Math 372 lecture for Monday, Week 3

 $P = B_n$, boolean poset

order-raising operators: $U_i \colon \mathbb{R}P_i \to \mathbb{R}P_{i+1}$ $x \mapsto \sum_{y \in P_{i+1}: x < y} y$

order-lowering operators:
$$D_i \colon \mathbb{R}P_i \to \mathbb{R}P_{i-1}$$

 $y \mapsto \sum_{x \in P_{i-1}: x < y} x$

Goal:

Theorem 4.7. U_i is injective for $i < \frac{n}{2}$ and surjective for $n \ge \frac{n}{2}$.

It then follows from last time that B_n is Sperner.

Example. n = 4

In general, $D_{i+1} = U_i^t$.

Lemma 4.6. $D_{i+1}U_i - U_{i-1}D_i = (n-2i)I$.

Proof. See text.

Proof of Theorem 4.7. If A is any real matrix, then AA^t is real and symmetric, hence, diagonalizable. We also have that for all v

$$v^t A A^t v = (A^t v)^t (A^t v) \ge 0,$$

i.e., AA^t is positive semidefinite, which implies all of its eigenvalues are nonnegative real numbers. By Lemma 4.6,

$$D_{i+1}U_i - U_{i-1}D_i = (n-2i)I.$$

Say v_1, \ldots, v_{p_i} are the eigenvectors of $U_{i-1}D_i = U_{i-1}U_{i-1}^t$ with corresponding eigenvectors $\lambda_k \geq 0$. Then

$$(D_{i+1}U_i)v_k = (U_{i-1}D_i)v_k + (n-2i)v_k = \lambda_k v_k + (n-2i)v_k = (\lambda_k + n - 2i)v_k.$$

Hence, the eigenvalues of $D_{i+1}U_i$ are $\{\lambda_k + n - 2i\}$ for $k = 1, \ldots, p_i$. If $i < \frac{n}{2}$, the $\lambda_k + n - 2i > 0$ for all k, and since $D_{i+1}U_i$ thus has no zero eigenvalues, it is invertible. That implies U_i is injective for $i < \frac{n}{2}$.

For the case $i \geq \frac{n}{2}$, use Lemma 4.6 again but in the form

$$U_i D_{i+1} = D_{i+2} U_{i+1} + (2i+2-n)I.$$

If $\mu_1, \ldots, \mu_{p_{i+1}}$ are the eigenvalues of $D_{i+2}U_{i+1}$ then $\mu_k \ge 0$ for all k, and the eigenvalues of $U_i D_{i+1}$ are $\{\mu_k + 2i + 2 - n\}$, which are all positive for $i \ge \frac{n}{2}$. Hence, $U_i D_{i+1}$ is invertible. It follows that U_i is surjective.