Math 361 lecture for Wednesday, Week 11

The class group

Let K be a number field, and let I C K be an Ox-module. Recall that I is a fractional
ideal of O if it satisfies any of the following equivalent conditions:

1. There exists o € K \ {0} such that ol C Ok.

2. There exists o € Ok \ {0} such that af C O.

3. There exists an ordinary ideal a C O and a € K \ {0} such that I = aa.
4. There exists an ordinary ideal a C O and o € O \ {0} such that I = Lla.

5. I is finitely generated as an O g-module.

A principal fractional ideal is defined to be a fractional ideal generated as an O g-module
by a single element. Thus, a nonzero principal fractional ideal has the form aOf for some

a € K\ {0}.
Let F denote the multiplicative group of nonzero fractional ideals of Ok, and let P denote
the subgroup of nonzero principal factional ideals.

Definition 1. The class group of O is the quotient group
H=F/P.
The class number of O is the size of this group:
hix = |H|.
Proposition 2. Every element of # is represented by an ordinary ideal of Og.

Proof. Let I = aa where o € K \ {0} and a is an ordinary ideal. Then aOk is a principal
fractional ideal. Therefore,

I =aa=(aODk)a=amod P.
O

Proposition 3. Two ordinary ideals a and b represent the same element in H if and only
if there exist a, f € Ok \ {0} such aa = gb.

Proof. We have a = b mod P if and only if there exists v € K \ {0} such that (yOx)a = b.
Write v = a/ to get the result. O



The above proposition gives another way to define H. Say two nonzero ideals a and b are
equivalent if there exist nonzer a, 8 € Ok such that aa = Sb. Let [] denote the equivalence
class of a nonzero ideal a. Then H can be defined to be the set of equivalence class of
nonzero ideals of Ok with multiplication defined be [a][b] := [ab].

Proposition 4. Ok is a UFD if and only if hx = 1, i.e., if and only if the class group is
trivial.

Proof. (=) Suppose that O is a UFD, and let I be a fractional ideal. We can write I = éa
for some nonzero o € D g and some nonzero ordinary ideal a. We saw earlier that O is
a UFD if and only if it is a PID. Hence, a = (/3) for some nonzero 5 € Ok. Therefore I is
generated as an O g-module by the single element 5/a. So I is principal. It follows that H
is trivial.

(<) Suppose that H is trivial, and let a be a nonzero ideal of Ox. We may regard a as a
fractional ideal, and since H is trivial, it follows that a is a principal fractional ideal. Thus,
a = aDg for some nonzero element o € K. Since a C Ok, it follows that o € Ok, and
thus, a is the principal ideal (o) € Ox. We have shown that O is a PID, from which it
follows that O is a UFD. O

Theorem 5. Every element of H is represented by an ideal with norm at most
9\t
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where 2t is the number of complex embeddings of K and A is the discriminant of K.

Proof. We will prove this in an upcoming lecture. O

Corollary 6. The class group H is finite.

Proof. Recall that there are finitely many ideals with a given norm. (To recall the proof:
Let a € N and suppose a is an ideal with N(a) = a. In O we factor the ideal (a):

We know that and ideal contains the norm of each of its element. In particular, @ € a. This
implies (a) C a, and hence, a|(a). It follows from unique factorization of ideals that

where 0 < ¢; <e; for i =1,...,k. There are only finitely many possibilities for the ¢;, and
hence, only finitely many possibilities for a.)



By the previous theorem, each element of H is represented by an ideal of norm at most
(2/7)t/]Al]. There are only finitely many positive integers less than this bound. Coupled
with the fact that there are only finitely many ideals with a given norm, the result follows.

O

Example 7. Let K = Q(v/—5). Then Ox = Spany{1,v/—5}. The discriminant of K is
2
_ 1 -5 _ 9
A —det( 1 —v75 > = (—2v=5) = —20.
Then K has 2 complex embeddings. So according to Theorem 5, each element of H is
represented by an ideal with norm at most

<72r> VAl < 2.9.

So each element of H is represented by an ideal with norm either 1 or 2. What are the
ideals with these norms? The only ideal with norm 1 is (1) = Og. Next, suppose that a is
an ideal with norm 2. We know that 2 € a, and hence, a|(2).

To see how (2) factors, we factor the minimal polynomial for v/—5 modulo 2:
2 +5=2?+1=(z+1)*mod 2.

Hence, (2) = (2,1 + v/—5)2. Taking norms, we have N(2) = 4 = N (2,1 + v/—5)?. Hence,
N(2,1++/-5) =2, and we see that (2,1 + /—5) is the only ideal with norm equal to 2.
So far, we have seen that every element of H is represented by (1) or (2,1++/—5). To show
these ideals are distinct in H, we must show that (2,1 + 1/5) is not principal. For sake of
contradiction, suppose it is. Then there exist a,b € Z such that (a+bv/—5) = (2,14+/—5).
Taking norms we have

N(((a+bv=5))) = |N(a+bv/=5))| = a® + 50> = N((2,1 + V=5)) = 2.
However, there are no solutions in Z to this equation.

Corollary 8. Let a be an ideal of O, and let h = |H| be the class number of K. Then
1. a” is principal, and

2. If u € N is relatively prime to h, and a" is principal, then a* is principal.

Proof. Let [a] denote the equivalence class of a modulo P. In a finite group, raising any
element to the order of the group yields the identity of the group. Hence, [a]* = [a"] =
(1) mod P. So it follows that there is a principal fractional ideal (a)Ox such that a =
(1)(r) = (ev). We see that o must be in O since a is in Ok.

If u € Nis relatively prime to h, then there exist a,b € Z such that au+bh = 1. Supposing a“
is principal, it follows that

a=a' =" = q®gh = q® = (a*)* = (1)* = (1) mod P.

Hence, a is principal. O



