Math 372

November 16, 2022

Goal: Matrix-tree theorem.

Directed graph: G = (V, E).

Directed graph: G = (V, E).

 $V = \{v_1, \ldots, v_n\}$ finite set of vertices E = finite multiset of directed edges $(u, v) \in V \times V$

Directed graph: G = (V, E).

 $V = \{v_1, \dots, v_n\}$ finite set of vertices E = finite multiset of directed edges $(u, v) \in V \times V$

The outdegree of $v \in V$ is $\operatorname{outdeg}_G(v) = |\{(v, u) \in E\}|.$

Directed graph: G = (V, E).

 $V = \{v_1, \dots, v_n\}$ finite set of vertices E = finite multiset of directed edges $(u, v) \in V \times V$

The outdegree of $v \in V$ is $\operatorname{outdeg}_{G}(v) = |\{(v, u) \in E\}|.$

Adjacency matrix A defined by $A_{ij} = a_{ij} = |(v_i, v_j) \in E|$.

Directed graph: G = (V, E).

 $V = \{v_1, \dots, v_n\}$ finite set of vertices E = finite multiset of directed edges $(u, v) \in V \times V$

The outdegree of $v \in V$ is $\operatorname{outdeg}_G(v) = |\{(v, u) \in E\}|.$

Adjacency matrix A defined by $A_{ij} = a_{ij} = |(v_i, v_j) \in E|$.

Laplacian matrix: $L = D - A^t$ where D is the diagonal matrix of outdegrees.

Directed graph: G = (V, E).

 $V = \{v_1, \dots, v_n\}$ finite set of vertices E = finite multiset of directed edges $(u, v) \in V \times V$

The outdegree of $v \in V$ is $\operatorname{outdeg}_G(v) = |\{(v, u) \in E\}|.$

Adjacency matrix A defined by $A_{ij} = a_{ij} = |(v_i, v_j) \in E|$.

Laplacian matrix: $L = D - A^t$ where D is the diagonal matrix of outdegrees.

The columns of L encode the firing rules in a chip-firing game on G.

Definition. A (directed) spanning tree of G rooted at $s \in V$ is a subgraph T such that for all $v \in V$, there exists a unique directed path in T from v to s. The vertex s is the root or sink of the tree.

Definition. A (directed) spanning tree of G rooted at $s \in V$ is a subgraph T such that for all $v \in V$, there exists a unique directed path in T from v to s. The vertex s is the root or sink of the tree.

If \mathcal{T} is a directed spanning tree of G rooted at s, then one may show that

Definition. A (directed) spanning tree of G rooted at $s \in V$ is a subgraph T such that for all $v \in V$, there exists a unique directed path in T from v to s. The vertex s is the root or sink of the tree.

If \mathcal{T} is a directed spanning tree of G rooted at s, then one may show that

➤ T contains all of the vertices of G (hence, the word "spanning");

Definition. A (directed) spanning tree of G rooted at $s \in V$ is a subgraph T such that for all $v \in V$, there exists a unique directed path in T from v to s. The vertex s is the root or sink of the tree.

If \mathcal{T} is a directed spanning tree of G rooted at s, then one may show that

- T contains all of the vertices of G (hence, the word "spanning");
- T contains no directed cycles;

Definition. A (directed) spanning tree of G rooted at $s \in V$ is a subgraph T such that for all $v \in V$, there exists a unique directed path in T from v to s. The vertex s is the root or sink of the tree.

If \mathcal{T} is a directed spanning tree of G rooted at s, then one may show that

- T contains all of the vertices of G (hence, the word "spanning");
- T contains no directed cycles;
- ▶ for all vertices v of G, the outdegree of v in T is 0 if v = s, and is 1, otherwise. In particular, T contains no multiple edges.

Matrix-tree Theorem. Let \tilde{L} be the reduced Laplacian with respect to vertex v_k .

Matrix-tree Theorem. Let \tilde{L} be the reduced Laplacian with respect to vertex v_k . Then, det (\tilde{L}) is the number of spanning trees of *G* rooted at v_k .

Matrix-tree Theorem. Let \tilde{L} be the reduced Laplacian with respect to vertex v_k . Then, det (\tilde{L}) is the number of spanning trees of G rooted at v_k .

