Math 372 lecture for Friday, Week 4

Definition. A sequence of real numbers ay, ..., a, is logarithmically concave or log-
concave is

a; > a;_ 1041
for 1 << n—1. We say ay,...,a, is strongly log-concave if

b? > b 1biyy
for 1 <i<n—1 where b, := al/(’z)
The name log-concave comes from the fact that a? > a;_ja,,1 is a multiplicative

version of the inequality a; > WITM’“ An easy calculation shows that strong log-
concavity is equivalent to

1 1 L
2> <1+_.) (1+ ) a1t
1 n—1

from which it follows that strong log-concavity implies log-concavity.

It is not always true that log-concavity implies unimodality. Consider 1,0,0, 1, for
instance. A sequence, ag, a1, ..., a, has no internal zeros if whenever i < j < k and
both a; and a; are nonzero, then a; is also nonzero.

Proposition 5.11 Let a = (ay,...,a,) be a sequence of nonnegative real numbers
with no internal zeros. If « is log-concave, the « is unimodal.

Proof. 1If at most two values of « are nonzero, then a;_1a;_1 =0forall 1 < <n-—1,
and the result holds. Otherwise, assume « is not unimodal. Then there exists 1 <
1 < n — 1 such that a;,_1 > a; < a;;1. Using the fact that the elements of « are
nonnegative, it follows that a? < a;_ja;,1. ]

Example. The n-th row of Pascal’s triangle

(6)(1) ()

is trivially strongly log-concave with no internal zeros. Hence, it is unimodal. Here
is a combinatorial proof of log-concavity of the binomial coefficients from Richard
Stanley’s paper Log-concave and unimodal sequences in algebra, combinatorics, and
geometry, 1989 (see the “Final word of warning” at the end of that paper). Let ([?])
denote the collection of subsets of [n] of size i. We describe an injection

o () ()~ ()= ()
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http://dedekind.mit.edu/~rstan/pubs/pubfiles/72.pdf
http://dedekind.mit.edu/~rstan/pubs/pubfiles/72.pdf

Log-concavity then follows:

e ()

For any X C [n] and j =0,...,n, define

X;=Xnljl={reX: z<j}.

Given (A, B) € (l[”}l) X (lﬂ), let 5 be the smallest nonnegative integer such that

|A;| = |B;| — 1. This integer must exist since |Ag| = |By| = 0, and |A4,| = |B,| — 2,
and the sizes of A; and B; grow in size by at most one each time j increases by one.
Next, define

C:=A;U(B\Bj) and D:=B;U(A\ 4)).

Note that these are disjoint unions since, for instance A; C [j] and B\ B; C [n]\ [j].
We also have that |C| = |D| = i: instance,

Cl= 1Al + Bl = |Bj| = |A;| + (0 + 1) = (4] + 1) = 4,
and similarly for |D|. Define ¢p(A, B) = (C, D). For injectivity, note that
A =C, and By = Dy
for k=0,...,7, while
Aj1 #Cjr and By # Dy

Thus, we can recover j, A;, and B; from (C, D). But from that information, we can
recover (A, B). For instance,

That completes the proof.

Example. Let A = {1,3,4,6} Then A() = @, Al = AQ = {1}, A3 = {1,3},
A4 = Ag, = {1,3,4}, and AG = A.

There is a surprising connection between log-concavity and polynomials with real
Zeros:

Theorem 5.12 (I. Newton) Let



be a real polynomial all of whose zeros are real numbers. Then the sequence by, ..., b,
is strongly log-concave, or equivalently, the sequence ag, ..., a, is log-concave. More-
over, if each b; > 0 (so the zeros of P(x) are non-positive [why?]) then the sequence
bo, ..., b, has no internal zeros.

Note that Stanley’s statement here reverses the notation introduced earlier: in the
definition of strong log-concavity, we had b; = a;/ (7), and were talking about strong
log-concavity of the sequence (a;) and here we have a; = b;/ (") and are talking about
strong log-concavity of the sequence (b;).

Before proving the theorem, we first prove some preliminary results.

Proposition. Let F'(z) = Y ", a;z" be a real polynomial of degree m with only real
zeros. Then its derivative, F”'(x), has only real zeros.

Proof. By long division, « is a zero of F' of multiplicity » > 1 if and only if there
exists a polynomial G such that

F(z) = (x — a)'G(x)

where G(a) # 0. So suppose « is a zero of F' of multiplicity  and choose G as above.
Then,

Fl(z)=r(x —a)" 'G@) + (r —a)'G'(2) = (x — )" HG(z) + (z — a)G'(1)).

