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Today

Goal: Distributive lattices.



Review

P a poset, x , y ∈ P

x ∨ y : the join of x and y is their least upper bound
x ∧ y : the meet of x and y is their greatest lower bound

A lattice is a poset L in which every pair of elements x , y ∈ L as a
meet and a join.

A lattice L is distributive if for all x , y , z ∈ L,

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
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Review

Obstructions to being distributive:

x y z

1̂

0̂
Diamond lattice, M3

y

x
z

1̂

0̂
Pentagon lattice, N5

Proposition. A lattice is distributive if and only if none of its
sublattices is isomorphic to M3 or N5.



Review

I ⊆ P is an order ideal if x ∈ I and y < x implies y ∈ I.

The principal order ideal of x ∈ P is

Λx = {y ∈ P : y ≤ x}.

The set J(P) of order ideals ordered by set-inclusion is a
distributive lattice.
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Review

Example.

a b

c d

P

∅

a b

abab

abcd

bd

abdabc

J(P)

x in a lattice is join irreducible if x 6= 0̂ and if it is not possible to
write x = y ∨ z with y < x and z < x

(x covers exactly one
element).
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Review

A lattice is finitary if it is locally finite (meaning that each of its
intervals is finite) and if it has a unique smallest element 0̂.

Theorem. Let P be a poset in which every principal order ideal is
finite. Then the poset Jf (P) of finite order ideals of P, ordered by
inclusion, is a finitary distributive lattice. Conversely, if L is a
finitary distributive lattice and P is its subposet of join-irreducibles,
then every principal order ideal of P is finite, and L ' Jf (P).



Review

A lattice is finitary if it is locally finite (meaning that each of its
intervals is finite) and if it has a unique smallest element 0̂.

Theorem. Let P be a poset in which every principal order ideal is
finite.

Then the poset Jf (P) of finite order ideals of P, ordered by
inclusion, is a finitary distributive lattice. Conversely, if L is a
finitary distributive lattice and P is its subposet of join-irreducibles,
then every principal order ideal of P is finite, and L ' Jf (P).



Review

A lattice is finitary if it is locally finite (meaning that each of its
intervals is finite) and if it has a unique smallest element 0̂.

Theorem. Let P be a poset in which every principal order ideal is
finite. Then the poset Jf (P) of finite order ideals of P, ordered by
inclusion, is a finitary distributive lattice.

Conversely, if L is a
finitary distributive lattice and P is its subposet of join-irreducibles,
then every principal order ideal of P is finite, and L ' Jf (P).



Review

A lattice is finitary if it is locally finite (meaning that each of its
intervals is finite) and if it has a unique smallest element 0̂.

Theorem. Let P be a poset in which every principal order ideal is
finite. Then the poset Jf (P) of finite order ideals of P, ordered by
inclusion, is a finitary distributive lattice. Conversely, if L is a
finitary distributive lattice and P is its subposet of join-irreducibles,
then every principal order ideal of P is finite, and L ' Jf (P).



Review

Theorem 1. Let P be a poset in which every principal order ideal
is finite.

Define a poset P̃ by adding elements α and β to P, then
defining

α < β < x

for all x ∈ P. Let G = G(P) be the Hasse diagram for P̃. For
each x ∈ P, let n(x) be the number of covers of x in P.
Define D ∈ Div(G) by

D(x) =


0 if x ∈ {α, β},
degG(x) if x is a minimal element of P,
n(x) otherwise.

Then the firing graph F(D) has no cycles, and when considered as
a poset, F(D) ' Jf (P).
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Young’s lattice

We have seen that Young’s lattics is given by the firing graph of
the divisor

2 1 1 1111



Young’s lattice
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Young’s lattice

How would we get Young’s lattice using our Theorem 1?

Poset of join irreducibles of Young’s lattice: rectangles,
{1, 2, . . .}2 ≈ N2.

So Young’s diagram is Jf (N2).

Theorem 1 gives Young’s diagram as the firing graph for the
divisor pictured on the next slide.
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Young’s lattice
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Young’s lattice

The divisor just pictured is much more complicated than

2 1 1 1111

Question: Is there a principled way in which we could have found
this simpler divisor?



Generalization of Young’s lattice

Young’s lattice belongs to the family of lattice Jf (Nk).

Example: k = 3 gives plane partitions:
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Plane partition lattice from a divisor
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(Again, this does not come from Theorem 1.)



Lattice of shifted shapes
The firing graph for the divisor

1 1 1 1

gives the lattice of shifted shapes, the lattice of integer partitions
with nonequal parts.

0
2

0
1

2
1

1

(4, 3, 1)
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Lattice of shifted shapes

Question: What is the poset of join irreducibles of the lattice of
shifted shapes?
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(4, 3, 1)



To do

Problem 1. Which classes of graphs G and divisors D should we
be considering? At least, we want the firing graph F(D) to be
acyclic.

Problem 2. Show that when F(D) is acyclic it is the Hasse
diagram for a lattice.

Problem 3. Let FL denote the collection of all lattices of the
form F(D). We have seen that FL contains all finitary distributive
lattices.
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Locally free lattices

A lattice is locally free if for each element x , the interval from x to
the join of all elements covering x is a Boolean lattice (i.e.,
isomorphic to a lattice of subsets of a given set).

A firing script is a formal sum of vertices: σ =
∑n

i=1 ai vi . It is
legal for a divisor D if there is a legal sequence of vertex
firings w1, . . . ,wk where k =

∑n
i=1 ai such that σ =

∑k
i=1 wi .

Theorem. (Björner, Lovàsz, Shor, 1991). Let G be a finite graph,
and let D ∈ Div(G) be stabilizable. Then the firing graph F(D) is
a locally free lattice. Given D′,D′′ ∈ F(D), let σ′ and σ′′ be legal
firing scripts such that D σ′

−→ D′ and D σ′′
−→ D′′.

Then D σ′∨σ′′
−−−−→ D′′, where (σ′ ∨ σ′′)(v) := max{σ′(v), σ′′(v)} for

all vertices v of G .
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Locally free lattices

Proved earlier: for each D′ ∈ F(D), there exist a unique legal
firing script σ such that D σ−→ D′ and the support of σ does not
contain all of the vertices.

Notation: D′ = D[σ].

Then L(D) consists of

{D[σ] : σ is legal from D}.

join: D[σ] ∨ D[τ ] = D[σ ∨ τ ]

It is not generally true that the meet is D[σ ∧ τ ].
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