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Today

Goal: Distributive lattices.



Leftover from previous class

Theorem. (Least action principle) Let G be finite, and
let D ∈ Div(G). Suppose that v1, . . . , vk is a sequence of legal
vertex firings for D, and let σ =

∑k
i=1 vi . Then if D − Lτ is stable

with τ ≥ 0, it follows that τ ≥ σ.

Corollary. Let G be finite and D ∈ Div(G). Suppose that
v1, . . . , vk and w1, . . . ,w` are both legal firing sequences, and
let σ :=

∑k
i= vi and τ :=

∑`
i=1 wi be the corresponding firing

scripts. Further suppose that D σ−→ D′ and D τ−→ D′′ with both D′

and D′′ stable. Then σ = τ and D′ = D′′.
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Distributive lattices

P a poset, x , y ∈ P

x ∨ y : the join of x and y is their least upper bound
x ∧ y : the meet of x and y is their greatest lower bound

A lattice is a poset L in which every pair of elements x , y ∈ L as a
meet and a join.

Hasse diagrams for all lattices with five elements:
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Not a lattice:



Distributive lattices

A lattice L is distributive if for all x , y , z ∈ L,

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Equivalently,
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Examples: Boolean posets Bn, the nonnegative integers N ordered
as usual, N ordered by divisibility, Young’s lattice of integer
partitions.
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Distributive lattices

Two non-distributive lattices:

x y z

1̂

0̂
Diamond lattice, M3

y

x
z

1̂

0̂
Pentagon lattice, N5

Proposition. A lattice is distributive if and only if none of its
sublattices is isomorphic to M3 or N5.

Sublattice: subset that is closed under the meet and join
operations of the original lattice.
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Distributive lattices

Example of a distributive lattice that contains N5 as a subset but
not as a sublattice:

y

x a
z

1̂

0̂̂0

A distributive lattice.



Distributive lattices

I ⊆ P is an order ideal if x ∈ I and y < x implies y ∈ I.

The principal order ideal of x ∈ P is

Λx = {y ∈ P : y ≤ x}.

The set J(P) of order ideals ordered by set-inclusion is a
distributive lattice.

join = union, and meet = intersection
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Distributive lattices

Example.

a b

c d

P

∅

a b

abab

abcd

bd

abdabc

J(P)

x in a lattice is join irreducible if x 6= 0̂ and if it is not possible to
write x = y ∨ z with y < x and z < x (x covers exactly one
element).
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Fundamental theorem of finitary distributive lattices.

A lattice is finitary if it is locally finite (meaning that each of its
intervals is finite) and if it has a unique smallest element 0̂.

Theorem. Let P be a poset in which every principal order ideal is
finite. Then the poset Jf (P) of finite order ideals of P, ordered by
inclusion, is a finitary distributive lattice. Conversely, if L is a
finitary distributive lattice and P is its subposet of join-irreducibles,
then every principal order ideal of P is finite, and L ' Jf (P).
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Every distributive lattice is a firing lattice

Theorem. Let P be a poset in which every principal order ideal is
finite.

Define a poset P̃ by adding elements α and β to P, then
defining

α < β < x

for all x ∈ P. Let G = G(P) be the Hasse diagram for P̃. For
each x ∈ P, let n(x) be the number of covers of x in P.
Define D ∈ Div(G) by

D(x) =


0 if x ∈ {α, β},
degG(x) if x is a minimal element of P,
n(x) otherwise.

Then the firing graph F(D) has no cycles, and when considered as
a poset, F(D) ' Jf (P).
Proof. Exercise.
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