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Today

Goal: Matrix-tree theorem.
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Directed graph: G = (V, E).

V = {v1,..., v} finite set of vertices
E = finite multiset of directed edges (u,v) € V x V

The outdegree of v € V is outdegg(v) = [{(v,u) € E}|.
Adjacency matrix A defined by Aj; = ajj = |(vi, vj) € E|.

Laplacian matrix: L = D — A! where D is the diagonal matrix of
outdegrees.

The columns of L encode the firing rules in a chip-firing game
on G.
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Directed spanning trees

Definition. A (directed) spanning tree of G rooted at s € V is a
subgraph T such that for all v € V, there exists a unique directed
path in T from v to s. The vertex s is the root or sink of the tree.

If T is a directed spanning tree of G rooted at s, then one may
show that
» T contains all of the vertices of G (hence, the word
“spanning”);
» T contains no directed cycles;
» for all vertices v of G, the outdegree of vin T is 0 if v =5,
and is 1, otherwise. In particular, T contains no multiple
edges.
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Matrix-tree Theorem. Let L be the reduced Laplacian with
respect to vertex vk. Then, det(L) is the number of spanning trees
of G rooted at vy.

Example.

Vi

30
det(_2 1)—3
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Spanning trees rooted at s:

Vi Vi Vi
° >0 oi—o .

Vo S Vo S Vo S
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A —ako(k) Otherwise.
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Zi;él aii —az1 —asi cee —dn-1,1
i —a12  Djxp i  —ax ... —an—1,2
—a1n-1 —an-1 —@n-1 --- Ditp-13n-1,i
detL = Z Sgn(U)La(l),l T La(n—l),n—l
c€GH_1
ajj
Idea: Identify each aj; with a directed edge: o— e . Expand

Vi vj

each summand above to get a sum of monomials in the a;. The
monomials represent subgraphs of G. Show that after cancellation,
exactly the spanning trees remain.
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Vi

a+d —b B B
det( . b+c>(a+d)(b+c)—abac+bd+cd.
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n = 10. Which subgraphs correspond to monomials in the
summand of det(L) associated to 0 = (2,7)(3,5,9) € &g7

Fix(o) = {1,4, 6,8}
sgn(o) = sgn((2,7)) sgn((3,5,9)) =(-1) - 1=-1.
Sgn(U)Za(l),lza(z),z e 'Za(g),g

= (—=1)(a12 + -+ a1,10)(—a2,7)(—a35)(aa,1 + - - - + as,10)’

“(—asg)(as1+ -+ 86,10)/(—87,2)(38,1 +--- 4+ a8,10)'(—39,3)7

o(1)=1 o(4)=4 o(6)=6 o(8)=8
=(-[(a12+...)(aa1+...) (a61+...) (a1 +...)]

[(—a2,7)(—a72) (—a35)(—as5,0)(—a93) |-

(2,7) (3,5,9)




o(1)=1 o(4)=4 o(6)=6 o(8)=8
—~
(D[ (a12+...)(aa1+-..) (361 +...) (a1 +...)]
[(—a27)(—a72) (—a35)(—as,9)(—a9,3) |

2,7) (3,5,9)
F C monomial
Vi Vg Vo V5
(a) ? f : Q 1 : 41,10 42,735 - 93
o
Vio Va Ve vz V3 Vo
vy V8 Vo Vs
(b) \\a Q ! d1,8482,74835 393
Vi Ve vz V3 Vo
V4 V1 Vg Vo V5

(c) ve { K} Q a a15a27a35" " 4d93

Vio V5 Vi V3 Vg
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Example

Claim: The sign of a monomial corresponding to o in the
expansion is (_1)# non-trivial cycles of o

Example.

sgn((2,7)(3,5,9)) ai1,10a4836 4336 (—a27)(—ar2)(—ass)(—asg)(—ao3)

Fix(c) = {1,4,6,8} (2,7) (3,5,9)

sgn((2,7))(—a27)(—ar2) = —1-ax7a72
sgn((3,5,9))(—ass5)(—as0)(—a93) = —1- assas a9 3
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In general, form pairs (F, C) as follows:
1. Choose a subset X C {1,...,n— 1} (representing the fixed
points of some o).

2. Make any loopless, directed (not necessarily connected) graph F
with vertices {1,..., n} such that

1 ifieX
outdegr(i) = { =

0 ifi¢gX.
3. Let C be any vertex-disjoint union of directed cycles of length
at least 2 (i.e., no loops) such that C contains all of the vertices
{1,...,n—=1}\ X.
weight: wt(F, C) = (product of aj; in edges of F and C)
multiplied by (—1)# cyclesin €

detL= > wt(F,C)
(F.©)
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