Matrix-tree Theorem. Let \tilde{L} be the reduced Laplacian with respect to vertex v_k . Then, det (\tilde{L}) is the number of spanning trees of G rooted at v_k .

Matrix-tree Theorem. Let \tilde{L} be the reduced Laplacian with respect to vertex v_k . Then, det (\tilde{L}) is the number of spanning trees of *G* rooted at v_k .

Example.

Spanning trees rooted at s:

Matrix-tree Theorem. Let \tilde{L} be the reduced Laplacian with respect to vertex v_k .

Matrix-tree Theorem. Let \tilde{L} be the reduced Laplacian with respect to vertex v_k . Then, det (\tilde{L}) is the number of spanning trees of G rooted at v_k .

Matrix-tree Theorem. Let \tilde{L} be the reduced Laplacian with respect to vertex v_k . Then, det (\tilde{L}) is the number of spanning trees of G rooted at v_k .

Proof. Without loss of generality, k = n (why?).

Matrix-tree Theorem. Let \tilde{L} be the reduced Laplacian with respect to vertex v_k . Then, det (\tilde{L}) is the number of spanning trees of *G* rooted at v_k .

Proof. Without loss of generality, k = n (why?).

$$\widetilde{L} = \begin{pmatrix} \sum_{i \neq 1} a_{1i} & -a_{21} & -a_{31} & \dots & -a_{n-1,1} \\ -a_{12} & \sum_{i \neq 2} a_{2i} & -a_{32} & \dots & -a_{n-1,2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{1,n-1} & -a_{2,n-1} & -a_{3,n-1} & \dots & \sum_{i \neq n-1} a_{n-1,i} \end{pmatrix}$$

Matrix-tree Theorem. Let \tilde{L} be the reduced Laplacian with respect to vertex v_k . Then, det (\tilde{L}) is the number of spanning trees of G rooted at v_k .

Proof. Without loss of generality, k = n (why?).

$$\widetilde{L} = \begin{pmatrix} \sum_{i \neq 1} a_{1i} & -a_{21} & -a_{31} & \dots & -a_{n-1,1} \\ -a_{12} & \sum_{i \neq 2} a_{2i} & -a_{32} & \dots & -a_{n-1,2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{1,n-1} & -a_{2,n-1} & -a_{3,n-1} & \dots & \sum_{i \neq n-1} a_{n-1,i} \end{pmatrix}$$

 $\sum_{i \neq \ell}$ means the sum over $i \in \{1, \ldots, n\} \setminus \{\ell\}$

$$\widetilde{L} = \begin{pmatrix} \sum_{i \neq 1} a_{1i} & -a_{21} & -a_{31} & \dots & -a_{n-1,1} \\ -a_{12} & \sum_{i \neq 2} a_{2i} & -a_{32} & \dots & -a_{n-1,2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{1,n-1} & -a_{2,n-1} & -a_{3,n-1} & \dots & \sum_{i \neq n-1} a_{n-1,i} \end{pmatrix}$$

$$\det \widetilde{L} = \sum_{\sigma \in \mathfrak{S}_{n-1}} \operatorname{sgn}(\sigma) \widetilde{L}_{\sigma(1),1} \cdots \widetilde{L}_{\sigma(n-1),n-1}$$

$$\widetilde{L} = \begin{pmatrix} \sum_{i \neq 1} a_{1i} & -a_{21} & -a_{31} & \dots & -a_{n-1,1} \\ -a_{12} & \sum_{i \neq 2} a_{2i} & -a_{32} & \dots & -a_{n-1,2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{1,n-1} & -a_{2,n-1} & -a_{3,n-1} & \dots & \sum_{i \neq n-1} a_{n-1,i} \end{pmatrix}$$

$$\det \widetilde{L} = \sum_{\sigma \in \mathfrak{S}_{n-1}} \operatorname{sgn}(\sigma) \widetilde{L}_{\sigma(1),1} \cdots \widetilde{L}_{\sigma(n-1),n-1}$$

$$\widetilde{L}_{\sigma(k),k} = egin{cases} \sum_{i
eq k} a_{k,i} & ext{if } k \in ext{Fix}(\sigma) \ -a_{k,\sigma(k)} & ext{otherwise.} \end{cases}$$

