PROBLEM 1. Let C_n be the cycle graph with vertices v_1, \ldots, v_n and edges $\{v_i, v_{i+1}\}$ for all *i* (with indices modulo *n* so they remain in the set [n]). This problem outlines a proof that $\operatorname{Jac}(C_n) \simeq \mathbb{Z}/n\mathbb{Z}$.

First note that $\{v_i - v_n : i = 1, \dots, n-1\}$ generates

$$\mathbb{Z}V_0 := \left\{ \sum_{i=1}^n a_i v_i \in \mathbb{Z}V : \sum_{i=1}^n = 0 \right\}.$$

(Equivalently, $(1, 0, \ldots, 0, -1)$, $(0, 1, 0, \ldots, 0, -1)$, \ldots , $(0, \ldots, 0, 1, -1)$ generate $(\mathbb{Z}^n)_0$, the group of integer vectors whose coordinates sum to 0.) It follows that the equivalence classes of the $v_i - v_n$ generate the $\operatorname{Jac}(G) := \mathbb{Z}V_0/\operatorname{im}(L)$, i.e., every element of $\operatorname{Jac}(G)$ is an integer linear combination of the $v_i - v_n$.

- (a) Prove that $k(v_1 v_n) = v_k v_n \mod \operatorname{im}(L)$, i.e., $k(v_1 v_n) = v_k v_n$ in $\operatorname{Jac}(G)$, for $k = 1, \ldots, n-1$, by finding vectors σ_k such that $k(v_1 - v_n) - L\sigma_k = v_k - v_n$. (Hint: to discover a correct general form for σ_k , you might warm up with the case n = 6, a hexagon. Start with $kv_1 - kv_6$ for various k, and perform set-firings to get $v_k - v_6$. Then tally up how many times each vertex was fired to find σ_k .)
- (b) After the first part of this problem, we know that Jac(G) is generated by $v_1 v_n$. So it is a cyclic group, isomorphic to $\mathbb{Z}/m\mathbb{Z}$ for some m. It just remains to be shown that m = n. In this part, we provide a tool for doing so.

Let $\eta := (1, 2, ..., n) \in \mathbb{Z}^n$, and let $\delta \in (\mathbb{Z}^n)_0$. Show that if $\delta = 0 \mod \operatorname{im}(L)$ then $\delta \cdot \eta = 0 \mod n$. (Note: the condition on δ says it is a integer linear combination of the columns of the Laplacian matrix, and the thing you are asked to prove is linear in δ .)

(c) Use the second part of this problem to show that $k(v_1 - v_n)$ are distinct as elements of $\operatorname{Jac}(C_n)$ for $k = 0, 1, \ldots, n-1$, and hence that $\operatorname{Jac}(C_n) \simeq \mathbb{Z}/n\mathbb{Z}$.

PROBLEM 2. Consider the *crown poset*, C_3 :

- (a) Draw the Hasse diagram for $J(\mathcal{C}_3)$, the distributive lattice of order ideals for \mathcal{C}_3 , circling the join irreducible elements.
- (b) Draw a divisor on a graph whose firing lattice is $J(\mathcal{C}_3)$.

PROBLEM 3. Consider dropping equilateral triangles into a V-shape:

Analogous to Young's lattice, we get a distributive lattice T:

- (a) Describe the join irreducibles of T.
- (b) Draw the Hasse diagram of the subposet of T consisting of the join irreducibles.
- (c) [Challenge] From the Hasse diagram for the join irreducibles of T, we could create a graph/divisor pair whose firing graph is T. Can you find a simpler graph/divisor pair whose firing graph is T? (This would be analogous to the infinite path graph divisor we used for Young's diagram.)