
Math 361 lecture for Monday, Week 12

Dirichlet’s unit theorem

Let K be a number field, and let O∗
K denote the units in OK .

Example 1.

• We have ±1 ∈ O∗
K for all K.

• If K = Q(i), then O∗
K = {±1,±i}.

• If K = Q(
√

2), then 1 +
√

2 ∈ O∗
K , and |1 +

√
2| > 1. So {(1 +

√
2)k : k ∈ Z>0} is an

infinite collection of units in O∗
K .

Remarks 2.

(a) O∗
K is a multiplicative group.

(b) An element u ∈ OK is a unit if and only if N(u) = ±1. (Reminder: If N(u) =∏n
i=1 σi(u) = ±1 where σ1 = id, then let v :=

∏n
i=2 σ

i(u). We have v ∈ OK (let σi
act on the minimal polynomial for u), and ±v is the multiplicative inverse of u.)

(c) Elements of finite order in O∗
K are roots of unity, and every root of unity in K is in

O∗
K . (If ζ ∈ K and ζm = 1, them ζ satisfies xm − 1, and hence is an algebraic integer

in K.)

(d) The elements of OK with finite order form a finite cyclic subgroup of OK of even
order.

Proof. These elements clearly form a subgroup. For finiteness, note that the mapping
σ : K → Ls,t ' Rn maps OK to a lattice in Rn, and the image of {ζ ∈ K : |ζ| = 1}
maps to a compact set. Finally, since −1 ∈ OK and has order 2, it follows that 2
divides the order of the subgroup. The proof that any finite subgroup of K∗ must be
cyclic is similar to that given in Step 1 of the two square theorem the in the notes for
Friday, Week 10.

Example 3. Let K be a cubic number field, i.e., [K :Q] = 3. Let ζ be a root of unity in K.
We claim that ζ = ±1. Since Q ⊆ Q(ζ) ⊆ K, we have

3 = [K : Q] = [Q : Q(ζ)][Q(ζ) :K].

Therefore, either Q(ζ) = Q, in which case ζ = ±1, or K = Q(ζ). We now show that the
case K = Q(ζ) is not possible. This is due to that fact (not proven here) that if ζ is a k-th
root of unity, then [Q(ζ) : Q] = φ(k), where φ is the Euler phi-function. However, φ never
takes the value 3. For k ≥ 3, we have that φ(k) is even, and φ(1) = φ(2) = 1. So the only
units in a cubic number are ±1.
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Theorem 4 (Dirichlet’s unit theorem). Let K have s real embeddings and t complex
embeddings. Then, we have a group isomorphism

O∗
K 'W × Zs+t−1

where W is the finite cyclic group of roots of unity in K (the subgroup of OK of elements
of finite order).

Proof. See our text, Appendix B for a full proof. For the idea of the proof, consider the
mapping ` : O∗

K → Rs+t which is our usual mapping σ : K → Ls,t = Rs × Ct, restricted
to O∗

K , followed by the mapping

Rs × Ct → Rs+t

(x1, . . . , xs, z1, . . . , zt) 7→ (ln |x1|, . . . , ln |xs|, ln |z1|2, . . . , ln |zt|2).

Note that due to the logs, the mapping ` takes a multiplicative group into and additive
subgroup of Rn. One may show that the image of ` is a lattice of dimension s+ t− 1, and
the kernel of ` is the set of elements of O∗

K of finite order. Thus, ` induces an isomorphism
of O∗

K/W with a lattice of rank s+ t− 1. It follows from the structure theorem for finitely
generated abelian groups that

O∗
K 'W × Zs+t−1.

To see that the W ⊆ ker(`), first take ζ ∈W . Say ζm = 1 with m ≥ 1. Then

0 = `(1) = `(ζm) = m`(ζ).

Hence, ζ ∈ ker(`). The opposite inclusion requires a bit more work (see our text).

It is also straightforward to see that the image of ` lies in a lattice of rank at most s+ t−1.
Let α ∈ O∗

K . Then
`(α) = (`1(α), . . . , `s+t(α))

where

`j =

{
ln(|σj(α)|) for 1 ≤ j ≤ s
ln(|σj(α)|2) for s+ 1 ≤ j ≤ s+ t.

Therefore,

0 =

s+t∑
j=1

`j(α)

=
s∑

j=1

ln |σj(α)|+
s+t∑

j=s+1

ln |σj(α)|2

= ln |N(α)|
= 0,

since the norm of a unit is ±1. We see that the image of ` sits in the set {x ∈ Rs+t :
x1 + · · ·+ xs+t = 0}.
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Remark 5. The finite group W consists of the roots of unity of K. The only real roots of
unity are ±1. Since field embeddings preserve roots of 1, including their orders, it follows
that if K has any real embeddings, then W = {−1, 1}.
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