
PROBLEM 1. (The boundary of a boundary is empty.) Show that the following holds for the boundary mappings in the chain complex for a simplicial complex: $\partial_i \circ \partial_{i+1} = 0$, for each i. This relation is often abbreviated as $\partial^2 = 0$.

PROBLEM 2. The left side of the figure below shows a simplicial complex drawn on a sphere. On the right side is the same simplicial complex projected onto the face $\overline{134}$. It has eight two-dimensional facets, counting $\overline{134}$.

- (a) Find matrices for all nonzero ∂_i with respect to our standard bases (lexicographic ordering of faces).
- (b) Compute the rank and nullity of each nonzero ∂_i and use them to compute all of the Betti numbers for the complex.
- (c) Find a generator for \tilde{H}_2 with geometrical significance.

PROBLEM 3. Let Δ be the simplicial complex with facets

$$\overline{1234}$$
, $\overline{125}$, $\overline{135}$, $\overline{235}$, $\overline{36}$, $\overline{56}$, $\overline{67}$, $\overline{89}$, $\overline{8*}$, $\overline{9*}$.

where * = 10 (for typesetting purposes). Compute all of the Betti numbers without doing a calculation. However, you should explain your reasoning.

PROBLEM 4. Let Δ be a simplicial complex, let f_i be the number of faces of dimension i. For example, $f_{-1} = 1$, and f_0 is the number of vertices. Let $\tilde{\beta}_i$ be the i-th Betti number of Δ . Show that

$$\tilde{\beta}_0 - \tilde{\beta}_1 + \tilde{\beta}_2 - \dots = -f_{-1} + f_0 - f_1 + \dots$$

PROBLEM 5. Let B_3 be the boolean poset of all subsets of $\{1, 2, 3\}$.

- (a) Describe the order complex $\Delta(B_3)$ as a geometric object. Attempt a drawing of this object. To do this, first draw the Hasse diagram for B_3 with the elements labeled with letters a through h starting with $a = \emptyset$, $b = \overline{1}$, and so on, to $h = \overline{123}$ so that each succeeding letter is the label for the next subset in lexicographical ordering.
- (b) What are the Betti numbers for $\Delta(B_3)$? (You should be able to compute these numbers from your answer to part (a) without performing a calculation.)