
Math 372 lecture for Friday, Week 1

Let G be any simple graph with vertices v1, . . . , vp, and let E be the set of edges.
Suppose we have a weight function for the edges

wt: E → R

where R is any commutative ring. Let Awt be the weighted adjacency matrix defined
by (Awt)ij = wt(vi, vj), where we define wt(vi, vj) = 0 if vi, vj is not an edge. Given
any walk w in G, define the weight of w to be the product of the weights of its
edges. Then a straightforward generalization of the argument used during the first
day of class shows that (A`

wt)ij is the sum of the weights of all `-walks starting at vi
and ending at vj, Again, the proof goes by induction, the case ` = 0 being trivial.
Let ` ≥ 1, and let B := A`

wt. Then

(A`
wt)ij = (BAwt)ij =

p∑
k=1

Bik(Awt)kj =

p∑
k=1

Bik wt(vk, vj)

By induction, Bik is the sum of the weights of all walks from vi to vk, and the result
follows.

To recover the original result, take R = Z and all weights equal to 1. We have that Awt

is just the usual adjacency matrix, and (A`)ij is the number of `-walks from vi to vj.

Next let G be a connected multigraph with vertex set V . This means there may be
multiple edges connecting the same two vertices. For each u, v ∈ V , let µuv be the
number of edges joining u to v, and let du = deg(u) be the degree of u, i.e., the
number of edges incident on u.

A random walk on G is one in which having arrived at a vertex u in the walk, the
next edge is determined uniformly at random among the edges incident on u. Thus,
one would move from u to v with probability µ(u, v)/du. Let M = M(G) be the
probability matrix with rows and columns indexed by V . The u, v-th entry of M is
defined to be

Muv :=
µ(u, v)

du
.

Lemma. The probability of a random walk starting at u ends at v is (M `)uv.

Proof. Let G′ be the graph G where each multiedge is replaced by a single edge,
then M may be interpreted as a weighted adjacency matrix Awt for G′. �
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So, as earlier, the question of diagonalizability becomes important. Luckily:

Theorem 3.2. The probability matrix M is diagonalizable and has only real eigen-
values.

Proof. Since G is connected, du > 0 for all u ∈ V . Let D be the diagonal matrix with
rows indexed V and with v-th diagonal entry

√
dv for all v ∈ V . A calculation shows

(DMD−1)uv =
µuv√
dudv

for all u, v ∈ V . Hence, DMD−1 is symmetric and real, hence, diagonalizable with
real eigenvalues. Since M is similar to DMD−1, it is also diagonalizable and has the
same eigenvalues. �

Hitting times.

Let S(u, v) consisting of all walks from u to v meeting v for the first time at the
last step of the walk. Then consider the random variable with sample space S(u, v)
defined by

X : S(u, v)→ R
w 7→ length(w).

For each u, v ∈ V , define the hitting time to be the expected length of a walk starting
at u and ending the first time it meets v:

H(u, v) := E(X) :=
∑
n≥0

npn

where pn := P(X = n), the probability the length of the random walk is n.

Example. G = P3, the path graph with 3 vertices:

u w v

We can calculate the hitting time H(u, v) using the following tree (the blue labels
denote the probabilities):
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The hitting time is

H(u, v) = 1
2
· 2 +

(
1
2

)2 · 4 +
(
1
2

)3 · 6 + . . .

= 1 + 1
2
· 2 +

(
1
2

)2 · 3 + . . .

=
∑
n≥0

(n+ 1)
(
1
2

)n
.

Note that
∑

n≥0 z
n+1 = z

1−z for |z| < 1 (geometric series). Differentiating, we get that∑
n≥0

(n+ 1)zn =
1

(1− z)2

also converges for |z| < 1. Therefore, H(u, v) = 4.

Alternatively, if Y is the random variable

Y : S(u, v)→ R

w 7→

{
0 if length(w) ≤ 2

1 otherwise,

then we may use the fact that

E(X) = E(X|Y = 0)P(Y = 0) + E(X|Y = 1)P(Y = 1)
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to get
H(u, v) = 1

2
· 2 + 1

2
(2 +H(u, v)) ,

from which it again follows that H(u, v) = 4.

Returning to the general set-up, for each vertex v, define M [v] to be the probability
matrix M with its v-th row and column deleted, and define T [v] to be the v-th column
of M with its v-th row deleted.

Theorem 3.4. For each pair of vertices u 6= v,

H(u, v) =
(
(Ip−1 −M [v])−2 T [v]

)
u
.

Proof. Let G′ be the graph formed from G by removing the vertex v and all of its
incident edges. Define the weight of an edge a, b in G′ by wt(a, b) := Mab. Then M [v]
is a weighted adjacency matrix for G′, and (M [v]`)a,b is the sum of the weight of
the `-walks starting at a and ending at b. It coincides with the probability of a walk
of length ` from a to b in G that never passes through v.

It turns out the formula
∑

n≥(n+ 1)xn = 1/(1− x)2, which holds for real numbers x
with norm less than 1, also holds when x is the matrix M [v]. A proof relying on
the Perron-Frobenius Theorem is given in our text. The probability of moving from
vertex w to vertex v in one step is µ(w, v)/dw, which is the w-th entry of T [v].
Therefore, summing over w 6= v,

H(u, v) =
∑
w

∑
n≥0

(n+ 1)(M [v]n)uw
µ(w, v)

dw

=
∑
w

µ(w, v)

dw

∑
n≥0

(n+ 1)(M [v]n)uw

=
∑
w

µ(w, v)

dw

(∑
n≥0

(n+ 1)(M [v]n)

)
uw

=
∑
w

µ(w, v)

dw

(
(Ip−1 −M [v])−2

)
uw

=
(
(Ip−1 −M [v])−2T [v]

)
u

Example. Consider our earlier example G = P3:
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u w v

We have

M =

 0 1 0
1
2

0 1
2

0 1 0

 ,

u w v
u
w
v

M [v] =

(
0 1
1
2

0

)
, T [v] =

(
0
1
2

)
.

Therefore,

(I2−M [v])−2 =

(
1 −1
−1

2
1

)−2
=

((
1 −1
−1

2
1

)−1)2

=

(
2

(
1 1
1
2

1

))2

=

(
6 8
4 6

)
,

and

(I2 −M [v])−2T [v] =

(
6 8
4 6

)(
0
1
2

)
=

(
4
3

)
.

It follows that H(u, v) = 4 and H(w, v) = 3.
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