$$\widetilde{L} = \begin{pmatrix} \sum_{i \neq 1} a_{1i} & -a_{21} & -a_{31} & \dots & -a_{n-1,1} \\ -a_{12} & \sum_{i \neq 2} a_{2i} & -a_{32} & \dots & -a_{n-1,2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{1,n-1} & -a_{2,n-1} & -a_{3,n-1} & \dots & \sum_{i \neq n-1} a_{n-1,i} \end{pmatrix}$$

$$\widetilde{L} = \begin{pmatrix} \sum_{i \neq 1} a_{1i} & -a_{21} & -a_{31} & \dots & -a_{n-1,1} \\ -a_{12} & \sum_{i \neq 2} a_{2i} & -a_{32} & \dots & -a_{n-1,2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{1,n-1} & -a_{2,n-1} & -a_{3,n-1} & \dots & \sum_{i \neq n-1} a_{n-1,i} \end{pmatrix}$$
$$\det \widetilde{L} = \sum_{\sigma \in \mathfrak{S}_{n-1}} \operatorname{sgn}(\sigma) \widetilde{L}_{\sigma(1),1} \cdots \widetilde{L}_{\sigma(n-1),n-1}$$

$$\widetilde{L} = \begin{pmatrix} \sum_{i \neq 1} a_{1i} & -a_{21} & -a_{31} & \dots & -a_{n-1,1} \\ -a_{12} & \sum_{i \neq 2} a_{2i} & -a_{32} & \dots & -a_{n-1,2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{1,n-1} & -a_{2,n-1} & -a_{3,n-1} & \dots & \sum_{i \neq n-1} a_{n-1,i} \end{pmatrix}$$
$$\det \widetilde{L} = \sum_{\sigma \in \mathfrak{S}_{n-1}} \operatorname{sgn}(\sigma) \widetilde{L}_{\sigma(1),1} \cdots \widetilde{L}_{\sigma(n-1),n-1}$$

Idea:

$$\widetilde{L} = \begin{pmatrix} \sum_{i \neq 1} a_{1i} & -a_{21} & -a_{31} & \dots & -a_{n-1,1} \\ -a_{12} & \sum_{i \neq 2} a_{2i} & -a_{32} & \dots & -a_{n-1,2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{1,n-1} & -a_{2,n-1} & -a_{3,n-1} & \dots & \sum_{i \neq n-1} a_{n-1,i} \end{pmatrix}$$
$$\det \widetilde{L} = \sum_{\sigma \in \mathfrak{S}_{n-1}} \operatorname{sgn}(\sigma) \widetilde{L}_{\sigma(1),1} \cdots \widetilde{L}_{\sigma(n-1),n-1}$$

Idea: Identify each a_{ij} with a directed edge:

$$\widetilde{L} = \begin{pmatrix} \sum_{i \neq 1} a_{1i} & -a_{21} & -a_{31} & \dots & -a_{n-1,1} \\ -a_{12} & \sum_{i \neq 2} a_{2i} & -a_{32} & \dots & -a_{n-1,2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{1,n-1} & -a_{2,n-1} & -a_{3,n-1} & \dots & \sum_{i \neq n-1} a_{n-1,i} \end{pmatrix}$$
$$\det \widetilde{L} = \sum_{\sigma \in \mathfrak{S}_{n-1}} \operatorname{sgn}(\sigma) \widetilde{L}_{\sigma(1),1} \cdots \widetilde{L}_{\sigma(n-1),n-1}$$

Idea: Identify each a_{ij} with a directed edge: v_i v_j Expand each summand above to get a sum of monomials in the a_{ij} .

$$\widetilde{L} = \begin{pmatrix} \sum_{i \neq 1} a_{1i} & -a_{21} & -a_{31} & \dots & -a_{n-1,1} \\ -a_{12} & \sum_{i \neq 2} a_{2i} & -a_{32} & \dots & -a_{n-1,2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{1,n-1} & -a_{2,n-1} & -a_{3,n-1} & \dots & \sum_{i \neq n-1} a_{n-1,i} \end{pmatrix}$$
$$\det \widetilde{L} = \sum_{\sigma \in \mathfrak{S}_{n-1}} \operatorname{sgn}(\sigma) \widetilde{L}_{\sigma(1),1} \cdots \widetilde{L}_{\sigma(n-1),n-1}$$

Idea: Identify each a_{ij} with a directed edge: $v_i \qquad v_j$ Expand each summand above to get a sum of monomials in the a_{ij} . The monomials represent subgraphs of G.

