Math 372

November 30, 2022

Goal: Distributive lattices.

P a poset, $x, y \in P$

P a poset, $x, y \in P$

 $x \lor y$: the *join* of x and y is their least upper bound

P a poset, $x, y \in P$

 $x \lor y$: the *join* of x and y is their least upper bound

 $x \wedge y$: the *meet* of x and y is their greatest lower bound

P a poset, $x, y \in P$

 $x \lor y$: the *join* of x and y is their least upper bound

 $x \wedge y$: the *meet* of x and y is their greatest lower bound

A *lattice* is a poset L in which every pair of elements $x, y \in L$ as a meet and a join.

P a poset, $x, y \in P$

 $x \lor y$: the *join* of x and y is their least upper bound

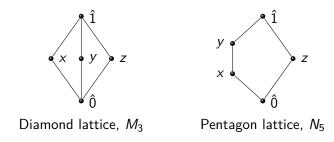
 $x \wedge y$: the *meet* of x and y is their greatest lower bound

A *lattice* is a poset L in which every pair of elements $x, y \in L$ as a meet and a join.

A lattice L is *distributive* if for all $x, y, z \in L$,

$$x \lor (y \land z) = (x \lor y) \land (x \lor z).$$

Obstructions to being distributive:



Proposition. A lattice is distributive if and only if none of its sublattices is isomorphic to M_3 or N_5 .

$I \subseteq P$ is an order ideal if $x \in I$ and y < x implies $y \in I$.

 $I \subseteq P$ is an order ideal if $x \in I$ and y < x implies $y \in I$. The principal order ideal of $x \in P$ is

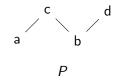
$$\Lambda_x = \{y \in P : y \le x\}.$$

 $I \subseteq P$ is an order ideal if $x \in I$ and y < x implies $y \in I$. The principal order ideal of $x \in P$ is

$$\Lambda_x = \{y \in P : y \le x\}.$$

The set J(P) of order ideals ordered by set-inclusion is a distributive lattice.

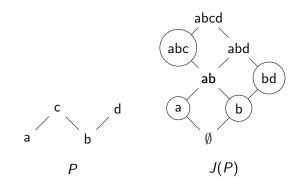
Example.



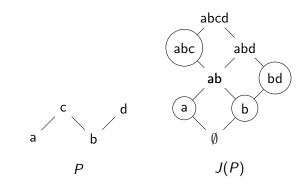
(x covers exactly one)

element).

Example.



Example.



x in a lattice is *join irreducible* if $x \neq \hat{0}$ and if it is not possible to write $x = y \lor z$ with y < x and z < x (x covers exactly one element).

Theorem. Let P be a poset in which every principal order ideal is finite.

Theorem. Let P be a poset in which every principal order ideal is finite. Then the poset $J_f(P)$ of *finite* order ideals of P, ordered by inclusion, is a finitary distributive lattice.

Theorem. Let P be a poset in which every principal order ideal is finite. Then the poset $J_f(P)$ of *finite* order ideals of P, ordered by inclusion, is a finitary distributive lattice. Conversely, if L is a finitary distributive lattice and P is its subposet of join-irreducibles, then every principal order ideal of P is finite, and $L \simeq J_f(P)$.

Theorem 1. Let P be a poset in which every principal order ideal is finite.

Theorem 1. Let *P* be a poset in which every principal order ideal is finite. Define a poset \tilde{P} by adding elements α and β to *P*, then defining

$$\alpha < \beta < \mathbf{x}$$

for all $x \in P$.

Theorem 1. Let *P* be a poset in which every principal order ideal is finite. Define a poset \tilde{P} by adding elements α and β to *P*, then defining

$$\alpha < \beta < x$$

for all $x \in P$. Let G = G(P) be the Hasse diagram for \tilde{P} . For each $x \in P$, let n(x) be the number of covers of x in P.

