
Math 372 lecture for Friday, Week 4

Definition. A sequence of real numbers a0, . . . , an is logarithmically concave or log-
concave is

a2i ≥ ai−1ai+1

for 1 ≤ i ≤ n− 1. We say a0, . . . , an is strongly log-concave if

b2i ≥ bi−1bi+1

for 1 ≤ i ≤ n− 1 where bi := ai/
(
n
i

)
.

The name log-concave comes from the fact that a2i ≥ ai−1ai+1 is a multiplicative
version of the inequality ai ≥ ai−1+ai+1

2
. An easy calculation shows that strong log-

concavity is equivalent to

a2i ≥
(

1 +
1

i

)(
1 +

1

n− i

)
ai−1ai+1,

from which it follows that strong log-concavity implies log-concavity.

It is not always true that log-concavity implies unimodality. Consider 1, 0, 0, 1, for
instance. A sequence, a0, a1, . . . , an has no internal zeros if whenever i < j < k and
both ai and ak are nonzero, then aj is also nonzero.

Proposition 5.11 Let α = (a0, . . . , an) be a sequence of nonnegative real numbers
with no internal zeros. If α is log-concave, the α is unimodal.

Proof. If at most two values of α are nonzero, then ai−1ai−1 = 0 for all 1 ≤ i ≤ n− 1,
and the result holds. Otherwise, assume α is not unimodal. Then there exists 1 ≤
i ≤ n − 1 such that ai−1 > ai < ai+1. Using the fact that the elements of α are
nonnegative, it follows that a2i < ai−1ai+1.

Example. The n-th row of Pascal’s triangle(
n

0

)
,

(
n

1

)
, . . . ,

(
n

n

)
is trivially strongly log-concave with no internal zeros. Hence, it is unimodal. Here
is a combinatorial proof of log-concavity of the binomial coefficients from Richard
Stanley’s paper Log-concave and unimodal sequences in algebra, combinatorics, and
geometry, 1989 (see the “Final word of warning” at the end of that paper). Let

(
[n]
i

)
denote the collection of subsets of [n] of size i. We describe an injection

φ :

(
[n]

i− 1

)
×
(

[n]

i+ 1

)
→
(

[n]

i

)
×
(

[n]

i

)
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Log-concavity then follows:

ai−1ai+1 =

∣∣∣∣( [n]

i− 1

)∣∣∣∣ ∣∣∣∣( [n]

i+ 1

)∣∣∣∣ ≤ ∣∣∣∣([n]

i

)∣∣∣∣2 = a2i .

For any X ⊆ [n] and j = 0, . . . , n, define

Xj = X ∩ [j] = {x ∈ X : x ≤ j} .

Given (A,B) ∈
(
[n]
i−1

)
×
(
[n]
i+1

)
, let j be the smallest nonnegative integer such that

|Aj| = |Bj| − 1. This integer must exist since |A0| = |B0| = 0, and |An| = |Bn| − 2,
and the sizes of Aj and Bj grow in size by at most one each time j increases by one.
Next, define

C := Aj ∪ (B \Bj) and D := Bj ∪ (A \ Aj).

Note that these are disjoint unions since, for instance Aj ⊆ [j] and B \Bj ⊂ [n] \ [j].
We also have that |C| = |D| = i: instance,

|C| = |Aj|+ |B| − |Bj| = |Aj|+ (i+ 1)− (|Aj|+ 1) = i,

and similarly for |D|. Define φ(A,B) = (C,D). For injectivity, note that

Ak = Ck and Bk = Dk

for k = 0, . . . , j, while

Aj+1 6= Cj+1 and Bj+1 6= Dj+1.

Thus, we can recover j, Aj, and Bj from (C,D). But from that information, we can
recover (A,B). For instance,

A = Cj ∪ (D \Bj).

That completes the proof.

Example. Let A = {1, 3, 4, 6}. Then A0 = ∅, A1 = A2 = {1}, A3 = {1, 3},
A4 = A5 = {1, 3, 4}, and A6 = A.

There is a surprising connection between log-concavity and polynomials with real
zeros:

Theorem 5.12 (I. Newton) Let

P (x) =
n∑

i=0

bix
i =

n∑
i=0

(
n

i

)
aix

i

2



be a real polynomial all of whose zeros are real numbers. Then the sequence b0, . . . , bn
is strongly log-concave, or equivalently, the sequence a0, . . . , an is log-concave. More-
over, if each bi ≥ 0 (so the zeros of P (x) are non-positive [why?]) then the sequence
b0, . . . , bn has no internal zeros.

Note that Stanley’s statement here reverses the notation introduced earlier: in the
definition of strong log-concavity, we had bi = ai/

(
n
i

)
, and were talking about strong

log-concavity of the sequence (ai) and here we have ai = bi/
(
n
i

)
and are talking about

strong log-concavity of the sequence (bi).

Before proving the theorem, we first prove some preliminary results.

Proposition. Let F (x) =
∑m

i=0 aix
i be a real polynomial of degree m with only real

zeros. Then its derivative, F ′(x), has only real zeros.

Proof. By long division, α is a zero of F of multiplicity r ≥ 1 if and only if there
exists a polynomial G such that

F (x) = (x− α)rG(x)

where G(α) 6= 0. So suppose α is a zero of F of multiplicity r and choose G as above.
Then,

F ′(x) = r(x− α)r−1G(x) + (x− α)rG′(x) = (x− α)r−1(G(x) + (x− α)G′(x)).

