
;

Math 372

November 16, 2022



Today

Goal: Firing graphs.



Set-up

Assumptions on G = (V ,E ):

I undirected multigraph with no loops

I finitary: finite number of edges incident on each vertex

I there exists a finite path between any two vertices.
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Language of divisors

Divisors on G : Div(G) := ZV

D =
∑
v∈V

D(v) v , D(v) ∈ Z

Support of D: supp(D) := {v ∈ V : D(v) 6= 0}

If supp(D) is finite, deg(D) =
∑

V D(v).

The Laplacian: L : Div(G)→ Div(G):

L(v)(w) :=
{

degG(v) if v = w
−#edges from v to w if w 6= v .

Firing vertex v :
D′ = D − Lv .
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Coordinates

v1

v2 v3

v4

G
2

0 0

2

D

D = 2v1 + 2v4 ! (1, 0, 0, 1)



Firing graph

Definition. The firing graph for D ∈ Div(G) is the directed
graph F(D) whose vertices are the divisors reachable from D by a
finite sequence of legal vertex-firings, and with an edge from
vertex H to vertex H ′ if there is a legal vertex firing taking H to H ′.



Cycles in the firing graph
Proposition. If G is finite, then the kernel of L is generated
by 1V =

∑
v∈V v (or the all-ones vector, thinking of L as a

matrix).

Proof. Suppose L(D) = 0, and let

m = max {D(w) : w ∈ V } .

Choose v such that D(v) = m. Since L(D) = 0,

0 = L(D)(v) = degG(v)m −
∑

vw∈E
D(w).

Therefore,
m = 1

degG(v)
∑

vw∈E
D(w).

However, since D(w) ≤ m for all w ∈ V , the above equality can
only hold if D(w) = m for all w adjacent to v . Since G is
connected, it must be that D(w) = m for all w ∈ V . �
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Cycles in the firing graph

Corollary. Suppose G is finite, and let D ∈ Div(G).
1. Let C be a directed cycle in F(D) starting and ending at

some divisor H. Say

H = H1
v1−→ H2

v2−→ · · · vk−→ Hk+1 = H

is a sequence of legal vertex firings corresponding to C .
Then

∑k
i=1 vi = a1V for some integer a.

2. Suppose v1, v1, . . . , vk and w1, . . . ,w` are both legal firing
sequences taking D to the some divisor D′. Also suppose that
neither firing sequence contains all of the vertices. Then the
sequences are the same up to a permutation.

3. The firing poset is graded. The rank of D′ ∈ F(D) is the
number of vertices that must be fired from D to reach D′ in
the firing graph (which also equals the length of a smallest
legal sequence of firings taking D to D′).
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Least action principle

Theorem. (Least action principle) Let G be finite, and
let D ∈ Div(G). Suppose that v1, . . . , vk is a sequence of legal
vertex firings for D, and let σ =

∑k
i=1 vi . Then if D − Lτ is stable

with τ ≥ 0, it follows that τ ≥ σ.

Proof. The proof goes by induction on k. The case k = 0, in
which σ = 0, it obvious. So suppose k > 0. Since v1 is unstable
in D, in order for D to stabilize, v1 must fire.
Therefore, v1 ∈ supp(τ). Say D v1−→ D′, and let τ ′ = τ − v1.
Then τ ′ stabilizes D′ and v2, . . . , vk is a sequence of legal vertex
firings. By induction σ − v1 ≤ τ ′, and the result follows:

σ ≤ τ ′ + v1 = τ.

�



Least action principle

Theorem. (Least action principle) Let G be finite, and
let D ∈ Div(G). Suppose that v1, . . . , vk is a sequence of legal
vertex firings for D, and let σ =

∑k
i=1 vi . Then if D − Lτ is stable

with τ ≥ 0, it follows that τ ≥ σ.
Proof. The proof goes by induction on k.

The case k = 0, in
which σ = 0, it obvious. So suppose k > 0. Since v1 is unstable
in D, in order for D to stabilize, v1 must fire.
Therefore, v1 ∈ supp(τ). Say D v1−→ D′, and let τ ′ = τ − v1.
Then τ ′ stabilizes D′ and v2, . . . , vk is a sequence of legal vertex
firings. By induction σ − v1 ≤ τ ′, and the result follows:

σ ≤ τ ′ + v1 = τ.

�



Least action principle

Theorem. (Least action principle) Let G be finite, and
let D ∈ Div(G). Suppose that v1, . . . , vk is a sequence of legal
vertex firings for D, and let σ =

∑k
i=1 vi . Then if D − Lτ is stable

with τ ≥ 0, it follows that τ ≥ σ.
Proof. The proof goes by induction on k. The case k = 0, in
which σ = 0, it obvious.

So suppose k > 0. Since v1 is unstable
in D, in order for D to stabilize, v1 must fire.
Therefore, v1 ∈ supp(τ). Say D v1−→ D′, and let τ ′ = τ − v1.
Then τ ′ stabilizes D′ and v2, . . . , vk is a sequence of legal vertex
firings. By induction σ − v1 ≤ τ ′, and the result follows:

σ ≤ τ ′ + v1 = τ.

�



Least action principle

Theorem. (Least action principle) Let G be finite, and
let D ∈ Div(G). Suppose that v1, . . . , vk is a sequence of legal
vertex firings for D, and let σ =

∑k
i=1 vi . Then if D − Lτ is stable

with τ ≥ 0, it follows that τ ≥ σ.
Proof. The proof goes by induction on k. The case k = 0, in
which σ = 0, it obvious. So suppose k > 0. Since v1 is unstable
in D, in order for D to stabilize, v1 must fire.