Theorem 1. Let *P* be a poset in which every principal order ideal is finite. Define a poset \tilde{P} by adding elements α and β to *P*, then defining

$$\alpha < \beta < x$$

for all $x \in P$. Let G = G(P) be the Hasse diagram for \tilde{P} . For each $x \in P$, let n(x) be the number of covers of x in P. Define $D \in \text{Div}(G)$ by

 $D(x) = \begin{cases} 0 & \text{if } x \in \{\alpha, \beta\}, \\ \deg_G(x) & \text{if } x \text{ is a minimal element of } P, \\ n(x) & \text{otherwise.} \end{cases}$

Theorem 1. Let *P* be a poset in which every principal order ideal is finite. Define a poset \tilde{P} by adding elements α and β to *P*, then defining

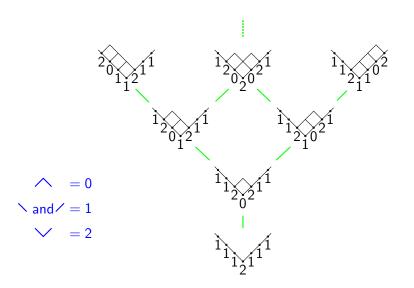
$$\alpha < \beta < x$$

for all $x \in P$. Let G = G(P) be the Hasse diagram for \tilde{P} . For each $x \in P$, let n(x) be the number of covers of x in P. Define $D \in \text{Div}(G)$ by

$$D(x) = \begin{cases} 0 & \text{if } x \in \{\alpha, \beta\}, \\ \deg_G(x) & \text{if } x \text{ is a minimal element of } P, \\ n(x) & \text{otherwise.} \end{cases}$$

Then the firing graph $\mathcal{F}(D)$ has no cycles, and when considered as a poset, $\mathcal{F}(D) \simeq J_f(P)$.

We have seen that Young's lattics is given by the firing graph of the divisor



How would we get Young's lattice using our Theorem 1?

How would we get Young's lattice using our Theorem 1?

Poset of join irreducibles of Young's lattice: rectangles, $\{1,2,\ldots\}^2\approx \mathbb{N}^2.$

How would we get Young's lattice using our Theorem 1?

Poset of join irreducibles of Young's lattice: rectangles, $\{1,2,\ldots\}^2\approx \mathbb{N}^2.$

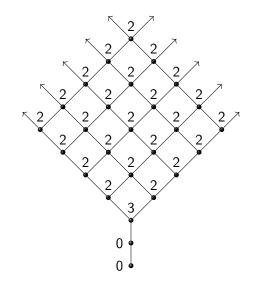
So Young's diagram is $J_f(\mathbb{N}^2)$.

How would we get Young's lattice using our Theorem 1?

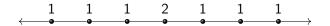
Poset of join irreducibles of Young's lattice: rectangles, $\{1,2,\ldots\}^2\approx \mathbb{N}^2.$

So Young's diagram is $J_f(\mathbb{N}^2)$.

Theorem 1 gives Young's diagram as the firing graph for the divisor pictured on the next slide.



The divisor just pictured is much more complicated than



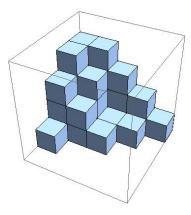
Question: Is there a principled way in which we could have found this simpler divisor?

Generalization of Young's lattice

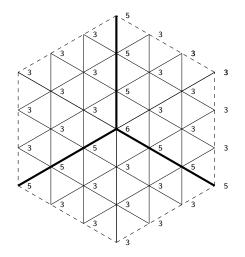
Young's lattice belongs to the family of lattice $J_f(\mathbb{N}^k)$.

Generalization of Young's lattice

Young's lattice belongs to the family of lattice $J_f(\mathbb{N}^k)$. **Example:** k = 3 gives plane partitions:



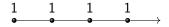
Plane partition lattice from a divisor



(Again, this does not come from Theorem 1.)

Lattice of shifted shapes

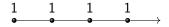
The firing graph for the divisor



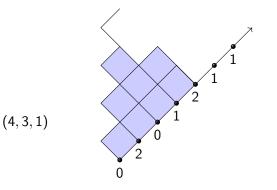
gives the *lattice of shifted shapes*, the lattice of integer partitions with nonequal parts.

Lattice of shifted shapes

The firing graph for the divisor

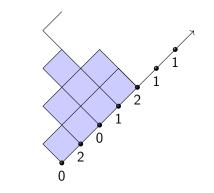


gives the *lattice of shifted shapes*, the lattice of integer partitions with nonequal parts.



Lattice of shifted shapes

Question: What is the poset of join irreducibles of the lattice of shifted shapes?



(4, 3, 1)

To do

Problem 1. Which classes of graphs G and divisors D should we be considering? At least, we want the firing graph $\mathcal{F}(D)$ to be acyclic.