Since G(z) + (x — a)G'(z) evaluated at « is G(a) # 0, we conclude that « is a zero
of F’ of multiplicity r — 1.

Say the zeros of F' are oy < ... < ay with respective multiplicities rq,...,r;. By
Rolle’s theorem, for each 1 < i < k, since F(o;) = F(a;1) = 0, there is zero f;
of F'(x) between «; and a;y1. Thus, we have zeros for F'(z):

Oél</31<042<ﬂ2<"'<0ék_1<5k_1<04k.

where «; has multiplicity r;—1. Counting multiplicities, we have found (Zle ri)—1=
deg(F) — 1 = m — 1 roots of F’. Since deg(F’) = m — 1, we have found all of the
roots of F’, and they are all real. O]

Proposition. Let F'(z) = Y ", a;z* be a real polynomial of degree m with only real

zeros. Then the polynomial F(x) := 2™ F(1/z) has only real zeros.

Proof. Let k > 0 be the multiplicity of 0 as a zero of F. We can then write F(z) =
7¥G(x) where G(0) # 0. The nonzero zeros of F' and G are the same, with the same
multiplicities. We have

F(z) = 2™ *G(1/2).
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So the nonzero zeros of F are the reciprocals of those of F. Thus, all of the zeros
of F' are real. 0

The above two propositions say that the property of having all real zeros is preserved
under taking derivatives and under a certain type of “inversion”. Here is an example
illustrating how these operations are useful in relating the property of having all real
zeros with strong log-concavity. Say

P(z) = by + bix + box?® + bsa® + bya* + bsz’z® + bga® + by’

has all real zeros. We can show that strong log-concavity holds for, say, by, b3, by by
using the two operations from the propositions to eliminate all the terms in P except
the three involving by, b3 and by. First take two derivatives to eliminate by and by:

P'(z) = (2-1)by+ (3-2) bsw + (4 - 3) bya® + (5-4) bsa® + (6 - 5) bex™* + (7 - 6) bya®.
Now invert to define a polynomial Q:
Q(x) = 2°P"(1/x) = (2:1) byx® +(3-2) bz +(4-3) byx® +(5-4) bsx*+(6-5) bgz+(7-6) br.
Take 3 derivatives to eliminate the terms involving bs, bg, and by:
Q¥ =(2-1)(5-4-3)bya® +(3-2)(4-3-2)bsz 4+ (4-3)(3-2-1) by.

To prove strong log-concavity, define a; = b;/ (27) and substitute:

Q¥ = (215 4-3) (J Jaur? + 32432 (Jasa + (1-3)3-2-1) (1 o

7! 7! [
:(2'1)<5'4'3)ﬁanz—i_<3.2>(4.3.2>ﬂa3x+<4.3>(3.2.1>I3!a4
7! 9
= 5(@21’ + 2a3x + ay)

Since Q® has only real zeros, it must be that the quadratic
asx? + 203 + a4

has only real zeros. By the quadratic equation, this happens if and only if the dis-
criminant is nonnegative:

4a§ — 4asay = 4(a§ — asay) > 0.

That gives log-concavity for as, as, as, and hence strong log-concavity for b, b3, bs.



Proof of Theorem 5.12. Given P as in the statement of the theorem, suppose that

deg(P) = m (allowing for the fact that b,,.1,...,b, could all be 0). Fix 1 < i < m,

and take derivatives and inversions to eliminate all terms in P except that involving

bi_1,b;, and b; 1. The result is the following polynomial which also has only real zeros:
m!

7(@2‘_1.%2 + 2CL7;$ + ai+1).

Therefore, the sequence of b; is strongly log-concave.

Next suppose that each b; > 0. For the sake of contradict, suppose there are internal
zeros. Then there exists ¢ + 1 < k where b; and b; are positive and b; = 0 for all
1 < j < k. By taking derivatives and inverting, as above, eliminate the terms of P
having degree less then ¢ or larger then k. We are left with a polynomial having two
terms (since b; = 0 for all i < j < k):

¢+ dgk

for some positive ¢, d, and with k£ — ¢ > 2. Further, this polynomial has only real
zeros. To find them we solve
gt = —E.
d
This equation has k& — ¢ solutions over the complex numbers, with at most one real
solution (when k — ¢ is odd, then — *7/c¢/d is a solution). Thus, we reach a contra-

diction. O

Answer to the “why?” in Theorem 5.12: If P is constant, then 0 is the only possible
zero of P. Otherwise, since the b; > 0, the derivative P’(x) is positive for z > 0.
Since P(0) = by > 0, it follows that P(z) > 0 for z > 0.



