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Cokernel of a matrix

Let M be an m × n integer matrix.

There is a corresponding
Z-linear function:

Zn M−→ Zm.

The cokernel of M is

cok(M) := Zm/ im(M) = Zm/colspace(M).
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Examples

If M = [5], then cok(M) = Z/5Z.

If M =
(

2 0
0 3

)
, then

cok(M) = Z2/ Span{(2, 0), (0, 3)} ≈ Z/2Z⊕ Z/3Z.

If M = diag(0, 0, 1, 2, 3), then

cok(M) ≈ Z/0Z⊕ Z/0Z⊕ Z/1Z⊕ Z/2Z⊕ Z/3Z
≈ Z2 ⊕ Z/2Z⊕ Z/3Z.

via (a, b, c, d , e) 7→ (a, b, d , e).
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Integer row and column operations

I swap two rows (resp., columns);
I negate a row (resp., column);
I add one row (resp., column) to a different row (resp., column).

When M is regarded as a linear function, these row and column
operations correspond to integer changes of bases on the codomain
and domain of M, respectively.
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Integer row and column operations

Fact. By performing integer row and column operations, the
matrix M can be transformed into a diagonal matrix D,
i.e., Dij = 0 for i 6= j .

To make the final form unique, we can insist that the diagonal
elements satisfy Di ,i |Di+1,i+1 for all i .

Perform the same row ops. to the m ×m identity matrix to get a
matrix U, and perform the same col. ops. to the n × n identity
matrix to get a matrix V . Then

I det U = ±1 and det V = ±1,
I and UMV = D.
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Example
Determine the structure of Pic(G) for the graph pictured below:

v1

v2 v3

v4

Recall Pic(G) ≈ cok(L) where L is the Laplacian matrix,

L =


2 −1 −1 0
−1 4 −1 −2
−1 −1 3 −1

0 −2 −1 3

 .
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︸ ︷︷ ︸

U


a
b
c
d

 =


a

−3a + b
−16a + 6b + c
a + b + c + d
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To find the structure of Jac(G), first take the reduced Laplacian
with respect to any vertex, then apply the procedure illustrated
above.

For instance, the reduced Laplacian with respect to v1 is

L̃ =

 4 −1 −2
−1 3 −1
−2 −1 3
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The diagonalized version of L̃ will be 1 0 0
0 1 0
0 0 13
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and so Jac(G) ' Z/13Z.
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