Math 372

November 16, 2022

Goal: Firing graphs.

undirected multigraph with no loops

- undirected multigraph with no loops
- ▶ *finitary:* finite number of edges incident on each vertex

- undirected multigraph with no loops
- finitary: finite number of edges incident on each vertex
- ▶ there exists a finite path between any two vertices.

Divisors on G: Div $(G) := \mathbb{Z}V$

Divisors on G: $\operatorname{Div}(G) := \mathbb{Z}V$ $D = \sum_{v \in V} D(v) v, \qquad D(v) \in \mathbb{Z}$

Divisors on
$$G$$
: Div $(G) := \mathbb{Z}V$
$$D = \sum_{v \in V} D(v) v, \qquad D(v) \in \mathbb{Z}$$

Support of D: $supp(D) := \{v \in V : D(v) \neq 0\}$

Divisors on G:
$$\operatorname{Div}(G) := \mathbb{Z}V$$

 $D = \sum_{v \in V} D(v)v, \quad D(v) \in \mathbb{Z}$
Support of D: $\operatorname{supp}(D) := \{v \in V : D(v) \neq 0\}$
If $\operatorname{supp}(D)$ is finite, $\operatorname{deg}(D) = \sum_{V} D(v).$

Divisors on G: $\operatorname{Div}(G) := \mathbb{Z}V$ $D = \sum_{v \in V} D(v)v, \qquad D(v) \in \mathbb{Z}$ Support of D: $\operatorname{supp}(D) := \{v \in V : D(v) \neq 0\}$ If $\operatorname{supp}(D)$ is finite, $\operatorname{deg}(D) = \sum_{V} D(v)$. The Laplacian: L: $\operatorname{Div}(G) \to \operatorname{Div}(G)$:

Divisors on G:
$$\operatorname{Div}(G) := \mathbb{Z}V$$

$$D = \sum_{v \in V} D(v) v, \qquad D(v) \in \mathbb{Z}$$
Support of D: $\operatorname{supp}(D) := \{v \in V : D(v) \neq 0\}$
If $\operatorname{supp}(D)$ is finite, $\operatorname{deg}(D) = \sum_{V} D(v)$.
The Laplacian: L: $\operatorname{Div}(G) \to \operatorname{Div}(G)$:

$$L(v)(w) := \begin{cases} \deg_G(v) & \text{if } v = w \end{cases}$$

Divisors on G:
$$\operatorname{Div}(G) := \mathbb{Z}V$$

 $D = \sum_{v \in V} D(v) v, \quad D(v) \in \mathbb{Z}$
Support of D: $\operatorname{supp}(D) := \{v \in V : D(v) \neq 0\}$
If $\operatorname{supp}(D)$ is finite, $\operatorname{deg}(D) = \sum_{V} D(v).$
The Laplacian: L: $\operatorname{Div}(G) \to \operatorname{Div}(G)$:

$$L(v)(w) := \begin{cases} \deg_G(v) & \text{if } v = w \\ - \# \text{edges from } v \text{ to } w & \text{if } w \neq v. \end{cases}$$

Divisors on G:
$$\operatorname{Div}(G) := \mathbb{Z}V$$

 $D = \sum_{v \in V} D(v) v, \quad D(v) \in \mathbb{Z}$
Support of D: $\operatorname{supp}(D) := \{v \in V : D(v) \neq 0\}$
If $\operatorname{supp}(D)$ is finite, $\operatorname{deg}(D) = \sum_{V} D(v).$
The Laplacian: L: $\operatorname{Div}(G) \to \operatorname{Div}(G)$:

$$L(v)(w) := \begin{cases} \deg_G(v) & \text{if } v = w \\ - \# \text{edges from } v \text{ to } w & \text{if } w \neq v. \end{cases}$$

Firing vertex v:

$$D'=D-Lv.$$

Coordinates

$$D = 2\mathbf{v}_1 + 2\mathbf{v}_4 \quad \iff \quad (1,0,0,1)$$

Firing graph

Definition. The *firing graph* for $D \in Div(G)$ is the directed graph $\mathcal{F}(D)$ whose vertices are the divisors reachable from D by a finite sequence of legal vertex-firings, and with an edge from vertex H to vertex H' if there is a legal vertex firing taking H to H'.

