PROBLEM 1. Let G = (V, E) be an undirected graph with vertex set $V = \{v_1, \ldots, v_n\}$ and edge set E. (For simplicity, we will assume G has no multiple edges.) A divisor on G is a vector $D \in \mathbb{Z}^n$. Think of the integer D(i) as a number of dollars assigned to vertex v_i . If D(i) < 0, then v_i is in debt. A lending move by v_i consists of v_i giving a dollar to each of its neighbors and, consequently, losing $deg(v_i)$ dollars, itself. (By definition v_j is a neighbor of v_i if v_iv_j is an edge of G.) A borrowing move by vertex v_i is the opposite: v_i takes a dollar from each of its neighbors. Say divisors D and D' are linearly equivalent, denoted $D \sim D'$, if D' can be derived from D through a series of lending and borrowing moves. The dollar game on G starts with a divisor D, and the goal is to make lending and borrowing moves to arrive at a linearly equivalent divisor E such that $E \geq 0$, i.e., such that $E(i) \geq 0$ for $i = 1, \ldots, n$.

- (a) Use the Polya counting technique to compute the number of necklaces with 4 blue beads and 3 red beads.
- (b) Let $G = C_3$, the cycle graph on 3 vertices v_1, v_2, v_3 (a triangle), and consider the divisor D = (4, 0, 0). By performing lending and borrowing moves, determine all divisors $E \geq 0$ such that $D \sim E$. In other words, find all possible winning end conditions for the dollar game on G starting at D.
- (c) Give a combinatorial bijection between the necklaces you found in (a) and the divisors E you found in (b). To give a "combinatorial bijection", you should find a natural and meaningful story that says which necklace should be associated with which winning divisor E. (If this is done correctly, it will generalize to necklaces with k blue beads and ℓ red beads whenever $\gcd(k,\ell)=1$.)

Problem 2.

- (a) Consider a power series of the form $f = 1 + 2x + 5x^2 + 3x^3 + \cdots$ Since you do not know all of the coefficients of f, you cannot compute all the coefficients of 1/f, however determine as many as possible.
- (b) Let $f = x + x^2$ and $f^{-1} = \sum_{n \ge 1} a_n x^n$, so that we have

$$f(f^{-1}(x)) = f^{-1}(f(x)) = x.$$

Find a_n for n = 1, 2, 3, 4.

PROBLEM 3. Find closed forms for the ordinary power series for the following sequences:

- (a) $\{\sum_{k=0}^{n} (k+2k^3)\}_n = \{0, 3, 21, 78, 210, \dots\}.$
- (b) The odd integers, $\{1, 3, 5, \dots\}$.
- (c) $\{1,0,1,0,1,0,\dots\}$.
- (d) $\{1,0,2,0,3,0,4,0,\}$.

PROBLEM 4. Fix $n \ge 0$. Find a closed form for the ordinary power series for the sequence $\{\sum_{i=0}^k (-1)^i \binom{n}{i} i\}_k$. Compare coefficients to derive an identity for binomial coefficients.

PROBLEM 5. Consider the Fibonacci numbers, $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. Let F be the ordinary generating function for the Fibonacci numbers.

- (a) Use the fact that $F = x/(1-x-x^2)$ to write the multiplicative inverse of 1+F as a power series G. Determine all of the coefficients of G explicitly.
- (b) Equating the coefficient of x^n on both sides of (1+F)G=1 yields which identities among Fibonacci numbers?