Math 361 lecture for Monday, Week 12

Dirichlet’s unit theorem

Let K be a number field, and let O3 denote the units in O

Example 1.

e We have +1 € O7F for all K.
o If K =Q(i), then OF, = {£1, £i}.

o If K =Q(v/2), then 1 ++/2 € 9%, and |1 + /2| > 1. So {(1 +V2)* : k € Z+¢} is an
infinite collection of units in D*K.

Remarks 2.

(a) OF is a multiplicative group.

(b) An element u € Ok is a unit if and only if N(u) = £1. (Reminder: If N(u) =
[T oi(u) = £1 where o1 = id, then let v := [[I_, 0%(u). We have v € Ok (let o;
act on the minimal polynomial for u), and 4+v is the multiplicative inverse of u.)

c) Elements of finite order in D% are roots of unity, and every root of unity in K is in
K
O%. (If ¢ € K and ("™ =1, them ( satisfies 2" — 1, and hence is an algebraic integer
in K.)

(d) The elements of Ox with finite order form a finite cyclic subgroup of Ok of even
order.

Proof. These elements clearly form a subgroup. For finiteness, note that the mapping
o: K — L5 ~ R" maps Ok to a lattice in R™, and the image of {¢ € K : [(| = 1}
maps to a compact set. Finally, since —1 € Og and has order 2, it follows that 2
divides the order of the subgroup. The proof that any finite subgroup of K* must be
cyclic is similar to that given in Step 1 of the two square theorem the in the notes for
Friday, Week 10. O

Example 3. Let K be a cubic number field, i.e., [K:Q] = 3. Let ¢ be a root of unity in K.
We claim that ¢ = £1. Since Q C Q(¢) C K, we have

3=[K:Q =[Q:Q]Q(¢): K].

Therefore, either Q(¢) = Q, in which case ( = +1, or K = Q(¢). We now show that the
case K = Q(() is not possible. This is due to that fact (not proven here) that if ¢ is a k-th
root of unity, then [Q(() : Q] = ¢(k), where ¢ is the Euler phi-function. However, ¢ never
takes the value 3. For k > 3, we have that ¢(k) is even, and ¢(1) = ¢(2) = 1. So the only
units in a cubic number are 1.



Theorem 4 (Dirichlet’s unit theorem). Let K have s real embeddings and ¢ complex
embeddings. Then, we have a group isomorphism

e Wox Z5t L

where W is the finite cyclic group of roots of unity in K (the subgroup of O of elements
of finite order).

Proof. See our text, Appendix B for a full proof. For the idea of the proof, consider the
mapping £: 9% — R which is our usual mapping o: K — L% = R® x C', restricted
to 7, followed by the mapping
R® x C! — RSt
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Note that due to the logs, the mapping ¢ takes a multiplicative group into and additive
subgroup of R”. One may show that the image of ¢ is a lattice of dimension s +¢ — 1, and
the kernel of £ is the set of elements of D7 of finite order. Thus, ¢ induces an isomorphism

of O} /W with a lattice of rank s+t — 1. It follows from the structure theorem for finitely

generated abelian groups that
O =~ W x 75+ 1

To see that the W C ker({), first take ¢ € W. Say ("™ =1 with m > 1. Then
0=£(1) = £(¢™) = me(¢).
Hence, (¢ € ker(¢). The opposite inclusion requires a bit more work (see our text).

It is also straightforward to see that the image of £ lies in a lattice of rank at most s+t — 1.
Let o € O%. Then

K(O‘) = (51(04)’ cee 7€s+t(0‘))

where
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Therefore,

0=> ¢(a)
j=1

s s+t

=Y Infoj(@)[+ > In|oj(a)?
7j=1 Jj=s+1

= In [N (0)

— (),

since the norm of a unit is +1. We see that the image of ¢ sits in the set {z € R**! :
1+ -+ x5 =0} t



Remark 5. The finite group W consists of the roots of unity of K. The only real roots of
unity are £1. Since field embeddings preserve roots of 1, including their orders, it follows
that if K has any real embeddings, then W = {—1,1}.



