Math 361 lecture for Wednesday, Week 11

The class group

Let K be a number field, and let $I \subseteq K$ be an \mathfrak{O}_K -module. Recall that I is a *fractional ideal* of \mathfrak{O}_K if it satisfies any of the following equivalent conditions:

- 1. There exists $\alpha \in K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$.
- 2. There exists $\alpha \in \mathfrak{O}_K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$.
- 3. There exists an ordinary ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$ and $\alpha \in K \setminus \{0\}$ such that $I = \alpha \mathfrak{a}$.
- 4. There exists an ordinary ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$ and $\alpha \in \mathfrak{O}_K \setminus \{0\}$ such that $I = \frac{1}{\alpha}\mathfrak{a}$.
- 5. I is finitely generated as an \mathfrak{O}_K -module.

A principal fractional ideal is defined to be a fractional ideal generated as an \mathfrak{O}_K -module by a single element. Thus, a nonzero principal fractional ideal has the form $\alpha \mathfrak{O}_K$ for some $\alpha \in K \setminus \{0\}$.

Let \mathcal{F} denote the multiplicative group of nonzero fractional ideals of \mathfrak{O}_K , and let \mathcal{P} denote the subgroup of nonzero principal factional ideals.

Definition 1. The class group of \mathfrak{O}_K is the quotient group

$$\mathcal{H} = \mathcal{F} / \mathcal{P}$$

The class number of \mathfrak{O}_K is the size of this group:

$$h_K = |\mathcal{H}|.$$

Proposition 2. Every element of \mathcal{H} is represented by an ordinary ideal of \mathcal{D}_K .

Proof. Let $I = \alpha \mathfrak{a}$ where $\alpha \in K \setminus \{0\}$ and \mathfrak{a} is an ordinary ideal. Then $\alpha \mathfrak{O}_K$ is a principal fractional ideal. Therefore,

$$I = \alpha \mathfrak{a} = (\alpha \mathfrak{O}_K) \mathfrak{a} = \mathfrak{a} \mod \mathcal{P}.$$

Proposition 3. Two ordinary ideals \mathfrak{a} and \mathfrak{b} represent the same element in \mathcal{H} if and only if there exist $\alpha, \beta \in \mathfrak{O}_K \setminus \{0\}$ such $\alpha \mathfrak{a} = \beta \mathfrak{b}$.

Proof. We have $\mathfrak{a} = \mathfrak{b} \mod \mathcal{P}$ if and only if there exists $\gamma \in K \setminus \{0\}$ such that $(\gamma \mathfrak{O}_K)\mathfrak{a} = \mathfrak{b}$. Write $\gamma = \alpha/\beta$ to get the result. The above proposition gives another way to define \mathcal{H} . Say two nonzero ideals \mathfrak{a} and \mathfrak{b} are equivalent if there exist nonzer $\alpha, \beta \in \mathfrak{O}_K$ such that $\alpha \mathfrak{a} = \beta \mathfrak{b}$. Let [] denote the equivalence class of a nonzero ideal \mathfrak{a} . Then \mathcal{H} can be defined to be the set of equivalence class of nonzero ideals of \mathfrak{O}_K with multiplication defined be $[\mathfrak{a}][\mathfrak{b}] := [\mathfrak{a}\mathfrak{b}]$.

Proposition 4. \mathfrak{O}_K is a UFD if and only if $h_K = 1$, i.e., if and only if the class group is trivial.

Proof. (\Rightarrow) Suppose that \mathfrak{O}_K is a UFD, and let I be a fractional ideal. We can write $I = \frac{1}{\alpha}\mathfrak{a}$ for some nonzero $\alpha \in \mathfrak{O}_K$ and some nonzero ordinary ideal \mathfrak{a} . We saw earlier that \mathfrak{O}_K is a UFD if and only if it is a PID. Hence, $\mathfrak{a} = (\beta)$ for some nonzero $\beta \in \mathfrak{O}_K$. Therefore I is generated as an \mathfrak{O}_K -module by the single element β/α . So I is principal. It follows that \mathcal{H} is trivial.

(\Leftarrow) Suppose that \mathcal{H} is trivial, and let \mathfrak{a} be a nonzero ideal of \mathfrak{O}_K . We may regard \mathfrak{a} as a fractional ideal, and since \mathcal{H} is trivial, it follows that \mathfrak{a} is a principal fractional ideal. Thus, $\mathfrak{a} = \alpha \mathfrak{O}_K$ for some nonzero element $\alpha \in K$. Since $\mathfrak{a} \subseteq \mathfrak{O}_K$, it follows that $\alpha \in \mathfrak{O}_K$, and thus, \mathfrak{a} is the principal ideal (α) $\subseteq \mathfrak{O}_K$. We have shown that \mathfrak{O}_K is a PID, from which it follows that \mathfrak{O}_K is a UFD.

Theorem 5. Every element of \mathcal{H} is represented by an ideal with norm at most

$$\left(\frac{2}{\pi}\right)^t \sqrt{|\Delta|}$$

where 2t is the number of complex embeddings of K and Δ is the discriminant of K.