$$\widetilde{L} = \begin{pmatrix} \sum_{i \neq 1} a_{1i} & -a_{21} & -a_{31} & \dots & -a_{n-1,1} \\ -a_{12} & \sum_{i \neq 2} a_{2i} & -a_{32} & \dots & -a_{n-1,2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{1,n-1} & -a_{2,n-1} & -a_{3,n-1} & \dots & \sum_{i \neq n-1} a_{n-1,i} \end{pmatrix}$$
$$\det \widetilde{L} = \sum_{\sigma \in \mathfrak{S}_{n-1}} \operatorname{sgn}(\sigma) \widetilde{L}_{\sigma(1),1} \cdots \widetilde{L}_{\sigma(n-1),n-1}$$

Idea: Identify each a_{ij} with a directed edge: a_{ij} each summand above to get a sum of monomials in the a_{ij} . The monomials represent subgraphs of G. Show that after cancellation, exactly the spanning trees remain.

$$\det \left(\begin{array}{cc} a+d & -b \\ -a & b+c \end{array} \right)$$

$$\det \left(egin{array}{cc} a+d & -b \ -a & b+c \end{array}
ight) = (a+d)(b+c)-ab$$

$$\det \left(\begin{array}{cc} a+d & -b \\ -a & b+c \end{array}\right) = (a+d)(b+c) - ab = ac + bd + cd.$$

n = 10.

n = 10. Which subgraphs correspond to monomials in the summand of det(L) associated to $\sigma = (2,7)(3,5,9) \in \mathfrak{S}_9$?

n = 10. Which subgraphs correspond to monomials in the summand of det(L) associated to $\sigma = (2,7)(3,5,9) \in \mathfrak{S}_9$?

 $\operatorname{Fix}(\sigma) =$

n = 10. Which subgraphs correspond to monomials in the summand of det(L) associated to $\sigma = (2,7)(3,5,9) \in \mathfrak{S}_9$?

 $Fix(\sigma) = \{1, 4, 6, 8\}$

n = 10. Which subgraphs correspond to monomials in the summand of det(L) associated to $\sigma = (2,7)(3,5,9) \in \mathfrak{S}_9$?

 $Fix(\sigma) = \{1, 4, 6, 8\}$ sgn(\sigma) = sgn((2, 7)) sgn((3, 5, 9))

n = 10. Which subgraphs correspond to monomials in the summand of det(L) associated to $\sigma = (2,7)(3,5,9) \in \mathfrak{S}_9$?

Fix(σ) = {1,4,6,8} sgn(σ) = sgn((2,7)) sgn((3,5,9)) = (-1) \cdot 1 = -1.

n = 10. Which subgraphs correspond to monomials in the summand of det(L) associated to $\sigma = (2,7)(3,5,9) \in \mathfrak{S}_9$?

$$\begin{aligned} &\operatorname{Fix}(\sigma) = \{1, 4, 6, 8\} \\ &\operatorname{sgn}(\sigma) = \operatorname{sgn}((2, 7)) \operatorname{sgn}((3, 5, 9)) = (-1) \cdot 1 = -1. \\ &\operatorname{sgn}(\sigma) \widetilde{L}_{\sigma(1), 1} \widetilde{L}_{\sigma(2), 2} \cdots \widetilde{L}_{\sigma(9), 9} \end{aligned}$$

 $n = 10. \text{ Which subgraphs correspond to monomials in the summand of det(L) associated to <math>\sigma = (2,7)(3,5,9) \in \mathfrak{S}_9$? Fix(σ) = {1,4,6,8} sgn(σ) = sgn((2,7)) sgn((3,5,9)) = (-1) \cdot 1 = -1. sgn(σ) $\widetilde{L}_{\sigma(1),1}\widetilde{L}_{\sigma(2),2}\cdots\widetilde{L}_{\sigma(9),9}$ = (-1)($a_{1,2} + \cdots + a_{1,10}$)

n = 10. Which subgraphs correspond to monomials in the summand of det(*L*) associated to $\sigma = (2,7)(3,5,9) \in \mathfrak{S}_9$? Fix(σ) = {1,4,6,8} sgn(σ) = sgn((2,7)) sgn((3,5,9)) = (-1) \cdot 1 = -1.