To do

Problem 1. Which classes of graphs G and divisors D should we be considering? At least, we want the firing graph $\mathcal{F}(D)$ to be acyclic.

Problem 2. Show that when $\mathcal{F}(D)$ is acyclic it is the Hasse diagram for a lattice.

To do

Problem 1. Which classes of graphs G and divisors D should we be considering? At least, we want the firing graph $\mathcal{F}(D)$ to be acyclic.

Problem 2. Show that when $\mathcal{F}(D)$ is acyclic it is the Hasse diagram for a lattice.

Problem 3. Let \mathcal{FL} denote the collection of all lattices of the form $\mathcal{F}(D)$. We have seen that \mathcal{FL} contains all finitary distributive lattices.

A lattice is *locally free* if for each element x, the interval from x to the join of all elements covering x is a Boolean lattice (i.e., isomorphic to a lattice of subsets of a given set).

A lattice is *locally free* if for each element x, the interval from x to the join of all elements covering x is a Boolean lattice (i.e., isomorphic to a lattice of subsets of a given set).

A firing script is a formal sum of vertices: $\sigma = \sum_{i=1}^{n} a_i v_i$. It is *legal* for a divisor *D* if there is a legal sequence of vertex firings w_1, \ldots, w_k where $k = \sum_{i=1}^{n} a_i$ such that $\sigma = \sum_{i=1}^{k} w_i$.

A lattice is *locally free* if for each element x, the interval from x to the join of all elements covering x is a Boolean lattice (i.e., isomorphic to a lattice of subsets of a given set).

A firing script is a formal sum of vertices: $\sigma = \sum_{i=1}^{n} a_i v_i$. It is *legal* for a divisor *D* if there is a legal sequence of vertex firings w_1, \ldots, w_k where $k = \sum_{i=1}^{n} a_i$ such that $\sigma = \sum_{i=1}^{k} w_i$.

Theorem. (Björner, Lovàsz, Shor, 1991). Let *G* be a finite graph, and let $D \in \text{Div}(G)$ be stabilizable. Then the firing graph $\mathcal{F}(D)$ is a locally free lattice. Given $D', D'' \in \mathcal{F}(D)$, let σ' and σ'' be legal firing scripts such that $D \xrightarrow{\sigma'} D'$ and $D \xrightarrow{\sigma''} D''$. Then $D \xrightarrow{\sigma' \lor \sigma''} D''$, where $(\sigma' \lor \sigma'')(v) := \max\{\sigma'(v), \sigma''(v)\}$ for all vertices v of G.

Proved earlier: for each $D' \in \mathcal{F}(D)$, there exist a unique legal firing script σ such that $D \xrightarrow{\sigma} D'$ and the support of σ does not contain all of the vertices.

Proved earlier: for each $D' \in \mathcal{F}(D)$, there exist a unique legal firing script σ such that $D \xrightarrow{\sigma} D'$ and the support of σ does not contain all of the vertices.

Notation: $D' = D[\sigma]$.

Proved earlier: for each $D' \in \mathcal{F}(D)$, there exist a unique legal firing script σ such that $D \xrightarrow{\sigma} D'$ and the support of σ does not contain all of the vertices.

Notation: $D' = D[\sigma]$.

```
Then \mathcal{L}(D) consists of
```

 $\{D[\sigma] : \sigma \text{ is legal from } D\}.$

Proved earlier: for each $D' \in \mathcal{F}(D)$, there exist a unique legal firing script σ such that $D \xrightarrow{\sigma} D'$ and the support of σ does not contain all of the vertices.

Notation: $D' = D[\sigma]$.

Then $\mathcal{L}(D)$ consists of

 $\{D[\sigma] : \sigma \text{ is legal from } D\}.$

join: $D[\sigma] \lor D[\tau] = D[\sigma \lor \tau]$

Proved earlier: for each $D' \in \mathcal{F}(D)$, there exist a unique legal firing script σ such that $D \xrightarrow{\sigma} D'$ and the support of σ does not contain all of the vertices.

Notation: $D' = D[\sigma]$.

Then $\mathcal{L}(D)$ consists of

 $\{D[\sigma] : \sigma \text{ is legal from } D\}.$

join: $D[\sigma] \lor D[\tau] = D[\sigma \lor \tau]$

It is *not* generally true that the meet is $D[\sigma \wedge \tau]$.