Proof. We will prove this in an upcoming lecture.

Corollary 6. The class group \mathcal{H} is finite.

Proof. Recall that there are finitely many ideals with a given norm. (To recall the proof: Let $a \in \mathbb{N}$ and suppose \mathfrak{a} is an ideal with $N(\mathfrak{a}) = a$. In \mathfrak{O}_K we factor the ideal (a):

$$(a) = \prod_{i=1}^{k} \mathfrak{p}_i^{e_i}.$$

We know that and ideal contains the norm of each of its element. In particular, $a \in \mathfrak{a}$. This implies $(a) \subseteq \mathfrak{a}$, and hence, $\mathfrak{a}|(a)$. It follows from unique factorization of ideals that

$$\mathfrak{a} = \prod_{i=1}^k \mathfrak{p}_i^{\ell_i}$$

where $0 \leq \ell_i \leq e_i$ for i = 1, ..., k. There are only finitely many possibilities for the ℓ_i , and hence, only finitely many possibilities for \mathfrak{a} .)

By the previous theorem, each element of \mathcal{H} is represented by an ideal of norm at most $(2/\pi)^t \sqrt{|\Delta|}$. There are only finitely many positive integers less than this bound. Coupled with the fact that there are only finitely many ideals with a given norm, the result follows.

Example 7. Let $K = \mathbb{Q}(\sqrt{-5})$. Then $\mathfrak{O}_K = \operatorname{Span}_{\mathbb{Z}}\{1, \sqrt{-5}\}$. The discriminant of K is

$$\Delta = \det \left(\begin{array}{cc} 1 & \sqrt{-5} \\ 1 & -\sqrt{-5} \end{array} \right)^2 = (-2\sqrt{-5})^2 = -20.$$

Then K has 2 complex embeddings. So according to Theorem 5, each element of \mathcal{H} is represented by an ideal with norm at most

$$\left(\frac{2}{\pi}\right)\sqrt{|\Delta|} < 2.9.$$

So each element of \mathcal{H} is represented by an ideal with norm either 1 or 2. What are the ideals with these norms? The only ideal with norm 1 is $(1) = \mathfrak{O}_K$. Next, suppose that \mathfrak{a} is an ideal with norm 2. We know that $2 \in \mathfrak{a}$, and hence, $\mathfrak{a}|(2)$.

To see how (2) factors, we factor the minimal polynomial for $\sqrt{-5}$ modulo 2:

$$x^{2} + 5 = x^{2} + 1 = (x + 1)^{2} \mod 2.$$

Hence, $(2) = (2, 1 + \sqrt{-5})^2$. Taking norms, we have $N(2) = 4 = N(2, 1 + \sqrt{-5})^2$. Hence, $N(2, 1 + \sqrt{-5}) = 2$, and we see that $(2, 1 + \sqrt{-5})$ is the only ideal with norm equal to 2.

So far, we have seen that every element of \mathcal{H} is represented by (1) or $(2, 1 + \sqrt{-5})$. To show these ideals are distinct in H, we must show that $(2, 1 + \sqrt{5})$ is not principal. For sake of contradiction, suppose it is. Then there exist $a, b \in \mathbb{Z}$ such that $(a + b\sqrt{-5}) = (2, 1 + \sqrt{-5})$. Taking norms we have

$$N(((a+b\sqrt{-5}))) = |N(a+b\sqrt{-5})| = a^2 + 5b^2 = N((2,1+\sqrt{-5})) = 2.$$

However, there are no solutions in \mathbb{Z} to this equation.

Corollary 8. Let \mathfrak{a} be an ideal of \mathfrak{O}_K , and let $h = |\mathcal{H}|$ be the class number of K. Then

- 1. \mathfrak{a}^h is principal, and
- 2. If $u \in \mathbb{N}$ is relatively prime to h, and \mathfrak{a}^u is principal, then \mathfrak{a}^u is principal.

Proof. Let $[\mathfrak{a}]$ denote the equivalence class of \mathfrak{a} modulo \mathcal{P} . In a finite group, raising any element to the order of the group yields the identity of the group. Hence, $[\mathfrak{a}]^h = [\mathfrak{a}^h] = (1) \mod \mathcal{P}$. So it follows that there is a principal fractional ideal $(\alpha)\mathfrak{O}_K$ such that $\mathfrak{a}^h = (1)(\alpha) = (\alpha)$. We see that α must be in \mathfrak{O}_K since \mathfrak{a} is in \mathfrak{O}_K .

If $u \in \mathbb{N}$ is relatively prime to h, then there exist $a, b \in \mathbb{Z}$ such that au+bh = 1. Supposing \mathfrak{a}^u is principal, it follows that

$$\mathfrak{a} = \mathfrak{a}^1 = \mathfrak{a}^{au+bh} = \mathfrak{a}^{au}\mathfrak{a}^h = \mathfrak{a}^{au} = (\mathfrak{a}^u)^a = (1)^a = (1) \bmod \mathcal{P}.$$

Hence, \mathfrak{a} is principal.