Proposition. If G is finite, then the kernel of L is generated by $1_V = \sum_{v \in V} v$ (or the all-ones vector, thinking of L as a matrix).

Proposition. If G is finite, then the kernel of L is generated by $1_V = \sum_{v \in V} v$ (or the all-ones vector, thinking of L as a matrix).

Proof. Suppose L(D) = 0, and let

$$m=\max\left\{D(w):w\in V\right\}.$$

Proposition. If G is finite, then the kernel of L is generated by $1_V = \sum_{v \in V} v$ (or the all-ones vector, thinking of L as a matrix).

Proof. Suppose L(D) = 0, and let

$$m=\max\left\{D(w):w\in V\right\}.$$

Choose v such that D(v) = m.

Proposition. If G is finite, then the kernel of L is generated by $1_V = \sum_{v \in V} v$ (or the all-ones vector, thinking of L as a matrix).

Proof. Suppose L(D) = 0, and let

$$m=\max\left\{D(w):w\in V\right\}.$$

Choose v such that D(v) = m. Since L(D) = 0,

0=L(D)(v)

Proposition. If G is finite, then the kernel of L is generated by $1_V = \sum_{v \in V} v$ (or the all-ones vector, thinking of L as a matrix).

Proof. Suppose L(D) = 0, and let

$$m=\max\left\{D(w):w\in V\right\}.$$

Choose v such that D(v) = m. Since L(D) = 0,

$$0 = L(D)(v) = \deg_G(v)m - \sum_{vw \in E} D(w).$$

Proposition. If G is finite, then the kernel of L is generated by $1_V = \sum_{v \in V} v$ (or the all-ones vector, thinking of L as a matrix).

Proof. Suppose L(D) = 0, and let

$$m=\max\left\{D(w):w\in V\right\}.$$

Choose v such that D(v) = m. Since L(D) = 0,

$$0 = L(D)(v) = \deg_G(v)m - \sum_{vw \in E} D(w).$$

Therefore,

$$m = \frac{1}{\deg_G(v)} \sum_{vw \in E} D(w).$$

However, since $D(w) \leq m$ for all $w \in V$,

Proposition. If G is finite, then the kernel of L is generated by $1_V = \sum_{v \in V} v$ (or the all-ones vector, thinking of L as a matrix).

Proof. Suppose L(D) = 0, and let

$$m=\max\left\{D(w):w\in V\right\}.$$

Choose v such that D(v) = m. Since L(D) = 0,

$$0 = L(D)(v) = \deg_G(v)m - \sum_{vw \in E} D(w).$$

Therefore,

$$m=\frac{1}{\deg_G(v)}\sum_{vw\in E}D(w).$$

However, since $D(w) \le m$ for all $w \in V$, the above equality can only hold if D(w) = m for all w adjacent to v.

Proposition. If G is finite, then the kernel of L is generated by $1_V = \sum_{v \in V} v$ (or the all-ones vector, thinking of L as a matrix).

Proof. Suppose L(D) = 0, and let

$$m=\max\left\{D(w):w\in V\right\}.$$

Choose v such that D(v) = m. Since L(D) = 0,

$$0 = L(D)(v) = \deg_G(v)m - \sum_{vw \in E} D(w).$$

Therefore,

$$m=\frac{1}{\deg_G(v)}\sum_{vw\in E}D(w).$$

However, since $D(w) \le m$ for all $w \in V$, the above equality can only hold if D(w) = m for all w adjacent to v. Since G is connected, it must be that D(w) = m for all $w \in V$.

Corollary. Suppose G is finite, and let $D \in Div(G)$.

1. Let C be a directed cycle in $\mathcal{F}(D)$ starting and ending at some divisor H. Say

$$H = H_1 \xrightarrow{v_1} H_2 \xrightarrow{v_2} \cdots \xrightarrow{v_k} H_{k+1} = H$$

is a sequence of legal vertex firings corresponding to C. Then $\sum_{i=1}^{k} v_i = a \mathbf{1}_V$ for some integer a.

Corollary. Suppose G is finite, and let $D \in Div(G)$.

