Math 372

November 28, 2022

Goal: Distributive lattices.

Leftover from previous class

Theorem. (Least action principle) Let G be finite, and let $D \in \text{Div}(G)$. Suppose that v_1, \ldots, v_k is a sequence of legal vertex firings for D, and let $\sigma = \sum_{i=1}^k v_i$. Then if $D - L\tau$ is stable with $\tau \ge 0$, it follows that $\tau \ge \sigma$.

Leftover from previous class

Theorem. (Least action principle) Let G be finite, and let $D \in \text{Div}(G)$. Suppose that v_1, \ldots, v_k is a sequence of legal vertex firings for D, and let $\sigma = \sum_{i=1}^k v_i$. Then if $D - L\tau$ is stable with $\tau \ge 0$, it follows that $\tau \ge \sigma$.

Corollary. Let G be finite and $D \in Div(G)$. Suppose that v_1, \ldots, v_k and w_1, \ldots, w_ℓ are both legal firing sequences, and let $\sigma := \sum_{i=1}^k v_i$ and $\tau := \sum_{i=1}^\ell w_i$ be the corresponding firing scripts. Further suppose that $D \xrightarrow{\sigma} D'$ and $D \xrightarrow{\tau} D''$ with both D' and D'' stable. Then $\sigma = \tau$ and D' = D''.

P a poset, $x, y \in P$

P a poset, $x, y \in P$

 $x \lor y$: the *join* of x and y is their least upper bound

P a poset, $x, y \in P$

 $x \lor y$: the *join* of x and y is their least upper bound $x \land y$: the *meet* of x and y is their greatest lower bound

P a poset, $x, y \in P$

 $x \lor y$: the *join* of x and y is their least upper bound

 $x \wedge y$: the *meet* of x and y is their greatest lower bound

A *lattice* is a poset L in which every pair of elements $x, y \in L$ as a meet and a join.

P a poset, $x, y \in P$

 $x \lor y$: the *join* of x and y is their least upper bound

 $x \wedge y$: the *meet* of x and y is their greatest lower bound

A *lattice* is a poset L in which every pair of elements $x, y \in L$ as a meet and a join.

Hasse diagrams for all lattices with five elements:

Not a lattice:

A lattice L is *distributive* if for all $x, y, z \in L$,

$$x \lor (y \land z) = (x \lor y) \land (x \lor z).$$

A lattice L is *distributive* if for all $x, y, z \in L$,

$$x \lor (y \land z) = (x \lor y) \land (x \lor z).$$

Equivalently,

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z).$$

A lattice L is *distributive* if for all $x, y, z \in L$,

$$x \lor (y \land z) = (x \lor y) \land (x \lor z).$$

Equivalently,

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z).$$

Examples: Boolean posets B_n ,

A lattice L is *distributive* if for all $x, y, z \in L$,

$$x \lor (y \land z) = (x \lor y) \land (x \lor z).$$

Equivalently,

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z).$$

Examples: Boolean posets B_n , the nonnegative integers \mathbb{N} ordered as usual,

A lattice *L* is *distributive* if for all $x, y, z \in L$,

$$x \lor (y \land z) = (x \lor y) \land (x \lor z).$$

Equivalently,

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z).$$

Examples: Boolean posets B_n , the nonnegative integers \mathbb{N} ordered as usual, \mathbb{N} ordered by divisibility,

A lattice L is *distributive* if for all $x, y, z \in L$,

$$x \lor (y \land z) = (x \lor y) \land (x \lor z).$$

Equivalently,

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z).$$

Examples: Boolean posets B_n , the nonnegative integers \mathbb{N} ordered as usual, \mathbb{N} ordered by divisibility, Young's lattice of integer partitions.

Two non-distributive lattices:

Diamond lattice, M_3

Two non-distributive lattices:

Diamond lattice, M_3

Pentagon lattice, N_5

Proposition. A lattice is distributive if and only if none of its sublattices is isomorphic to M_3 or N_5 .

Two non-distributive lattices:

Diamond lattice, M_3

Pentagon lattice, N_5

Proposition. A lattice is distributive if and only if none of its sublattices is isomorphic to M_3 or N_5 .

Sublattice: subset that is closed under the meet and join operations of the original lattice.

Example of a distributive lattice that contains N_5 as a subset but not as a sublattice:

A distributive lattice.

 $I \subseteq P$ is an order ideal if $x \in I$ and y < x implies $y \in I$.

 $I \subseteq P$ is an order ideal if $x \in I$ and y < x implies $y \in I$.

The principal order ideal of $x \in P$ is

$$\Lambda_x = \{y \in P : y \le x\}.$$

 $I \subseteq P$ is an order ideal if $x \in I$ and y < x implies $y \in I$.

The principal order ideal of $x \in P$ is

$$\Lambda_x = \{y \in P : y \le x\}.$$

The set J(P) of order ideals ordered by set-inclusion is a distributive lattice.

