Math 372 lecture for Friday, Week 1

Let G be any simple graph with vertices vq,...,v,, and let E be the set of edges.
Suppose we have a weight function for the edges

wt: E — R

where R is any commutative ring. Let Ay be the weighted adjacency matriz defined
by (Agt)ij = wt(v;,v;), where we define wt(v;,v;) = 0 if v;, v; is not an edge. Given
any walk w in G, define the weight of w to be the product of the weights of its
edges. Then a straightforward generalization of the argument used during the first
day of class shows that (A%,);; is the sum of the weights of all /-walks starting at v;
and ending at v;, Again, the proof goes by induction, the case ¢ = 0 being trivial.
Let £ > 1, and let B := A%,. Then
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By induction, B is the sum of the weights of all walks from v; to vg, and the result
follows.

To recover the original result, take R = Z and all weights equal to 1. We have that A
is just the usual adjacency matrix, and (A);; is the number of (-walks from v; to v;.

Next let G be a connected multigraph with vertex set V. This means there may be
multiple edges connecting the same two vertices. For each u,v € V', let p,, be the
number of edges joining u to v, and let d, = deg(u) be the degree of u, i.e., the
number of edges incident on wu.

A random walk on G is one in which having arrived at a vertex w in the walk, the
next edge is determined uniformly at random among the edges incident on u. Thus,
one would move from u to v with probability u(u,v)/d,. Let M = M(G) be the
probability matriz with rows and columns indexed by V. The u,v-th entry of M is
defined to be

Lemma. The probability of a random walk starting at u ends at v is (M?),,

Proof. Let G’ be the graph G where each multiedge is replaced by a single edge,
then M may be interpreted as a weighted adjacency matrix Ay for G'. U [



So, as earlier, the question of diagonalizability becomes important. Luckily:

Theorem 3.2. The probability matrix M is diagonalizable and has only real eigen-
values.

Proof. Since G is connected, d,, > 0 for all w € V. Let D be the diagonal matrix with
rows indexed V' and with v-th diagonal entry v/d, for all v € V. A calculation shows

— /Luv
DMD™ Y, =

for all u,v € V. Hence, DM D! is symmetric and real, hence, diagonalizable with
real eigenvalues. Since M is similar to DM D!, it is also diagonalizable and has the
same eigenvalues. 0 O]
Hitting times.

Let S(u,v) consisting of all walks from u to v meeting v for the first time at the
last step of the walk. Then consider the random variable with sample space S(u,v)
defined by

X:S(u,v) =R
w — length(w).

For each u,v € V, define the hitting time to be the expected length of a walk starting
at u and ending the first time it meets v:

H(u,v) :=E(X) := ann

where p,, := P(X = n), the probability the length of the random walk is n.

Example. G = P;, the path graph with 3 vertices:
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We can calculate the hitting time H(u,v) using the following tree (the blue labels
denote the probabilities):
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The hitting time is

Hu,v)=1-2+ (1) 4+ (1) 6+...
—14+i24+ (1) 3+...

- Z(n +1) (%)n
n>0
Note that ) -, 2" = % for |2| < 1 (geometric series). Differentiating, we get that

0 1
Z(n—l— 1)2" = TESE

n>0

also converges for |z| < 1. Therefore, H(u,v) = 4.

Alternatively, if Y is the random variable
Y:S(u,v) =R
0 if length <2
ottt

1 otherwise,

then we may use the fact that

E(X)=E(X|Y =0)P(Y =0)+EX|Y = D)P(Y = 1)
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to get
H(U,U):%Q—{—%(Q—FH(U,U)),

from which it again follows that H(u,v) = 4.

Returning to the general set-up, for each vertex v, define M[v] to be the probability
matrix M with its v-th row and column deleted, and define T'[v] to be the v-th column
of M with its v-th row deleted.

Theorem 3.4. For each pair of vertices u # v,

H(u,v) = ((Ip-1 — M[v])~> T[v]), -
Proof. Let G' be the graph formed from G by removing the vertex v and all of its
incident edges. Define the weight of an edge a, b in G’ by wt(a, b) := M. Then M[v]
is a weighted adjacency matrix for G’, and (M[v]%),, is the sum of the weight of
the (-walks starting at a and ending at b. It coincides with the probability of a walk
of length ¢ from a to b in G that never passes through v.

It turns out the formula > _(n+1)a™ = 1/(1 — x)?, which holds for real numbers x
with norm less than 1, also holds when z is the matrix M[v]. A proof relying on
the Perron-Frobenius Theorem is given in our text. The probability of moving from
vertex w to vertex v in one step is p(w,v)/d,, which is the w-th entry of T[v].
Therefore, summing over w # v,

H(u,0) = 32 30+ (M)

w

Example. Consider our earlier example G = Ps:
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We have

Therefore,

<b4mm*=(_é‘ﬁ)4=<<_§_i

and

(t - M) 70l = (G

It follows that H(u,v) =4 and H(w,v) = 3.
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