1. Let C be a directed cycle in $\mathcal{F}(D)$ starting and ending at some divisor H. Say

$$H = H_1 \xrightarrow{v_1} H_2 \xrightarrow{v_2} \cdots \xrightarrow{v_k} H_{k+1} = H$$

is a sequence of legal vertex firings corresponding to C. Then $\sum_{i=1}^{k} v_i = a \mathbb{1}_V$ for some integer a.

2. Suppose v_1, v_1, \ldots, v_k and w_1, \ldots, w_ℓ are both legal firing sequences taking D to the some divisor D'. Also suppose that neither firing sequence contains all of the vertices. Then the sequences are the same up to a permutation.

Corollary. Suppose G is finite, and let $D \in Div(G)$.

1. Let C be a directed cycle in $\mathcal{F}(D)$ starting and ending at some divisor H. Say

$$H = H_1 \xrightarrow{v_1} H_2 \xrightarrow{v_2} \cdots \xrightarrow{v_k} H_{k+1} = H$$

is a sequence of legal vertex firings corresponding to C. Then $\sum_{i=1}^{k} v_i = a \mathbb{1}_V$ for some integer a.

- 2. Suppose v_1, v_1, \ldots, v_k and w_1, \ldots, w_ℓ are both legal firing sequences taking D to the some divisor D'. Also suppose that neither firing sequence contains all of the vertices. Then the sequences are the same up to a permutation.
- 3. The firing poset is graded. The rank of $D' \in \mathcal{F}(D)$ is the number of vertices that must be fired from D to reach D' in the firing graph (which also equals the length of a smallest legal sequence of firings taking D to D').

Theorem. (Least action principle) Let G be finite, and let $D \in \text{Div}(G)$. Suppose that v_1, \ldots, v_k is a sequence of legal vertex firings for D, and let $\sigma = \sum_{i=1}^k v_i$. Then if $D - L\tau$ is stable with $\tau \ge 0$, it follows that $\tau \ge \sigma$.

Theorem. (Least action principle) Let G be finite, and let $D \in \text{Div}(G)$. Suppose that v_1, \ldots, v_k is a sequence of legal vertex firings for D, and let $\sigma = \sum_{i=1}^k v_i$. Then if $D - L\tau$ is stable with $\tau \ge 0$, it follows that $\tau \ge \sigma$.

Proof. The proof goes by induction on *k*.

Theorem. (Least action principle) Let G be finite, and let $D \in \text{Div}(G)$. Suppose that v_1, \ldots, v_k is a sequence of legal vertex firings for D, and let $\sigma = \sum_{i=1}^k v_i$. Then if $D - L\tau$ is stable with $\tau \ge 0$, it follows that $\tau \ge \sigma$.

Proof. The proof goes by induction on k. The case k = 0, in which $\sigma = 0$, it obvious.

Theorem. (Least action principle) Let G be finite, and let $D \in \text{Div}(G)$. Suppose that v_1, \ldots, v_k is a sequence of legal vertex firings for D, and let $\sigma = \sum_{i=1}^k v_i$. Then if $D - L\tau$ is stable with $\tau \ge 0$, it follows that $\tau \ge \sigma$.

Proof. The proof goes by induction on k. The case k = 0, in which $\sigma = 0$, it obvious. So suppose k > 0. Since v_1 is unstable in D, in order for D to stabilize, v_1 must fire.

Theorem. (Least action principle) Let G be finite, and let $D \in \text{Div}(G)$. Suppose that v_1, \ldots, v_k is a sequence of legal vertex firings for D, and let $\sigma = \sum_{i=1}^k v_i$. Then if $D - L\tau$ is stable with $\tau \ge 0$, it follows that $\tau \ge \sigma$.

Proof. The proof goes by induction on k. The case k = 0, in which $\sigma = 0$, it obvious. So suppose k > 0. Since v_1 is unstable in D, in order for D to stabilize, v_1 must fire. Therefore, $v_1 \in \text{supp}(\tau)$.

Theorem. (Least action principle) Let G be finite, and let $D \in \text{Div}(G)$. Suppose that v_1, \ldots, v_k is a sequence of legal vertex firings for D, and let $\sigma = \sum_{i=1}^k v_i$. Then if $D - L\tau$ is stable with $\tau \ge 0$, it follows that $\tau \ge \sigma$.