 $I \subseteq P$ is an order ideal if $x \in I$ and y < x implies $y \in I$.

The principal order ideal of $x \in P$ is

$$\Lambda_x = \{y \in P : y \le x\}.$$

The set J(P) of order ideals ordered by set-inclusion is a distributive lattice.

join = union, and meet = intersection

Example.

Example.

Example.

x in a lattice is *join irreducible* if $x \neq \hat{0}$ and if it is not possible to write $x = y \lor z$ with y < x and z < x

Example.

x in a lattice is *join irreducible* if $x \neq \hat{0}$ and if it is not possible to write $x = y \lor z$ with y < x and z < x (x covers exactly one element).

Fundamental theorem of finitary distributive lattices.

A lattice is *finitary* if it is locally finite (meaning that each of its intervals is finite) and if it has a unique smallest element $\hat{0}$.

Fundamental theorem of finitary distributive lattices.

A lattice is *finitary* if it is locally finite (meaning that each of its intervals is finite) and if it has a unique smallest element $\hat{0}$.

Theorem. Let P be a poset in which every principal order ideal is finite.

Fundamental theorem of finitary distributive lattices.

A lattice is *finitary* if it is locally finite (meaning that each of its intervals is finite) and if it has a unique smallest element $\hat{0}$.

Theorem. Let P be a poset in which every principal order ideal is finite. Then the poset $J_f(P)$ of *finite* order ideals of P, ordered by inclusion, is a finitary distributive lattice.

A lattice is *finitary* if it is locally finite (meaning that each of its intervals is finite) and if it has a unique smallest element $\hat{0}$.

Theorem. Let P be a poset in which every principal order ideal is finite. Then the poset $J_f(P)$ of *finite* order ideals of P, ordered by inclusion, is a finitary distributive lattice. Conversely, if L is a finitary distributive lattice and P is its subposet of join-irreducibles, then every principal order ideal of P is finite, and $L \simeq J_f(P)$.

Theorem. Let P be a poset in which every principal order ideal is finite.

Theorem. Let *P* be a poset in which every principal order ideal is finite. Define a poset \tilde{P} by adding elements α and β to *P*, then defining

$$\alpha < \beta < x$$

for all $x \in P$.

Theorem. Let *P* be a poset in which every principal order ideal is finite. Define a poset \tilde{P} by adding elements α and β to *P*, then defining

$$\alpha < \beta < x$$

for all $x \in P$. Let G = G(P) be the Hasse diagram for \tilde{P} . For each $x \in P$, let n(x) be the number of covers of x in P.

Theorem. Let *P* be a poset in which every principal order ideal is finite. Define a poset \tilde{P} by adding elements α and β to *P*, then defining

$$\alpha < \beta < \mathbf{x}$$

for all $x \in P$. Let G = G(P) be the Hasse diagram for \tilde{P} . For each $x \in P$, let n(x) be the number of covers of x in P. Define $D \in \text{Div}(G)$ by

$$D(x) = \begin{cases} 0 & \text{if } x \in \{\alpha, \beta\}, \\ \deg_G(x) & \text{if } x \text{ is a minimal element of } P, \\ n(x) & \text{otherwise.} \end{cases}$$

Theorem. Let *P* be a poset in which every principal order ideal is finite. Define a poset \tilde{P} by adding elements α and β to *P*, then defining

$$\alpha < \beta < x$$

for all $x \in P$. Let G = G(P) be the Hasse diagram for \tilde{P} . For each $x \in P$, let n(x) be the number of covers of x in P. Define $D \in \text{Div}(G)$ by

$$D(x) = \begin{cases} 0 & \text{if } x \in \{\alpha, \beta\}, \\ \deg_G(x) & \text{if } x \text{ is a minimal element of } P, \\ n(x) & \text{otherwise.} \end{cases}$$

Then the firing graph $\mathcal{F}(D)$ has no cycles, and when considered as a poset, $\mathcal{F}(D) \simeq J_f(P)$.

Proof. Exercise.

 $D(x) = \begin{cases} 0 & \text{if } x \in \{\alpha, \beta\}, \\ \deg_G(x) & \text{if } x \text{ is a minimal element of } P, \\ n(x) & \text{otherwise.} \end{cases}$

$$D(x) = \begin{cases} 0 & \text{if } x \in \{\alpha, \beta\}, \\ \deg_G(x) & \text{if } x \text{ is a minimal element of } P, \\ n(x) & \text{otherwise.} \end{cases}$$

Example. (See lecture notes.)

$$D(x) = \begin{cases} 0 & \text{if } x \in \{\alpha, \beta\}, \\ \deg_G(x) & \text{if } x \text{ is a minimal element of } P, \\ n(x) & \text{otherwise.} \end{cases}$$

Example. (See lecture notes.)

