) = \sum_{d:d|n} g(d)$, then

$$g(n) = \sum_{d:d|n} \mu_W(d,n) f(d) = \sum_{d:d|n} \mu\left(\frac{n}{d}\right) f(d).$$