Math 372 lecture for Wednesday, Week 1
Let G = (V, E) be a graph with vertex set V' = {vy,...,v,} and edge set E. Let A
be the adjacency matrix for G. Since A is real and symmetric, there exist real
linearly independent orthonormal eigenvectors uy, . .., u, for A. Say the corresponding

eigenvalues are Aq, ..., \,. Last time, we saw that:

e The number of f-walks (i.e., walks of lenght ¢) from v; to v; is
p
¢
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e The number of closed ¢-walks is
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Example 1. Here is a toy example:
01
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By inspection, (1, 1) and (1, —1) are orthogonal eigenvectors with corresponding eigen-
values 1 and —1. So we can take

The number of closed ¢-walks is

19+ (=1)

0 2 if ¢ is even
0 if £ is odd.



The number of /-walks from v; to v, 18
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B 1 if ¢1is odd
)0 if ¢is even.

Both of these results are clear by looking at the graph, without any calculation.

Example 2. (Complete graphs) Let’s apply our theory to the complete graph K,
on p vertices. This graph has an edge joining each pair of (distinct) vertices. For
example, in the case p = 4, we have the following:
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01 11
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A= 1 1 01
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(| # (-walks vy to vy | # closed ¢-walks
0 1 4
1 0 0
2 3 12
3 3-2-1=6 24
4 ? ?

In general, the adjacency matrix for K, is
A=J-1

where J is the p x p matrix with J;; = 1 for all ¢, j, and I is the p X p identity matrix.

Lemma. The eigenvalues for J are 0 (multiplicity p — 1) and p.



Proof. Letting e; denote the i-th standard basis vector for RP, we have that

{e;—e,:i=1,...,p—1}

are eigenvectors for J with eigenvalue 0, and e; + --- + ¢, is an eigenvector with
eigenvalue p. |

Proposition. The eigenvalues for K, are —1 (multiplicity p — 1) and p — 1.

Proof. By the lemma, the characteristic polynomial for J is

p

ps(x) =det(J — Iz) = H (N — 2) = 22z — p).

i=1
The characteristic polynomial for A = J — [ is
pa(x) =det(A — Iz) =det(J — I — [z) = det(J — I(x + 1))
=psjz+1)=x(x+ 1)z +1-p)
— i@+ 1)@ — (- 1)),
The result follows. ]

As an immediate consequence, we get:

Corollary.

1. The number of closed ¢-walks in K, is
(p—D(D" +(p-1)"

2. For each i, the number of closed ¢-walks from v; to itself is
1
» ((p = D=1+ (p—-1)).

The second part follows by symmetry: the number of closed /-walks at each vertex is
the same.

Proposition. The number of /-walks in K, from v, to v, when a # b is

}9 (p— 1) = (~1)").



Proof. One may do the count by directly computing the 4, j-entry of A’ as shown in
the text using the binomial theorem. We will give another argument (hinted at in the
text). First note that the total number of f-walks is p(p — 1)*. (There are p starting
points, and from each vertex reached in a walk, there are p — 1 choices for an edge
along which the walk could continue.) Using the previous corollary and symmetry,
we have

pp—1) = Z (A%
=) (A% + ) (A])
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:p(é«p—w«4V+wp—n%)+p@—1w

where 7 is the number of walks from v; to v; for any fixed i # j. (The last summand
has this form since there are p choices for vertex v; and p — 1 choices for vertex vj,
and the number of walks between them is the same for all i # j.) Solving for 7 gives
the formula we are looking for. O

Combinatorial proof. By the previous corollary, the number of closed walks of length
¢+ 1 starting at v, is

; (p=D)(=D)" + (-1

Each of these walks is in bijective correspondence with a walk of length ¢ starting
at v,: stop at the penultimate vertex of the walk, just before returning to v,. There
are p — 1 choices for the penultimate vertex, and the number of walks of length ¢
from v, to any vertex v, # v, is independent of the p — 1 choices for b. So fixing a
particular b, the number of walks from v, to v, is

(- - ),

and the result follows. O



