Math 361 lecture for Monday, Week 12

Dirichlet's unit theorem

Let K be a number field, and let \mathfrak{O}_K^* denote the units in \mathfrak{O}_K .

Example 1.

- We have $\pm 1 \in \mathfrak{O}_K^*$ for all K.
- If $K = \mathbb{Q}(i)$, then $\mathfrak{O}_K^* = \{\pm 1, \pm i\}.$
- If $K = \mathbb{Q}(\sqrt{2})$, then $1 + \sqrt{2} \in \mathfrak{O}_K^*$, and $|1 + \sqrt{2}| > 1$. So $\{(1 + \sqrt{2})^k : k \in \mathbb{Z}_{>0}\}$ is an infinite collection of units in \mathfrak{O}_K^* .

Remarks 2.

- (a) \mathfrak{O}_K^* is a multiplicative group.
- (b) An element $u \in \mathfrak{O}_K$ is a unit if and only if $N(u) = \pm 1$. (Reminder: If $N(u) = \prod_{i=1}^n \sigma_i(u) = \pm 1$ where $\sigma_1 = \mathrm{id}$, then let $v := \prod_{i=2}^n \sigma^i(u)$. We have $v \in \mathfrak{O}_K$ (let σ_i act on the minimal polynomial for u), and $\pm v$ is the multiplicative inverse of u.)
- (c) Elements of finite order in \mathfrak{O}_K^* are roots of unity, and every root of unity in K is in \mathfrak{O}_K^* . (If $\zeta \in K$ and $\zeta^m = 1$, them ζ satisfies $x^m 1$, and hence is an algebraic integer in K.)
- (d) The elements of \mathfrak{O}_K with finite order form a finite cyclic subgroup of \mathfrak{O}_K of even order.

Proof. These elements clearly form a subgroup. For finiteness, note that the mapping $\sigma: K \to \mathbb{L}^{s,t} \simeq \mathbb{R}^n$ maps \mathfrak{O}_K to a lattice in \mathbb{R}^n , and the image of $\{\zeta \in K : |\zeta| = 1\}$ maps to a compact set. Finally, since $-1 \in \mathfrak{O}_K$ and has order 2, it follows that 2 divides the order of the subgroup. The proof that any finite subgroup of K^* must be cyclic is similar to that given in Step 1 of the two square theorem the in the notes for Friday, Week 10.

Example 3. Let K be a cubic number field, i.e., $[K : \mathbb{Q}] = 3$. Let ζ be a root of unity in K. We claim that $\zeta = \pm 1$. Since $\mathbb{Q} \subseteq \mathbb{Q}(\zeta) \subseteq K$, we have

$$3 = [K : \mathbb{Q}] = [\mathbb{Q} : \mathbb{Q}(\zeta)][\mathbb{Q}(\zeta) : K].$$

Therefore, either $\mathbb{Q}(\zeta) = \mathbb{Q}$, in which case $\zeta = \pm 1$, or $K = \mathbb{Q}(\zeta)$. We now show that the case $K = \mathbb{Q}(\zeta)$ is not possible. This is due to that fact (not proven here) that if ζ is a k-th root of unity, then $[\mathbb{Q}(\zeta) : \mathbb{Q}] = \phi(k)$, where ϕ is the Euler phi-function. However, ϕ never takes the value 3. For $k \geq 3$, we have that $\phi(k)$ is even, and $\phi(1) = \phi(2) = 1$. So the only units in a cubic number are ± 1 .

Theorem 4 (Dirichlet's unit theorem). Let K have s real embeddings and t complex embeddings. Then, we have a group isomorphism

$$\mathfrak{O}_K^* \simeq W \times \mathbb{Z}^{s+t-1}$$

where W is the finite cyclic group of roots of unity in K (the subgroup of \mathfrak{O}_K of elements of finite order).

Proof. See our text, Appendix B for a full proof. For the idea of the proof, consider the mapping $\ell: \mathfrak{O}_K^* \to \mathbb{R}^{s+t}$ which is our usual mapping $\sigma: K \to \mathbb{L}^{s,t} = \mathbb{R}^s \times \mathbb{C}^t$, restricted to \mathfrak{O}_K^* , followed by the mapping

$$\mathbb{R}^s \times \mathbb{C}^t \to \mathbb{R}^{s+t}$$

(x₁,..., x_s, z₁,..., z_t) \mapsto (ln |x₁|,..., ln |x_s|, ln |z₁|²,..., ln |z_t|²).

Note that due to the logs, the mapping ℓ takes a multiplicative group into and additive subgroup of \mathbb{R}^n . One may show that the image of ℓ is a lattice of dimension s + t - 1, and the kernel of ℓ is the set of elements of \mathfrak{O}_K^* of finite order. Thus, ℓ induces an isomorphism of \mathfrak{O}_K^*/W with a lattice of rank s + t - 1. It follows from the structure theorem for finitely generated abelian groups that

$$\mathfrak{O}_K^* \simeq W \times \mathbb{Z}^{s+t-1}.$$

To see that the $W \subseteq \ker(\ell)$, first take $\zeta \in W$. Say $\zeta^m = 1$ with $m \ge 1$. Then

$$0 = \ell(1) = \ell(\zeta^m) = m\ell(\zeta).$$

Hence, $\zeta \in \ker(\ell)$. The opposite inclusion requires a bit more work (see our text). It is also straightforward to see that the image of ℓ lies in a lattice of rank at most s + t - 1. Let $\alpha \in \mathfrak{O}_K^*$. Then

$$\ell(\alpha) = (\ell_1(\alpha), \dots, \ell_{s+t}(\alpha))$$

where

$$\ell_j = \begin{cases} \ln(|\sigma_j(\alpha)|) & \text{for } 1 \le j \le s \\ \ln(|\sigma_j(\alpha)|^2) & \text{for } s+1 \le j \le s+t. \end{cases}$$

Therefore,

$$0 = \sum_{j=1}^{s+t} \ell_j(\alpha)$$

= $\sum_{j=1}^s \ln |\sigma_j(\alpha)| + \sum_{j=s+1}^{s+t} \ln |\sigma_j(\alpha)|^2$
= $\ln |N(\alpha)|$
= 0,

since the norm of a unit is ± 1 . We see that the image of ℓ sits in the set $\{x \in \mathbb{R}^{s+t} : x_1 + \cdots + x_{s+t} = 0\}$.

Remark 5. The finite group W consists of the roots of unity of K. The only real roots of unity are ± 1 . Since field embeddings preserve roots of 1, including their orders, it follows that if K has any real embeddings, then $W = \{-1, 1\}$.