PROBLEM 1. Let K_4 be the complete graph on the vertex set $\{1, 2, 3, 4\}$, and let T be the spanning tree with edge set $\{\overline{12}, \overline{13}, \overline{14}\}$.

- (a) Compute the bases for the cycle space \mathcal{C} and the cut space \mathcal{C}^* corresponding to T.
- (b) Choose one of your basis elements from C and one from C^* , and verify that they are orthogonal.

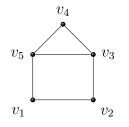
PROBLEM 2. Let G = (V, E) be an undirected, connected multigraph.

- (a) Let $\emptyset \subsetneq U \subsetneq V$. Prove that the cut $c_U^* \in \mathbb{Z}E$ is in $\operatorname{Span}_{\mathbb{Z}} \{c_v^* : v \in V\}$ where c_v^* is the vertex cut corresponding to v.
- (b) Let L be the Laplacian of G. Show that

$$\partial(\mathcal{C}^*) = \operatorname{im}(L).$$

(Hint: use part (a).)

PROBLEM 3. Consider the house graph H displayed below:



Determine the structure of $\operatorname{Jac}(H)$ by computing the Smith normal form for the reduced Laplacian of H with respect to vertex v_1 by hand. In other words, find $d_i \in \mathbb{Z}$ such that $\operatorname{Jac}(H) = \bigoplus_{i=1}^k \mathbb{Z}/d_i\mathbb{Z}$. (Note: you can omit terms where $d_i = 1$ since $\mathbb{Z}/1\mathbb{Z} = \{0\}$).

PROBLEM 4. Determine the structure of $Jac(K_n)$ for the complete graph K_n by computing the Smith normal form for the reduced Laplacian of K_n with respect to any vertex.