Math 372 lecture for Monday, Week 1

For administrative details, see our course homepage:
http://people.reed.edu/~davidp/372/.

Topic I. Walks in Graphs.

Question. How many walks are there of length ¢ between two given vertices of a
graph G7 (The length is the number of edges traversed.)

Note. Throughout today’s lecture, G' will be a simple graph with vertices vy, ..., v,.

Example. Consider the question on G = C}, the cycle graph on four vertices;

length | walks from vy to v
Uy U3 0 —

V1UV2V3, V1U4V3

U1 V2

=~ W N =

V1V2V1V2V3, U1V2V1V4V3, V1V2V3V2V3
V1V2V3V4V3, U1V4V1V2V3, V1V4V1V4V3
V10V4V3V2V3, V1V4V3V4V3

Definition. The adjacency matrix for G is the p X p matrix A given by

1 if G has an edge from v; to v,
ij = .
0 otherwise.

Proposition. Let A be the adjacency matrix for G. Then the number of walks of
length ¢ in G from v; to v; is (A%),;.

Proof. We prove this by induction. The base case, ¢ = 0, is trivial. For ¢ > 1,
say A*1 = B = (by,). Then

p
(A% = (BA)yy = Bady;.
k=1

By induction,
bir = # walks from v; to v of length ¢ — 1.


http://people.reed.edu/~davidp/372/

We also have
1 if G has an edge from vy, to v,
Ay = .
0 otherwise.

Each walk from v; to v; of length at least one must pass through some vertex vy, to v;
in its final step, and the final edge must be {vy, v;}. The result follows. OJ

Example. Consider G = (Y}, again. Here are some powers of the adjacency matrix:

(1 V3
U1 )

0101 20 20 0 4 0 4
1010 , 0202 s | 4040
A—()lOl’ A_2020’ A_O404’

1 010 0 2 0 2 4 0 40

8 0 8 0
, [ 0808
A_8080

0 8 0 8

Compare the 1, 3-entries in the above matrix with walks displayed in the previous
example.

Theorem. A real p X p symmetric matrix A has p orthonormal eigenvectors, i.e.,
there exist uy,...,u, € RP with

1 ifi—i
ui-uj:(S(i,j):{ me=y,

0 otherwise,
and there exist (not necessarily distinct) A1,..., A, € R such that

fori=1,...,p.
Proof. Linear algebra. 0



Corollary. Let A be the adjacency matrix for G with (not necessarily distinct)

eigenvalues Ai, ..., A,. Then the number of walks of length ¢ from v; to v; is
p
Z ulku]k)\i
k=1
where u, 1= (Uyg, Ugg, - .., Upg) for ¢ =1,...,p.

Proof. With notation as in the Theorem, let U be the p X p matrix whose columns
are the u;. Then U'U = I,, so U~! = U*, and

At

U TAU = diag(\y, ..., \p) =
0

Hence,
(UTTAU)' = (UTTAUYUTAU) - - (UTYAU) = UTTA'D,

but also
(UT'AU)" = diag(Aq, ..., Ap)" = diag(AL, ..., A).

Letting D = (dy) = diag(A{,..., X)), it follows that A* = UD‘U~". Therefore,
p
(A% = Y ua(DU )y
k=1
p
= Z Uz‘k(DzUt)kj
k=1

= Z Uik (Z(Dé)ksujs)

s=1

p
E ' 12

= uzk)\kujk
k=1

0

Corollary. The number of closed walks of length ¢ in G, i.e., the number of walks
of length ¢ beginning and ending at the same vertex, is Y ,_; Af.

Proof. From our Proposition, the number of closed walks of length ¢ is the sum of
the diagonal entries of A%, i.e., tr(A°), the trace of A®. By a standard theorem from



linear algebra, the trace of a square matrix is the sum of its eigenvalues. Now note
that
Aéui = Agil ()\ZU) = )\iAgflui — e = )\fUZ

for i = 1,...,p. So the eigenvalues for A® are \{ for i = 1,...,p. The result follows.
OJ

Example. Letting G = C; be the cycle graph from the first example, we have

0101
1010
A= 01 01
1 010

The eigenvalues for A, with multiplicities, are 0,0,2, —2. So the number of closed
walks of length ¢ for this cycle graph is

0° +0° +2¢ + (=2)%.

Note that (0)" = 1.



