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Today

Goal: Firing graphs.
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Assumptions on G = (V/, E):
» undirected multigraph with no loops
» finitary: finite number of edges incident on each vertex

» there exists a finite path between any two vertices.
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Language of divisors

Divisors on G: Div(G) :=7ZV

D=> D(v)v, D(v) € Z

veV
Support of D: supp(D) :={v € V: D(v) # 0}
If supp(D) is finite, deg(D) = >"y D(v).
The Laplacian: L: Div(G) — Div(G):

degg(v) ifv=w
— #edges from v to w if w # v.

L(v)(w) = {

Firing vertex v:
D'=D— Lv.



Coordinates

1Z
Vo V3

Vi

D =2vi +2v4

Aaaad

(1,0,0,1)



Firing graph

Definition. The firing graph for D € Div(G) is the directed
graph F(D) whose vertices are the divisors reachable from D by a
finite sequence of legal vertex-firings, and with an edge from
vertex H to vertex H' if there is a legal vertex firing taking H to H'.



Cycles in the firing graph

Proposition. If G is finite, then the kernel of L is generated
by 1y = > ,cy v (or the all-ones vector, thinking of L as a
matrix).



Cycles in the firing graph

Proposition. If G is finite, then the kernel of L is generated
by 1y = > ,cy v (or the all-ones vector, thinking of L as a
matrix).

Proof. Suppose L(D) =0, and let

m = max{D(w) :w € V}.



Cycles in the firing graph

Proposition. If G is finite, then the kernel of L is generated
by 1y = > ,cy v (or the all-ones vector, thinking of L as a
matrix).
Proof. Suppose L(D) =0, and let

m = max{D(w) :w € V}.

Choose v such that D(v) = m.



Cycles in the firing graph

Proposition. If G is finite, then the kernel of L is generated
by 1y = > ,cy v (or the all-ones vector, thinking of L as a
matrix).

Proof. Suppose L(D) =0, and let

m = max{D(w) :w € V}.
Choose v such that D(v) = m. Since L(D) =0,

0= L(D)(v)



Cycles in the firing graph

Proposition. If G is finite, then the kernel of L is generated
by 1y = > ,cy v (or the all-ones vector, thinking of L as a
matrix).
Proof. Suppose L(D) =0, and let
m = max{D(w) :w € V}.
Choose v such that D(v) = m. Since L(D) =0,
0= L(D)(v) = degg(v)m— > D(w).

vweE



Cycles in the firing graph

Proposition. If G is finite, then the kernel of L is generated
by 1y = > ,cy v (or the all-ones vector, thinking of L as a
matrix).
Proof. Suppose L(D) =0, and let
m = max{D(w) :w € V}.
Choose v such that D(v) = m. Since L(D) =0,
0= L(D)(v) = degg(v)m— > D(w).
vweE

Therefore,

L Z D(w).

m=———
degg(v) o=

However, since D(w) < m for all w € V,



Cycles in the firing graph

Proposition. If G is finite, then the kernel of L is generated
by 1y = > ,cy v (or the all-ones vector, thinking of L as a
matrix).

Proof. Suppose L(D) =0, and let

m = max{D(w) :w € V}.
Choose v such that D(v) = m. Since L(D) =0,

0= L(D)(v) = degg(v)m— > D(w).

vweE

Therefore,

L Z D(w).

m=———
degg(v) o=

However, since D(w) < m for all w € V/, the above equality can
only hold if D(w) = m for all w adjacent to v.



Cycles in the firing graph

Proposition. If G is finite, then the kernel of L is generated
by 1y = > ,cy v (or the all-ones vector, thinking of L as a
matrix).

Proof. Suppose L(D) =0, and let

m = max{D(w) :w € V}.
Choose v such that D(v) = m. Since L(D) =0,

0= L(D)(v) = degg(v)m— > D(w).

vweE

Therefore,

1
m=——— D(w).
degg(v) V};E
However, since D(w) < m for all w € V/, the above equality can
only hold if D(w) = m for all w adjacent to v. Since G is
connected, it must be that D(w) = m for all w € V.
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Cycles in the firing graph

Corollary. Suppose G is finite, and let D € Div(G).

1. Let C be a directed cycle in F(D) starting and ending at
some divisor H. Say

H=H % H 2 .. X Hi=H

is a sequence of legal vertex firings corresponding to C.
Then YK ; v; = aly for some integer a.

2. Suppose vi,v1,..., Vv, and wy, ..., w; are both legal firing
sequences taking D to the some divisor D’. Also suppose that
neither firing sequence contains all of the vertices. Then the
sequences are the same up to a permutation.

3. The firing poset is graded. The rank of D’ € F(D) is the
number of vertices that must be fired from D to reach D’ in
the firing graph (which also equals the length of a smallest
legal sequence of firings taking D to D’).
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Theorem. (Least action principle) Let G be finite, and

let D € Div(G). Suppose that vq,..., vk is a sequence of legal
vertex firings for D, and let 0 = 32X, v;. Then if D — L7 is stable
with 7 > 0, it follows that 7 > o.

Proof. The proof goes by induction on k. The case k =0, in
which o = 0, it obvious. So suppose k > 0. Since v; is unstable
in D, in order for D to stabilize, v; must fire.

Therefore, vy € supp(7). Say D A D and let 7 =T — vy.
Then 7/ stabilizes D’ and v», ..., v, is a sequence of legal vertex
firings. By induction 0 — vy < 7/, and the result follows:

o<t +vi=r.
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Least action principle

Theorem. (Least action principle) Let G be finite, and

let D € Div(G). Suppose that vi, ..., vk is a sequence of legal
vertex firings for D, and let o = Z, 1Vi. Then if D — L7 is stable
with 7 > 0, it follows that 7 > o.

Corollary. Let G be finite and D € Div(G). Suppose that
Vi,...,Vvg and wy,...,w, are both legal firing sequences, and

let o := Z,_ viand 7 := Zf;l w; be the corresponding firing
scripts. Further suppose that D = D’ and D = D” with both D’
and D" stable. Then 0 =7 and D' = D".