Since G(x) + (x− α)G′(x) evaluated at α is G(α) 6= 0, we conclude that α is a zero
of F ′ of multiplicity r − 1.

Say the zeros of F are α1 < . . . < αk with respective multiplicities r1, . . . , rk. By
Rolle’s theorem, for each 1 ≤ i < k, since F (αi) = F (αi+1) = 0, there is zero βi
of F ′(x) between αi and αi+1. Thus, we have zeros for F ′(x):

α1 < β1 < α2 < β2 < · · · < αk−1 < βk−1 < αk.

where αi has multiplicity ri−1. Counting multiplicities, we have found (
∑k

i=1 ri)−1 =
deg(F ) − 1 = m − 1 roots of F ′. Since deg(F ′) = m − 1, we have found all of the
roots of F ′, and they are all real.

Proposition. Let F (x) =
∑m

i=0 aix
i be a real polynomial of degree m with only real

zeros. Then the polynomial F̃ (x) := xmF (1/x) has only real zeros.

Proof. Let k ≥ 0 be the multiplicity of 0 as a zero of F . We can then write F (x) =
xkG(x) where G(0) 6= 0. The nonzero zeros of F and G are the same, with the same
multiplicities. We have

F̃ (x) = xm−kG(1/x).
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So the nonzero zeros of F̃ are the reciprocals of those of F . Thus, all of the zeros
of F̃ are real.

The above two propositions say that the property of having all real zeros is preserved
under taking derivatives and under a certain type of “inversion”. Here is an example
illustrating how these operations are useful in relating the property of having all real
zeros with strong log-concavity. Say

P (x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5x5 + b6x
6 + b7x

7

has all real zeros. We can show that strong log-concavity holds for, say, b2, b3, b4 by
using the two operations from the propositions to eliminate all the terms in P except
the three involving b2, b3 and b4. First take two derivatives to eliminate b0 and b1:

P ′′(x) = (2 · 1) b2 + (3 · 2) b3x+ (4 · 3) b4x
2 + (5 · 4) b5x

3 + (6 · 5) b6x
4 + (7 · 6) b7x

5.

Now invert to define a polynomial Q:

Q(x) = x5P ′′(1/x) = (2·1) b2x
5+(3·2) b3x

4+(4·3) b4x
3+(5·4) b5x

2+(6·5) b6x+(7·6) b7.

Take 3 derivatives to eliminate the terms involving b5, b6, and b7:

Q(3) = (2 · 1)(5 · 4 · 3) b2x
2 + (3 · 2)(4 · 3 · 2) b3x+ (4 · 3)(3 · 2 · 1) b4.

To prove strong log-concavity, define ai = bi/
(
7
i

)
and substitute:

Q(3) = (2 · 1)(5 · 4 · 3)

(
7

2

)
a2x

2 + (3 · 2)(4 · 3 · 2)

(
7

3

)
a3x+ (4 · 3)(3 · 2 · 1)

(
7

4

)
a4

= (2 · 1)(5 · 4 · 3)
7!

2!5!
a2x

2 + (3 · 2)(4 · 3 · 2)
7!

3!4!
a3x+ (4 · 3)(3 · 2 · 1)

7!

4!3!
a4

=
7!

2
(a2x

2 + 2a3x+ a4)

Since Q(3) has only real zeros, it must be that the quadratic

a2x
2 + 2a3x+ a4

has only real zeros. By the quadratic equation, this happens if and only if the dis-
criminant is nonnegative:

4a23 − 4a2a4 = 4(a23 − a2a4) ≥ 0.

That gives log-concavity for a2, a3, a4, and hence strong log-concavity for b2, b3, b4.
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Proof of Theorem 5.12. Given P as in the statement of the theorem, suppose that
deg(P ) = m (allowing for the fact that bm+1, . . . , bn could all be 0). Fix 1 < i < m,
and take derivatives and inversions to eliminate all terms in P except that involving
bi−1, bi, and bi+1. The result is the following polynomial which also has only real zeros:

m!

2
(ai−1x

2 + 2aix+ ai+1).

Therefore, the sequence of bi is strongly log-concave.

Next suppose that each bi ≥ 0. For the sake of contradict, suppose there are internal
zeros. Then there exists i + 1 < k where bi and bj are positive and bj = 0 for all
i < j < k. By taking derivatives and inverting, as above, eliminate the terms of P
having degree less then i or larger then k. We are left with a polynomial having two
terms (since bj = 0 for all i < j < k):

c+ dxk−i

for some positive c, d, and with k − i ≥ 2. Further, this polynomial has only real
zeros. To find them we solve

xk−i = − c
d
.

This equation has k − i solutions over the complex numbers, with at most one real
solution (when k − i is odd, then − k−i

√
c/d is a solution). Thus, we reach a contra-

diction.

Answer to the “why?” in Theorem 5.12: If P is constant, then 0 is the only possible
zero of P . Otherwise, since the bi ≥ 0, the derivative P ′(x) is positive for x > 0.
Since P (0) = b0 ≥ 0, it follows that P (x) > 0 for x > 0.
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