
Math 372 lecture for Monday, Week 1

For administrative details, see our course homepage:

http://people.reed.edu/~davidp/372/.

Topic I. Walks in Graphs.

Question. How many walks are there of length ` between two given vertices of a
graph G? (The length is the number of edges traversed.)

Note. Throughout today’s lecture, G will be a simple graph with vertices v1, . . . , vp.

Example. Consider the question on G = C4, the cycle graph on four vertices;

v1 v2

v3v4
length walks from v1 to v3

0 —
1 —
2 v1v2v3, v1v4v3
3 —
4 v1v2v1v2v3, v1v2v1v4v3, v1v2v3v2v3

v1v2v3v4v3, v1v4v1v2v3, v1v4v1v4v3
v1v4v3v2v3, v1v4v3v4v3

Definition. The adjacency matrix for G is the p× p matrix A given by

Aij =

{
1 if G has an edge from vi to vj,

0 otherwise.

Proposition. Let A be the adjacency matrix for G. Then the number of walks of
length ` in G from vi to vj is (A`)ij.

Proof. We prove this by induction. The base case, ` = 0, is trivial. For ` ≥ 1,
say A`−1 = B = (bmn). Then

(A`)ij = (BA)ij =

p∑
k=1

BikAkj.

By induction,
bik = # walks from vi to vk of length `− 1.

1

http://people.reed.edu/~davidp/372/


We also have

akj =

{
1 if G has an edge from vk to vj,

0 otherwise.

Each walk from vi to vj of length at least one must pass through some vertex vk to vj
in its final step, and the final edge must be {vk, vj}. The result follows. �

Example. Consider G = C4, again. Here are some powers of the adjacency matrix:

v1 v2

v3v4

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 , A2 =


2 0 2 0
0 2 0 2
2 0 2 0
0 2 0 2

 , A3 =


0 4 0 4
4 0 4 0
0 4 0 4
4 0 4 0

 ,

A4 =


8 0 8 0
0 8 0 8
8 0 8 0
0 8 0 8

 .

Compare the 1, 3-entries in the above matrix with walks displayed in the previous
example.

Theorem. A real p × p symmetric matrix A has p orthonormal eigenvectors, i.e.,
there exist u1, . . . , up ∈ Rp with

ui · uj = δ(i, j) =

{
1 if i = j,

0 otherwise,

and there exist (not necessarily distinct) λ1, . . . , λp ∈ R such that

Aui = λiui

for i = 1, . . . , p.

Proof. Linear algebra. �

2



Corollary. Let A be the adjacency matrix for G with (not necessarily distinct)
eigenvalues λ1, . . . , λp. Then the number of walks of length ` from vi to vj is

p∑
k=1

uikujkλ
`
k

where uq := (u1q, u2q, . . . , upq) for q = 1, . . . , p.

Proof. With notation as in the Theorem, let U be the p× p matrix whose columns
are the ui. Then U tU = Ip, so U−1 = U t, and

U−1AU = diag(λ1, . . . , λp) =

 λ1
. . .

λp

 .
0

0

Hence,
(U−1AU)` = (U−1AU)(U−1AU) · · · (U−1AU) = U−1A`U,

but also
(U−1AU)` = diag(λ1, . . . , λp)

` = diag(λ`1, . . . , λ
`
p).

Letting D = (dst) = diag(λ`1, . . . , λ
`
p), it follows that A` = UD`U−1. Therefore,

(A`)ij =

p∑
k=1

uik(D`U−1)kj

=

p∑
k=1

uik(D`U t)kj

=

p∑
k=1

uik

(
p∑

s=1

(D`)ksujs

)

=

p∑
k=1

uikλ
`
kujk.

�

Corollary. The number of closed walks of length ` in G, i.e., the number of walks
of length ` beginning and ending at the same vertex, is

∑p
k=1 λ

`
k.

Proof. From our Proposition, the number of closed walks of length ` is the sum of
the diagonal entries of A`, i.e., tr(A`), the trace of A`. By a standard theorem from
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linear algebra, the trace of a square matrix is the sum of its eigenvalues. Now note
that

A`ui = A`−1 (λiu) = λiA
`−1ui = · · · = λ`iui

for i = 1, . . . , p. So the eigenvalues for A` are λ`i for i = 1, . . . , p. The result follows.
�

Example. Letting G = C4 be the cycle graph from the first example, we have

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .

The eigenvalues for A, with multiplicities, are 0, 0, 2,−2. So the number of closed
walks of length ` for this cycle graph is

0` + 0` + 2` + (−2)`.

Note that (0)0 = 1.
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