
Math 361 lecture for Wednesday, Week 11

The class group

Let K be a number field, and let I ⊆ K be an OK-module. Recall that I is a fractional
ideal of OK if it satisfies any of the following equivalent conditions:

1. There exists α ∈ K \ {0} such that αI ⊆ OK .

2. There exists α ∈ OK \ {0} such that αI ⊆ OK .

3. There exists an ordinary ideal a ⊆ OK and α ∈ K \ {0} such that I = αa.

4. There exists an ordinary ideal a ⊆ OK and α ∈ OK \ {0} such that I = 1
αa.

5. I is finitely generated as an OK-module.

A principal fractional ideal is defined to be a fractional ideal generated as an OK-module
by a single element. Thus, a nonzero principal fractional ideal has the form αOK for some
α ∈ K \ {0}.
Let F denote the multiplicative group of nonzero fractional ideals of OK , and let P denote
the subgroup of nonzero principal factional ideals.

Definition 1. The class group of OK is the quotient group

H = F/P.

The class number of OK is the size of this group:

hK = |H|.

Proposition 2. Every element of H is represented by an ordinary ideal of OK .

Proof. Let I = αa where α ∈ K \ {0} and a is an ordinary ideal. Then αOK is a principal
fractional ideal. Therefore,

I = αa = (αOK)a = a mod P.

Proposition 3. Two ordinary ideals a and b represent the same element in H if and only
if there exist α, β ∈ OK \ {0} such αa = βb.

Proof. We have a = b mod P if and only if there exists γ ∈ K \ {0} such that (γOK)a = b.
Write γ = α/β to get the result.
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The above proposition gives another way to define H. Say two nonzero ideals a and b are
equivalent if there exist nonzer α, β ∈ OK such that αa = βb. Let [] denote the equivalence
class of a nonzero ideal a. Then H can be defined to be the set of equivalence class of
nonzero ideals of OK with multiplication defined be [a][b] := [ab].

Proposition 4. OK is a UFD if and only if hK = 1, i.e., if and only if the class group is
trivial.

Proof. (⇒) Suppose that OK is a UFD, and let I be a fractional ideal. We can write I = 1
αa

for some nonzero α ∈ OK and some nonzero ordinary ideal a. We saw earlier that OK is
a UFD if and only if it is a PID. Hence, a = (β) for some nonzero β ∈ OK . Therefore I is
generated as an OK-module by the single element β/α. So I is principal. It follows that H
is trivial.

(⇐) Suppose that H is trivial, and let a be a nonzero ideal of OK . We may regard a as a
fractional ideal, and since H is trivial, it follows that a is a principal fractional ideal. Thus,
a = αOK for some nonzero element α ∈ K. Since a ⊆ OK , it follows that α ∈ OK , and
thus, a is the principal ideal (α) ⊆ OK . We have shown that OK is a PID, from which it
follows that OK is a UFD.

Theorem 5. Every element of H is represented by an ideal with norm at most(
2

π

)t√
|∆|

where 2t is the number of complex embeddings of K and ∆ is the discriminant of K.

Proof. We will prove this in an upcoming lecture.

Corollary 6. The class group H is finite.

Proof. Recall that there are finitely many ideals with a given norm. (To recall the proof:
Let a ∈ N and suppose a is an ideal with N(a) = a. In OK we factor the ideal (a):

(a) =
k∏
i=1

peii .

We know that and ideal contains the norm of each of its element. In particular, a ∈ a. This
implies (a) ⊆ a, and hence, a|(a). It follows from unique factorization of ideals that

a =

k∏
i=1

p`ii

where 0 ≤ `i ≤ ei for i = 1, . . . , k. There are only finitely many possibilities for the `i, and
hence, only finitely many possibilities for a.)
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By the previous theorem, each element of H is represented by an ideal of norm at most
(2/π)t

√
|∆|. There are only finitely many positive integers less than this bound. Coupled

with the fact that there are only finitely many ideals with a given norm, the result follows.

Example 7. Let K = Q(
√
−5). Then OK = SpanZ{1,

√
−5}. The discriminant of K is

∆ = det

(
1

√
−5

1 −
√
−5

)2

= (−2
√
−5)2 = −20.

Then K has 2 complex embeddings. So according to Theorem 5, each element of H is
represented by an ideal with norm at most(

2

π

)√
|∆| < 2.9.

So each element of H is represented by an ideal with norm either 1 or 2. What are the
ideals with these norms? The only ideal with norm 1 is (1) = OK . Next, suppose that a is
an ideal with norm 2. We know that 2 ∈ a, and hence, a|(2).

To see how (2) factors, we factor the minimal polynomial for
√
−5 modulo 2:

x2 + 5 = x2 + 1 = (x+ 1)2 mod 2.

Hence, (2) = (2, 1 +
√
−5)2. Taking norms, we have N(2) = 4 = N(2, 1 +

√
−5)2. Hence,

N(2, 1 +
√
−5) = 2, and we see that (2, 1 +

√
−5) is the only ideal with norm equal to 2.

So far, we have seen that every element of H is represented by (1) or (2, 1 +
√
−5). To show

these ideals are distinct in H, we must show that (2, 1 +
√

5) is not principal. For sake of
contradiction, suppose it is. Then there exist a, b ∈ Z such that (a+ b

√
−5) = (2, 1+

√
−5).

Taking norms we have

N(((a+ b
√
−5))) = |N(a+ b

√
−5))| = a2 + 5b2 = N((2, 1 +

√
−5)) = 2.

However, there are no solutions in Z to this equation.

Corollary 8. Let a be an ideal of OK , and let h = |H| be the class number of K. Then

1. ah is principal, and

2. If u ∈ N is relatively prime to h, and au is principal, then au is principal.

Proof. Let [a] denote the equivalence class of a modulo P. In a finite group, raising any
element to the order of the group yields the identity of the group. Hence, [a]h = [ah] =
(1) mod P. So it follows that there is a principal fractional ideal (α)OK such that ah =
(1)(α) = (α). We see that α must be in OK since a is in OK .

If u ∈ N is relatively prime to h, then there exist a, b ∈ Z such that au+bh = 1. Supposing au

is principal, it follows that

a = a1 = aau+bh = aauah = aau = (au)a = (1)a = (1) mod P.

Hence, a is principal.
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