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Today

Goal: Matrix-tree theorem.



Directed graphs

Directed graph: G = (V ,E ).

V = {v1, . . . , vn} finite set of vertices
E = finite multiset of directed edges (u, v) ∈ V × V

The outdegree of v ∈ V is outdegG(v) = |{(v , u) ∈ E}|.

Adjacency matrix A defined by Aij = aij = |(vi , vj) ∈ E |.

Laplacian matrix: L = D − At where D is the diagonal matrix of
outdegrees.

The columns of L encode the firing rules in a chip-firing game
on G .
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Directed spanning trees

Definition. A (directed) spanning tree of G rooted at s ∈ V is a
subgraph T such that for all v ∈ V , there exists a unique directed
path in T from v to s. The vertex s is the root or sink of the tree.

If T is a directed spanning tree of G rooted at s, then one may
show that
I T contains all of the vertices of G (hence, the word

“spanning”);
I T contains no directed cycles;
I for all vertices v of G , the outdegree of v in T is 0 if v = s,

and is 1, otherwise. In particular, T contains no multiple
edges.
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Matrix-tree theorem
Matrix-tree Theorem. Let L̃ be the reduced Laplacian with
respect to vertex vk .

Then, det(L̃) is the number of spanning trees
of G rooted at vk .
Example.

s

v1

v2

det
(

3 0
−2 1

)
= 3

Spanning trees rooted at s:

s

v1

v2 s

v1

v2 s

v1

v2
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Matrix-tree theorem

Matrix-tree Theorem. Let L̃ be the reduced Laplacian with
respect to vertex vk .

Then, det(L̃) is the number of spanning trees
of G rooted at vk .

Proof. Without loss of generality, k = n (why?).

L̃ =


∑

i 6=1 a1i −a21 −a31 . . . −an−1,1
−a12

∑
i 6=2 a2i −a32 . . . −an−1,2

...
...

... . . . ...
−a1,n−1 −a2,n−1 −a3,n−1 . . .

∑
i 6=n−1 an−1,i


∑

i 6=` means the sum over i ∈ {1, . . . , n} \ {`}
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i 6=k ak,i if k ∈ Fix(σ)
−ak,σ(k) otherwise.
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Idea: Identify each aij with a directed edge:
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. Expand

each summand above to get a sum of monomials in the aij . The
monomials represent subgraphs of G . Show that after cancellation,
exactly the spanning trees remain.
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Example
n = 10.

Which subgraphs correspond to monomials in the
summand of det(L) associated to σ = (2, 7)(3, 5, 9) ∈ S9?

Fix(σ) = {1, 4, 6, 8}
sgn(σ) = sgn((2, 7)) sgn((3, 5, 9)) = (−1) · 1 = −1.

sgn(σ)L̃σ(1),1L̃σ(2),2 · · · L̃σ(9),9

= (−1)(a1,2 + · · ·+ a1,10)(−a2,7)(−a3,5)(a4,1 + · · ·+ a4,10)′

· (−a5,9)(a6,1 + · · ·+ a6,10)′(−a7,2)(a8,1 + · · ·+ a8,10)′(−a9,3),

= (−1)[
σ(1)=1︷ ︸︸ ︷

(a1,2 + . . . )

σ(4)=4︷ ︸︸ ︷
(a4,1 + . . . )′

σ(6)=6︷ ︸︸ ︷
(a6,1 + . . . )′

σ(8)=8︷ ︸︸ ︷
(a8,1 + . . . )′ ]

· [ (−a2,7)(−a7,2)︸ ︷︷ ︸
(2,7)

(−a3,5)(−a5,9)(−a9,3)︸ ︷︷ ︸
(3,5,9)

].
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F C monomial

(a)
v1

v10 v4 v6

v8 v2

v7 v3

v5

v9

a1,10 a2,7 a3,5 · · · a9,3

(b)
v4

v1 v6

v8 v2

v7 v3

v5

v9

a1,8 a2,7 a3,5 · · · a9,3

(c)
v4

v6

v10

v1

v5

v8 v2

v7 v3

v5

v9

a1,5 a2,7 a3,5 · · · a9,3



Example

Claim: The sign of a monomial corresponding to σ in the
expansion is (−1)# non-trivial cycles of σ.

Example.

sgn((2, 7)(3, 5, 9)) a1,10a4,8a6,4a8,6︸ ︷︷ ︸
Fix(σ) = {1, 4, 6, 8}

(−a2,7)(−a7,2)︸ ︷︷ ︸
(2, 7)

(−a3,5)(−a5,9)(−a9,3)︸ ︷︷ ︸
(3, 5, 9)

sgn((2, 7))(−a2,7)(−a7,2) = −1 · a2,7a7,2

sgn((3, 5, 9))(−a3,5)(−a5,9)(−a9,3) = −1 · a3,5a5,9a9,3
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Matrix-tree theorem proof
In general, form pairs (F ,C) as follows:

1. Choose a subset X ⊆ {1, . . . , n − 1} (representing the fixed
points of some σ).
2. Make any loopless, directed (not necessarily connected) graph F
with vertices {1, . . . , n} such that

outdegF (i) =
{

1 if i ∈ X
0 if i /∈ X .

3. Let C be any vertex-disjoint union of directed cycles of length
at least 2 (i.e., no loops) such that C contains all of the vertices
{1, . . . , n − 1} \ X .
weight: wt(F ,C) = (product of aij in edges of F and C)
multiplied by (−1)# cycles in C

det L̃ =
∑

(F ,C)
wt(F ,C)
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Matrix-tree theorem proof

Ω := {(F ,C) : F or C contains a directed cycle}

Sign reversing transposition on Ω: Given (F ,C) ∈ Ω,
I Pick the cycle γ ∈ F t C with the vertex of smallest index.
I Swap: if γ ∈ F , remove it and place it in C . Otherwise,
γ ∈ C , remove it and place it in F (see example in lecture).

I Let (F ′,C ′) be the result after swapping.
I Note wt(F ,C) = −wt(F ′,C ′) (why?).
I This correspondence (F ,C) 7→ (F ′,C ′) is its own inverse.
I So the corresponding terms in the expansion of L̃ cancel.
I What’s left?
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I Let (F ′,C ′) be the result after swapping.
I Note wt(F ,C) = −wt(F ′,C ′) (why?).
I This correspondence (F ,C) 7→ (F ′,C ′) is its own inverse.
I So the corresponding terms in the expansion of L̃ cancel.
I What’s left?
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