$$\operatorname{sgn}(\sigma) \widetilde{L}_{\sigma(1),1} \widetilde{L}_{\sigma(2),2} \cdots \widetilde{L}_{\sigma(9),9}$$

$$= (-1)(a_{1,2} + \cdots + a_{1,10})(-a_{2,7})$$

$$\begin{split} n &= 10. \text{ Which subgraphs correspond to monomials in the} \\ \text{summand of det}(L) \text{ associated to } \sigma &= (2,7)(3,5,9) \in \mathfrak{S}_9 ? \\ \text{Fix}(\sigma) &= \{1,4,6,8\} \\ \text{sgn}(\sigma) &= \text{sgn}((2,7)) \text{ sgn}((3,5,9)) = (-1) \cdot 1 = -1. \\ \text{sgn}(\sigma) \widetilde{L}_{\sigma(1),1} \widetilde{L}_{\sigma(2),2} \cdots \widetilde{L}_{\sigma(9),9} \\ &= (-1)(a_{1,2} + \cdots + a_{1,10})(-a_{2,7})(-a_{3,5})(a_{4,1} + \cdots + a_{4,10})' \end{split}$$

n = 10. Which subgraphs correspond to monomials in the summand of det(L) associated to $\sigma = (2,7)(3,5,9) \in \mathfrak{S}_9$? $Fix(\sigma) = \{1, 4, 6, 8\}$ $sgn(\sigma) = sgn((2,7)) sgn((3,5,9)) = (-1) \cdot 1 = -1.$ $\operatorname{sgn}(\sigma)\widetilde{L}_{\sigma(1),1}\widetilde{L}_{\sigma(2),2}\cdots\widetilde{L}_{\sigma(9),9}$ $= (-1)(a_{1,2} + \cdots + a_{1,10})(-a_{2,7})(-a_{3,5})(a_{4,1} + \cdots + a_{4,10})'$ $(-a_{5,9})(a_{6,1} + \cdots + a_{6,10})'(-a_{7,2})(a_{8,1} + \cdots + a_{8,10})'(-a_{9,3}),$

n = 10. Which subgraphs correspond to monomials in the summand of det(L) associated to $\sigma = (2,7)(3,5,9) \in \mathfrak{S}_9$? $Fix(\sigma) = \{1, 4, 6, 8\}$ $sgn(\sigma) = sgn((2,7)) sgn((3,5,9)) = (-1) \cdot 1 = -1.$ $\operatorname{sgn}(\sigma)\widetilde{L}_{\sigma(1),1}\widetilde{L}_{\sigma(2),2}\cdots\widetilde{L}_{\sigma(9),9}$ $= (-1)(a_{1,2} + \cdots + a_{1,10})(-a_{2,7})(-a_{3,5})(a_{4,1} + \cdots + a_{4,10})'$ $(-a_{5,9})(a_{6,1} + \cdots + a_{6,10})'(-a_{7,2})(a_{8,1} + \cdots + a_{8,10})'(-a_{9,3}),$ $= (-1) \left[\underbrace{\sigma^{(1)=1}}_{(a_{1,2} + \dots)} \underbrace{\sigma^{(4)=4}}_{(a_{4,1} + \dots)'} \underbrace{\sigma^{(6)=6}}_{(a_{6,1} + \dots)'} \underbrace{\sigma^{(8)=8}}_{(a_{8,1} + \dots)'} \right]$

$$\cdot [\underbrace{(-a_{2,7})(-a_{7,2})}_{(2,7)} \underbrace{(-a_{3,5})(-a_{5,9})(-a_{9,3})}_{(3,5,9)}].$$

$$(-1)\left[\overbrace{(a_{1,2}+\ldots)}^{\sigma(1)=1}\overbrace{(a_{4,1}+\ldots)'}^{\sigma(4)=4}\overbrace{(a_{6,1}+\ldots)'}^{\sigma(6)=6}\overbrace{(a_{8,1}+\ldots)'}^{\sigma(8)=8}\right]$$
$$\cdot\left[\underbrace{(-a_{2,7})(-a_{7,2})}_{(2,7)}\underbrace{(-a_{3,5})(-a_{5,9})(-a_{9,3})}_{(3,5,9)}\right]$$

Claim: The sign of a monomial corresponding to σ in the expansion is $(-1)^{\# \text{ non-trivial cycles of } \sigma}$.