Therefore, v1 ∈ supp(τ). Say D v1−→ D′, and let τ ′ = τ − v1.
Then τ ′ stabilizes D′ and v2, . . . , vk is a sequence of legal vertex
firings. By induction σ − v1 ≤ τ ′, and the result follows:

σ ≤ τ ′ + v1 = τ.

�



Least action principle

Theorem. (Least action principle) Let G be finite, and
let D ∈ Div(G). Suppose that v1, . . . , vk is a sequence of legal
vertex firings for D, and let σ =

∑k
i=1 vi . Then if D − Lτ is stable

with τ ≥ 0, it follows that τ ≥ σ.
Proof. The proof goes by induction on k. The case k = 0, in
which σ = 0, it obvious. So suppose k > 0. Since v1 is unstable
in D, in order for D to stabilize, v1 must fire.
Therefore, v1 ∈ supp(τ).

Say D v1−→ D′, and let τ ′ = τ − v1.
Then τ ′ stabilizes D′ and v2, . . . , vk is a sequence of legal vertex
firings. By induction σ − v1 ≤ τ ′, and the result follows:

σ ≤ τ ′ + v1 = τ.

�



Least action principle

Theorem. (Least action principle) Let G be finite, and
let D ∈ Div(G). Suppose that v1, . . . , vk is a sequence of legal
vertex firings for D, and let σ =

∑k
i=1 vi . Then if D − Lτ is stable

with τ ≥ 0, it follows that τ ≥ σ.
Proof. The proof goes by induction on k. The case k = 0, in
which σ = 0, it obvious. So suppose k > 0. Since v1 is unstable
in D, in order for D to stabilize, v1 must fire.
Therefore, v1 ∈ supp(τ). Say D v1−→ D′, and let τ ′ = τ − v1.

Then τ ′ stabilizes D′ and v2, . . . , vk is a sequence of legal vertex
firings. By induction σ − v1 ≤ τ ′, and the result follows:

σ ≤ τ ′ + v1 = τ.

�



Least action principle

Theorem. (Least action principle) Let G be finite, and
let D ∈ Div(G). Suppose that v1, . . . , vk is a sequence of legal
vertex firings for D, and let σ =

∑k
i=1 vi . Then if D − Lτ is stable

with τ ≥ 0, it follows that τ ≥ σ.
Proof. The proof goes by induction on k. The case k = 0, in
which σ = 0, it obvious. So suppose k > 0. Since v1 is unstable
in D, in order for D to stabilize, v1 must fire.
Therefore, v1 ∈ supp(τ). Say D v1−→ D′, and let τ ′ = τ − v1.
Then τ ′ stabilizes D′ and v2, . . . , vk is a sequence of legal vertex
firings.

By induction σ − v1 ≤ τ ′, and the result follows:

σ ≤ τ ′ + v1 = τ.

�



Least action principle

Theorem. (Least action principle) Let G be finite, and
let D ∈ Div(G). Suppose that v1, . . . , vk is a sequence of legal
vertex firings for D, and let σ =

∑k
i=1 vi . Then if D − Lτ is stable

with τ ≥ 0, it follows that τ ≥ σ.
Proof. The proof goes by induction on k. The case k = 0, in
which σ = 0, it obvious. So suppose k > 0. Since v1 is unstable
in D, in order for D to stabilize, v1 must fire.
Therefore, v1 ∈ supp(τ). Say D v1−→ D′, and let τ ′ = τ − v1.
Then τ ′ stabilizes D′ and v2, . . . , vk is a sequence of legal vertex
firings. By induction σ − v1 ≤ τ ′,

and the result follows:

σ ≤ τ ′ + v1 = τ.

�



Least action principle

Theorem. (Least action principle) Let G be finite, and
let D ∈ Div(G). Suppose that v1, . . . , vk is a sequence of legal
vertex firings for D, and let σ =

∑k
i=1 vi . Then if D − Lτ is stable

with τ ≥ 0, it follows that τ ≥ σ.
Proof. The proof goes by induction on k. The case k = 0, in
which σ = 0, it obvious. So suppose k > 0. Since v1 is unstable
in D, in order for D to stabilize, v1 must fire.
Therefore, v1 ∈ supp(τ). Say D v1−→ D′, and let τ ′ = τ − v1.
Then τ ′ stabilizes D′ and v2, . . . , vk is a sequence of legal vertex
firings. By induction σ − v1 ≤ τ ′, and the result follows:

σ ≤ τ ′ + v1 = τ.

�



Least action principle

Theorem. (Least action principle) Let G be finite, and
let D ∈ Div(G). Suppose that v1, . . . , vk is a sequence of legal
vertex firings for D, and let σ =

∑k
i=1 vi . Then if D − Lτ is stable

with τ ≥ 0, it follows that τ ≥ σ.

Corollary. Let G be finite and D ∈ Div(G). Suppose that
v1, . . . , vk and w1, . . . ,w` are both legal firing sequences, and
let σ :=

∑k
i= vi and τ :=

∑`
i=1 wi be the corresponding firing

scripts. Further suppose that D σ−→ D′ and D τ−→ D′′ with both D′

and D′′ stable. Then σ = τ and D′ = D′′.
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