Math 361 Quiz topics

Let R be a ring, and let L/K be an extension of fields.

- What does it mean to say $p \in R$ is prime? a unit?, irreducible?
- What does it mean to say that R is an *integral domain*.
- Let R be a integral domain, and let $a, b, c \in R$. Suppose that $a \neq 0$ and ab = ac. Prove that b = c. (Warning: since R is not a field, we can't assume that a has a multiplicative inverse. Also, where do we use the fact that R is a integral domain?)
- What does it mean to say that $I \subseteq R$ is an ideal?
- What does it mean to say that $I \subseteq R$ is finitely-generated?
- What does it mean to say that $I \subseteq R$ is a principal ideal?
- What is the general relationship between prime elements and irreducible elements of *R*? What if *R* is a PID?
- Let K be a field. State the division algorithm for K[x].
- Let K be a field. Explain at a high level (i.e., assuming standard results from algebra) why K[x] is a UFD.

Let L/K be an extension of fields.

- What does it mean to say $\alpha \in L$ is algebraic over K?
- If $\alpha \in L$ is algebraic over K, what is the minimal polynomial for α over K?
- Suppose $\alpha \in L$ is algebraic over K, and let p be the minimal polynomial for α over K. What is [L:K] in terms of p?
- If $[L:K] < \infty$ and $\alpha \in L$, is it necessarily true that α is algebraic over K?