Claim: The sign of a monomial corresponding to σ in the expansion is $(-1)^{\# \text{ non-trivial cycles of } \sigma}$.

$$\operatorname{sgn}((2,7)(3,5,9)) \underbrace{a_{1,10}a_{4,8}a_{6,4}a_{8,6}}_{\operatorname{Fix}(\sigma) = \{1,4,6,8\}} \underbrace{(-a_{2,7})(-a_{7,2})}_{(2,7)} \underbrace{(-a_{3,5})(-a_{5,9})(-a_{9,3})}_{(3,5,9)}$$

Claim: The sign of a monomial corresponding to σ in the expansion is $(-1)^{\# \text{ non-trivial cycles of } \sigma}$.

$$\operatorname{sgn}((2,7)(3,5,9)) \underbrace{a_{1,10}a_{4,8}a_{6,4}a_{8,6}}_{\operatorname{Fix}(\sigma) = \{1,4,6,8\}} \underbrace{(-a_{2,7})(-a_{7,2})}_{(2,7)} \underbrace{(-a_{3,5})(-a_{5,9})(-a_{9,3})}_{(3,5,9)}$$

$$\operatorname{sgn}((2,7))(-a_{2,7})(-a_{7,2}) = -1 \cdot a_{2,7}a_{7,2}$$
$$\operatorname{sgn}((3,5,9))(-a_{3,5})(-a_{5,9})(-a_{9,3}) = -1 \cdot a_{3,5}a_{5,9}a_{9,3}$$

In general, form pairs (F, C) as follows:

In general, form pairs (F, C) as follows:

1. Choose a subset $X \subseteq \{1, \ldots, n-1\}$ (representing the fixed points of some σ).

In general, form pairs (F, C) as follows:

1. Choose a subset $X \subseteq \{1, \ldots, n-1\}$ (representing the fixed points of some σ).

2. Make any loopless, directed (not necessarily connected) graph F with vertices $\{1, \ldots, n\}$ such that

$$\operatorname{outdeg}_{F}(i) = \begin{cases} 1 & \text{if } i \in X \\ 0 & \text{if } i \notin X. \end{cases}$$

In general, form pairs (F, C) as follows:

1. Choose a subset $X \subseteq \{1, \ldots, n-1\}$ (representing the fixed points of some σ).

2. Make any loopless, directed (not necessarily connected) graph F with vertices $\{1, \ldots, n\}$ such that

$$\operatorname{outdeg}_{F}(i) = \begin{cases} 1 & \text{if } i \in X \\ 0 & \text{if } i \notin X. \end{cases}$$

3. Let C be any vertex-disjoint union of directed cycles of length at least 2 (i.e., no loops) such that C contains all of the vertices $\{1, \ldots, n-1\} \setminus X$.

In general, form pairs (F, C) as follows:

1. Choose a subset $X \subseteq \{1, \ldots, n-1\}$ (representing the fixed points of some σ).

2. Make any loopless, directed (not necessarily connected) graph F with vertices $\{1, \ldots, n\}$ such that

$$\operatorname{outdeg}_{F}(i) = \begin{cases} 1 & \text{if } i \in X \\ 0 & \text{if } i \notin X. \end{cases}$$

3. Let C be any vertex-disjoint union of directed cycles of length at least 2 (i.e., no loops) such that C contains all of the vertices $\{1, \ldots, n-1\} \setminus X$.

weight: wt(F, C) = (product of a_{ij} in edges of F and C) multiplied by $(-1)^{\# \text{ cycles in } C}$

In general, form pairs (F, C) as follows:

1. Choose a subset $X \subseteq \{1, \ldots, n-1\}$ (representing the fixed points of some σ).

2. Make any loopless, directed (not necessarily connected) graph F with vertices $\{1, \ldots, n\}$ such that

$$\operatorname{outdeg}_{F}(i) = \begin{cases} 1 & \text{if } i \in X \\ 0 & \text{if } i \notin X. \end{cases}$$

3. Let C be any vertex-disjoint union of directed cycles of length at least 2 (i.e., no loops) such that C contains all of the vertices $\{1, \ldots, n-1\} \setminus X$.

weight: wt(F, C) = (product of a_{ij} in edges of F and C) multiplied by $(-1)^{\# \text{ cycles in } C}$

$$\det \widetilde{L} = \sum_{(F,C)} \operatorname{wt}(F,C)$$

 $\Omega := \{(F, C) : F \text{ or } C \text{ contains a directed cycle}\}$

 $\Omega := \{(F, C) : F \text{ or } C \text{ contains a directed cycle}\}$

Sign reversing transposition on Ω :

 $\Omega := \{(F, C) : F \text{ or } C \text{ contains a directed cycle}\}\$

Sign reversing transposition on Ω : Given $(F, C) \in \Omega$,

▶ Pick the cycle $\gamma \in F \sqcup C$ with the vertex of smallest index.

