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Cokernel of a matrix

Let M be an m × n integer matrix.

There is a corresponding
Z-linear function:

Zn M−→ Zm.

The cokernel of M is

cok(M) := Zm/ im(M) = Zm/colspace(M).
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Examples

If M = [5], then cok(M) = Z/5Z.

If M =
(

2 0
0 3

)
, then

cok(M) = Z2/ Span{(2, 0), (0, 3)} ≈ Z/2Z⊕ Z/3Z.

If M = diag(0, 0, 1, 2, 3), then

cok(M) ≈ Z/0Z⊕ Z/0Z⊕ Z/1Z⊕ Z/2Z⊕ Z/3Z
≈ Z2 ⊕ Z/2Z⊕ Z/3Z.

via (a, b, c, d , e) 7→ (a, b, d , e).
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Integer row and column operations

I swap two rows (resp., columns);
I negate a row (resp., column);
I add one row (resp., column) to a different row (resp., column).

When M is regarded as a linear function, these row and column
operations correspond to integer changes of bases on the codomain
and domain of M, respectively.
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Integer row and column operations

Fact. By performing integer row and column operations, the
matrix M can be transformed into a diagonal matrix D,
i.e., Dij = 0 for i 6= j .

To make the final form unique, we can insist that the diagonal
elements satisfy Di ,i |Di+1,i+1 for all i .

Perform the same row ops. to the m ×m identity matrix to get a
matrix U, and perform the same col. ops. to the n × n identity
matrix to get a matrix V . Then

I det U = ±1 and det V = ±1,
I and UMV = D.
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Example
Determine the structure of Pic(G) for the graph pictured below:

v1

v2 v3

v4

Recall Pic(G) ≈ cok(L) where L is the Laplacian matrix,

L =


2 −1 −1 0
−1 4 −1 −2
−1 −1 3 −1

0 −2 −1 3

 .
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Pic(G) = cok(L) ' Z/1Z⊕ Z/1Z⊕ Z/13Z⊕ Z ' Z⊕ Z/13Z.
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Example

To find the structure of Jac(G), first take the reduced Laplacian
with respect to any vertex, then apply the procedure illustrated
above.

For instance, the reduced Laplacian with respect to v1 is

L̃ =

 4 −1 −2
−1 3 −1
−2 −1 3

 .

The diagonalized version of L̃ will be 1 0 0
0 1 0
0 0 13

 ,

and so Jac(G) ' Z/13Z.
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Abelian groups

An abelian group is a set A and an operation

A× A→ A

satistfying

I a + b = b + a for all a, b ∈ A.

I There exists 0 ∈ A such that a + 0 = a for all a ∈ A.

I For all a ∈ A, there exists b ∈ A such that a + b = 0. (Then
b := −a.)

I a + (b + c) = (a + b) + c for all a, b, c ∈ A.
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Z -modules

If A is an abelian group, a ∈ A, and n ∈ N, define

na = a + · · ·+ a︸ ︷︷ ︸
n times

and if n ∈ Z<0, define

na = −(−n)a.

Then A is a Z-module.

Conversely, every Z-module is an abelian group.
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Structure theorem for finitely-generated abelian groups

Suppose a1, . . . , am generate A.

In other words, if a ∈ A, then
a =

∑m
i=1 αiai for some αi ∈ Z.

Define a Z-linear mapping

Zm → A
ei 7→ ai

This mapping is surjective (why?) Let K be the kernel of this
mapping. Then we have a short exact sequence

0→ K → Zm → A→ 0.
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Structure theorem for finitely-generated abelian groups

0→ K → Zm → A→ 0

By a course in algebra, K is finitely generated, say with n
generators. So as with A, there is a surjective mapping Zn → K :

Zn Zm A 0

K

M

The induced mapping Zn → Zm is represented by a matrix M, and

A ≈ cok(M).
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Structure theorem for finitely-generated abelian groups

Suppose U and V are matrices, invertible over Z such that
UMV = N. Then we have a commutative diagram inducing an
isomorphism cok(M)→ cok(N):

Zn Zm cok M 0

Zn Zm cok N 0.

M

V −1 ≈ ≈ U
N

(1)

We can always choose U and V so that N = UMV is diagonal.
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Structure theorem for finitely-generated abelian groups

Theorem. (Structure theorem for f.g. abelian groups) A group is a
finitely generated abelian group if and only if it is isomorphic to

Z/n1Z× · · · × Z/nkZ× Zr

for some list (possibly empty) of integers n1, . . . , nk with ni > 1 for
all i and some integer r ≥ 0.

Unique if either of the following:
Condition 1: ni |ni+1 ( ni evenly divides ni+1) for all i . In this
case, the ni are the invariant factors of the group.
Condition 2: There exist primes p1 ≤ · · · ≤ pk and positive
integers mi such that ni = pmi

i for all i . In this case, the ni are the
elementary divisors and the Z/niZ are the primary factors of the
group.
The number r is the rank of the group.
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Structure theorem for finitely-generated abelian groups

Theorem. (Chinese remainder theorem.) Let m, n ∈ Z. Then

Z/mnZ ' Z/mZ× Z/nZ

if and only if m and n are relatively prime. If gcd(m, n) = 1, then
an isomorphism is provided by a 7→ (a mod m, a mod n).

Examples.
Z/24Z ' Z/8Z× Z/3Z

Z/4Z 6' Z/2Z× Z/2Z
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Structure theorem for finitely-generated abelian groups

Definition. An m × n integer matrix M is in Smith normal form if

M = diag(s1, . . . , sk , 0, . . . , 0),

a diagonal matrix, where s1, . . . , sk are positive integers such that
si |si+1 for all i . The si are called the invariant factors of M.



Structure theorem for finitely-generated abelian groups

Example. The matrix

M :=


1 0 0 0
0 2 0 0
0 0 12 0
0 0 0 0
0 0 0 0


is in Smith normal form with invariant factors s1 = 1, s2 = 2, and
s3 = 12.

We have

cok(M) := Z5/ im(M) ' Z/1Z×Z/2Z×Z/12Z×Z2 ' Z2×Z12×Z2.

So cok(M) has rank r = 2 and its invariant factors are 2 and 12.
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