Proof. The proof goes by induction on k. The case k = 0, in which $\sigma = 0$, it obvious. So suppose k > 0. Since v_1 is unstable in D, in order for D to stabilize, v_1 must fire. Therefore, $v_1 \in \text{supp}(\tau)$. Say $D \xrightarrow{v_1} D'$, and let $\tau' = \tau - v_1$.

Theorem. (Least action principle) Let G be finite, and let $D \in \text{Div}(G)$. Suppose that v_1, \ldots, v_k is a sequence of legal vertex firings for D, and let $\sigma = \sum_{i=1}^k v_i$. Then if $D - L\tau$ is stable with $\tau \ge 0$, it follows that $\tau \ge \sigma$.

Proof. The proof goes by induction on k. The case k = 0, in which $\sigma = 0$, it obvious. So suppose k > 0. Since v_1 is unstable in D, in order for D to stabilize, v_1 must fire.

Therefore, $v_1 \in \text{supp}(\tau)$. Say $D \xrightarrow{v_1} D'$, and let $\tau' = \tau - v_1$. Then τ' stabilizes D' and v_2, \ldots, v_k is a sequence of legal vertex τ' .

firings.

Theorem. (Least action principle) Let G be finite, and let $D \in \text{Div}(G)$. Suppose that v_1, \ldots, v_k is a sequence of legal vertex firings for D, and let $\sigma = \sum_{i=1}^k v_i$. Then if $D - L\tau$ is stable with $\tau \ge 0$, it follows that $\tau \ge \sigma$.

Proof. The proof goes by induction on k. The case k = 0, in which $\sigma = 0$, it obvious. So suppose k > 0. Since v_1 is unstable in D, in order for D to stabilize, v_1 must fire. Therefore, $v_1 \in \text{supp}(\tau)$. Say $D \xrightarrow{v_1} D'$, and let $\tau' = \tau - v_1$. Then τ' stabilizes D' and v_2, \ldots, v_k is a sequence of legal vertex finites.

firings. By induction $\sigma - \mathit{v}_1 \leq \tau'$,

Theorem. (Least action principle) Let G be finite, and let $D \in \text{Div}(G)$. Suppose that v_1, \ldots, v_k is a sequence of legal vertex firings for D, and let $\sigma = \sum_{i=1}^k v_i$. Then if $D - L\tau$ is stable with $\tau \ge 0$, it follows that $\tau \ge \sigma$.

Proof. The proof goes by induction on k. The case k = 0, in which $\sigma = 0$, it obvious. So suppose k > 0. Since v_1 is unstable in D, in order for D to stabilize, v_1 must fire. Therefore, $v_1 \in \text{supp}(\tau)$. Say $D \xrightarrow{v_1} D'$, and let $\tau' = \tau - v_1$. Then τ' stabilizes D' and v_2, \ldots, v_k is a sequence of legal vertex firings. By induction $\sigma - v_1 \leq \tau'$, and the result follows:

$$\sigma \leq \tau' + \mathbf{v}_1 = \tau.$$

Theorem. (Least action principle) Let G be finite, and let $D \in \text{Div}(G)$. Suppose that v_1, \ldots, v_k is a sequence of legal vertex firings for D, and let $\sigma = \sum_{i=1}^k v_i$. Then if $D - L\tau$ is stable with $\tau \ge 0$, it follows that $\tau \ge \sigma$.

Theorem. (Least action principle) Let G be finite, and let $D \in \text{Div}(G)$. Suppose that v_1, \ldots, v_k is a sequence of legal vertex firings for D, and let $\sigma = \sum_{i=1}^k v_i$. Then if $D - L\tau$ is stable with $\tau \ge 0$, it follows that $\tau \ge \sigma$.

Corollary. Let G be finite and $D \in Div(G)$. Suppose that v_1, \ldots, v_k and w_1, \ldots, w_ℓ are both legal firing sequences, and let $\sigma := \sum_{i=1}^k v_i$ and $\tau := \sum_{i=1}^\ell w_i$ be the corresponding firing scripts. Further suppose that $D \xrightarrow{\sigma} D'$ and $D \xrightarrow{\tau} D''$ with both D' and D'' stable. Then $\sigma = \tau$ and D' = D''.