 $\Omega := \{(F, C) : F \text{ or } C \text{ contains a directed cycle}\}$

- ▶ Pick the cycle $\gamma \in F \sqcup C$ with the vertex of smallest index.
- Swap: if $\gamma \in F$, remove it and place it in *C*. Otherwise, $\gamma \in C$, remove it and place it in *F* (see example in lecture).

 $\Omega := \{(F, C) : F \text{ or } C \text{ contains a directed cycle}\}$

- ▶ Pick the cycle $\gamma \in F \sqcup C$ with the vertex of smallest index.
- Swap: if *γ* ∈ *F*, remove it and place it in *C*. Otherwise, *γ* ∈ *C*, remove it and place it in *F* (see example in lecture).
- Let (F', C') be the result after swapping.

 $\Omega := \{(F, C) : F \text{ or } C \text{ contains a directed cycle}\}$

- ▶ Pick the cycle $\gamma \in F \sqcup C$ with the vertex of smallest index.
- Swap: if *γ* ∈ *F*, remove it and place it in *C*. Otherwise, *γ* ∈ *C*, remove it and place it in *F* (see example in lecture).
- Let (F', C') be the result after swapping.
- ▶ Note wt(F, C) = -wt(F', C') (why?).

 $\Omega := \{(F, C) : F \text{ or } C \text{ contains a directed cycle}\}$

- ▶ Pick the cycle $\gamma \in F \sqcup C$ with the vertex of smallest index.
- Swap: if *γ* ∈ *F*, remove it and place it in *C*. Otherwise, *γ* ∈ *C*, remove it and place it in *F* (see example in lecture).
- Let (F', C') be the result after swapping.
- Note wt(F, C) = -wt(F', C') (why?).
- ▶ This correspondence $(F, C) \mapsto (F', C')$ is its own inverse.

 $\Omega := \{(F, C) : F \text{ or } C \text{ contains a directed cycle}\}$

- ▶ Pick the cycle $\gamma \in F \sqcup C$ with the vertex of smallest index.
- Swap: if γ ∈ F, remove it and place it in C. Otherwise, γ ∈ C, remove it and place it in F (see example in lecture).
- Let (F', C') be the result after swapping.
- Note wt(F, C) = -wt(F', C') (why?).
- ▶ This correspondence $(F, C) \mapsto (F', C')$ is its own inverse.
- So the corresponding terms in the expansion of \tilde{L} cancel.

 $\Omega := \{(F, C) : F \text{ or } C \text{ contains a directed cycle}\}$

- ▶ Pick the cycle $\gamma \in F \sqcup C$ with the vertex of smallest index.
- Swap: if *γ* ∈ *F*, remove it and place it in *C*. Otherwise, *γ* ∈ *C*, remove it and place it in *F* (see example in lecture).
- Let (F', C') be the result after swapping.
- Note wt(F, C) = -wt(F', C') (why?).
- ▶ This correspondence $(F, C) \mapsto (F', C')$ is its own inverse.
- So the corresponding terms in the expansion of \tilde{L} cancel.
- What's left?

 $\Omega := \{(F, C) : F \text{ or } C \text{ contains a directed cycle}\}$

- ▶ Pick the cycle $\gamma \in F \sqcup C$ with the vertex of smallest index.
- Swap: if *γ* ∈ *F*, remove it and place it in *C*. Otherwise, *γ* ∈ *C*, remove it and place it in *F* (see example in lecture).
- Let (F', C') be the result after swapping.
- Note wt(F, C) = -wt(F', C') (why?).
- ▶ This correspondence $(F, C) \mapsto (F', C')$ is its own inverse.
- So the corresponding terms in the expansion of \tilde{L} cancel.
- What's left?