
Math 361 lecture for Friday, Week 11

The class group II

Let K be a number field of degree n with real embeddings σ1, . . . , σs, and complex embed-
dings σs+1, σs+1, . . . , σs+t, σs+t. Recall our Q-algebra embedding:

σK = σ : K → Ls,t := Rs × Ct

α 7→ (σ1(α), . . . , σs(α), σs+1(α), . . . , σs+t(α)),

and our identification

Rs × Ct ' Rn

(x1, . . . , xs, z1, . . . , zt) 7→ (x1, . . . , xs, u1, v1, . . . , ut, vt)

Define the norm of q = (x1, . . . , xs, z1, . . . , zt) ∈ Rs × Ct to be

N(q) = x1 · · ·xsz1z1 · · · ztzt = x1 · · ·xs|z1|2 · · · |zt|2

and note that it is consistent with our earlier definition: for α ∈ K,

N(α) = σ1(α) · · ·σs(α)σs+1(α)σs+1(α) · · ·σs+1(α)σs+t(α) = N(σ(α)).

We proved a theorem giving the volume of a fundamental domain of the image of a lattice
under σ and derived the following:

Corollary. Let a be a nonzero ideal in OK . Identifying Ls,t with Rn, regard σ(a) ⊂ Rn.
Then σ(a) is a lattice with fundamental domain of volume

2−tN(a)
√
|∆|

where ∆ is the discriminant of K.

Our goal now it two prove two theorems, one of which was used in the last lecture to show
that the class group is finite.

Theorem 1. If a is a nonzero ideal of OK , then there exists 0 6= α ∈ OK such that

|N(α)| ≤
(

2

π

)t

N(a)
√
|∆|.

Proof. Fix a real number ε > 0, and select positive real numbers c1, . . . , cs+t such that

c1 · · · cn =

(
2

π

)t

N(a)
√
|∆|.

Define Xε ∈ Rn to be those x = (x1, . . . , xs, xs+1, ys+1, . . . , xs+t, ys+t) ∈ Rn such that
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• |x1| < c1 + ε,

• |x2| < c2, . . . , |xs| < cs,

• |x2s+1 + y2s+1| < cs+1, . . . , |x2s+t + y2s+t| < cs+t.

Then Xε is centrally symmetric about the origin and convex (exercise). We have

vol(Xε) > [(2c1) · · · 2cs][(πcs+1) · · · (πcs+t)]

= 2sπt(c1 · · · cs+t)

= 2sπt
(

2

π

)t

N(a)
√
|∆|

= 2s+tN(a)
√
|∆|

= 2s+2t · 2−tN(a)
√
|∆|

= 2n vol(F )

where F is a fundamental domain for σ(a).

By Minkowski’s theorem, Xε contains a nonzero point in the lattice σ(a), i.e., there exists
0 6= β ∈ a such that σ(β) ∈ Xε. For each ε > 0, define

Aε = {β ∈ a : β 6= 0, σ(β) ∈ Xε}.

For each β ∈ Aε, we have
|N(β)| < (c1 + ε)c2 · · · cs+t.

We have seen that each Aε is nonempty. Further, since σ(a) is a lattice, each Aε is finite.
We have

A1 ⊇ A1/2 ⊇ A1/3 ⊇ · · · ⊇ A1/k ⊇ · · · .

Hence,
⋂

k≥1A1/k 6= ∅. Let α ∈ A, then since α ∈ A1/k for all k ≥ 1, we have

|N(α)| < (c1 + 1/k)c2 · · · cs+t.

It follows that

|N(α)| ≤ c1 · · · cs+t =

(
2

π

)t

N(a)
√
|∆|.

Theorem 2. Every element of the class group H is represented by an ideal with norm at
most (

2

π

)t√
|∆|.
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Proof. Consider an arbitrary equivalence class [c] ∈ H where c is an ordinary ideal. (We
know that every element of H has this form.) Then [c−1] ∈ H, so there exists an ordinary
ideal b representing [c−1].

Take 0 6= β ∈ b with

|N(β)| ≤
(

2

π

)t

N(b)
√
|∆|.

Since N(β) ∈ b, it follows that (β) ⊆ b. Multiply this inclusion through by b−1 to define

a := (β)b−1 ⊆ bb−1 = OK .

Hence, a is an ideal. Further,
[a] = [b−1] = [c],

since a differs from b−1 by a factor of a principal ideal. Finally,

N(a) = N((β))N(b−1) =
|N(β)|
N(b)

≤
(

2

π

)t√
|∆|.

Example 3. Let K = Q(
√
−13). Every ideal class in H is represented by an ideal with

norm at most (
2

π

)√
4 · 13 < 4.6.

So we must consider ideals with norms 1, 2, 3, 4. If an ideal a contains a rational integer
a, then (a) ⊆ a implies that a divides (a). So to find the ideals with norms a, we look for
divisors of the ideal (a). In our case, where a ∈ {1, 2, 3, 4}, we factor the minimal polynomial
x2 + 13 modulo p for p = 2, 3 to find

(2) = (2,
√
−13)2, (3) = (3).

An ideal with norm 4 divides

(4) = (2)2 = (2,
√
−13)4.

Therefore, h = |H| = 1 or 2, depending on whether (2,
√
−13) is principal.

If (2,
√
−13) = (a+ b

√
−13) for some a, b ∈ Z, taking norms, we find

2 = a2 + 13b2,

for which there are no solutions. Therefore,H is a group with two elements: [(1)] and [(2,
√
−13)].
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