Math 361 lecture for Wednesday, Week 10

Minkowski's theorem for lattices

Goal. Let K be a number field. Let \mathcal{F} be the multiplicative group of nonzero fractional ideals. A fractional ideal is called *principal* if it is generated as an \mathfrak{O}_K -module by a single element. So a principal fractional ideal has the from $c^{-1}(\alpha)$ where $c \in K \setminus \{0\}$ and $\alpha \in \mathfrak{O}_K$. Let $\mathcal{P} \subseteq \mathcal{F}$ denote the subgroup of nonzero principal fractional ideals. The *class group* of K is the quotient group

$$\mathcal{H} = \mathcal{F}/\mathcal{P}$$
.

The class number $h_K := h(\mathfrak{O}_K) := |\mathcal{H}|$, the order of the class group. We will see that $h_K = 1$ if and only if \mathfrak{O}_K is a PID. In general, h_K is a measure of how far way \mathfrak{O}_K is from being a PID. **Our goal** is to prove that the class number is finite.

Lattices in \mathbb{R}^n .

Definition 1. A subset $L \subset \mathbb{R}^n$ is a rank m lattice in \mathbb{R}^n if $L = \operatorname{Span}_{\mathbb{Z}}\{v_1, \ldots, v_m\}$ for some set $\{v_1, \ldots, v_m\}$ of linearly independent vectors in \mathbb{R}^n .

A subset of \mathbb{R}^n is discrete if its intersection with each compact subset of \mathbb{R}^n is finite. Equivalently, the subset has no accumulation points.

Theorem 2. An additive subgroup $L \subset \mathbb{R}^n$ is a lattice if and only if it is discrete.

Definition 3. A fundamental domain for a rank n lattice L in \mathbb{R}^n is a set of the form

$$F = \{\sum_{i=1}^{n} a_i v_i : 0 \le a_i < 1 \text{ for } i = 1, \dots n\}.$$

where $L = \operatorname{Span}_{\mathbb{Z}} \{v_1, \dots, v_n\}.$

Remark 4. With notation as in the above definition,

- 1. The volume of F is $vol(F) = |\det(v_1, \dots, v_n)|$.
- 2. For each $x \in \mathbb{R}^n$, there exists a unique $\ell \in L$ such that $x \in \ell + F$.

Example 5.

1. \mathbb{Z} is a lattice in \mathbb{R} . Let $S^1=\{z\in\mathbb{C}:|z|\}$ be the unit circle in \mathbb{R}^2 centered at the origin. We have a homeomorphism

$$\mathbb{R}/\mathbb{Z} \to S^1$$
$$x \to e^{2\pi i x}.$$

A fundamental domain is [0,1).

2. Consider the number field $K = \mathbb{Q}(\sqrt{2})$ with number ring $\mathbb{Z}[1,\sqrt{2}]$. The embeddings of K into \mathbb{C} are $\sigma_1(a+b\sqrt{2})=a+b\sqrt{2}$ and $\sigma_2(a+\sqrt{2})=a-b\sqrt{2}$. Consider the homomorphism

$$K \to \mathbb{R}^2$$

 $x \mapsto (\sigma_1(x), \sigma_2(x)).$

Then the image of $\mathbb{Z}[\sqrt{2}]$ in \mathbb{R}^2 is a lattice with generators $(\sigma_1(1), \sigma_2(1)) = (1, 1)$ and $(\sigma_1(\sqrt{2}), \sigma_2(\sqrt{2})) = (\sqrt{2}, -\sqrt{2})$. The fundamental domain corresponding to these generators has volume

$$\left| \det \left(\begin{array}{cc} 1 & \sqrt{2} \\ 1 & -\sqrt{2} \end{array} \right) \right| = 2\sqrt{2}.$$

Exercises:

- (a) Draw a picture of this lattice and the fundamental domain specified above.
- (b) Can you find a different fundamental domain? What is its volume?

Definition 6. The *n*-torus is the topological space

$$T^n = \underbrace{S^1 \times \dots \times S^1}_{n \text{ times}}$$

with the product topology.

Proposition 7. Let L be a rank m lattice in \mathbb{R}^n with generators v_1, \ldots, v_m . Complete v_1, \ldots, v_m to a basis v_1, \ldots, v_n for \mathbb{R}^n . Then there is a homeomorphism

$$\phi \colon \mathbb{R}^n / L \to T^m \times \mathbb{R}^{n-m}$$
$$\sum_{i=1}^n a_i v_i \mapsto \left(e^{2\pi i a_1}, \dots, e^{2\pi i a_m}, a_{m+1}, \dots, a_n \right).$$

The mapping ϕ is a bijection when restricted to the fundamental domain F.

Proof. Exercise.
$$\Box$$

Example 8. Consider the lattices $L = \operatorname{Span}_{\mathbb{Z}}\{(1,0),(0,1)\}$ and $L' = \operatorname{Span}_{\mathbb{Z}}\{(1,0)\}$ in \mathbb{R}^2 . We have that \mathbb{R}^2/L is homeomorphic to a torus and \mathbb{R}^2/L' is homeomorphic to a cylinder.

Definition 9. Let $L \subset \mathbb{R}^n$ be a rank n lattice, and consider the mapping $\pi : \mathbb{R}^n \to \mathbb{R}^n/L \xrightarrow{\phi} T^n$, the quotient mapping followed by the isomorphism ϕ defined above. The *volume* of $Y \subseteq T^n$ is defined to be

$$\operatorname{vol}(Y) = \operatorname{vol}(\phi^{-1}(Y) \cap F)$$

where F is a fundamental domain for L.

Proposition 10. Let $X \subset \mathbb{R}^n$ be a bounded such that $\operatorname{vol}(X)$ exists. With notation as in the above definition, suppose that π restricted to X is injective. Then $\operatorname{vol}(X) = \operatorname{vol}(\pi(X))$.

Proof. See Theorem 6.7 and the accompanying Figure 6.6.

Minkowski's theorem.

Definition 11. Let $X \subseteq \mathbb{R}^n$. Then X is *convex* if it contains the line segment joining each pair of points in X. In other words, if $x, y \in X$, then $\lambda x + (1 - \lambda)y \in X$ for $\lambda \in [0, 1]$.

Example 12. If $P = \{p_1, \dots, p_k\} \subset \mathbb{R}^n$, the smallest convex set containing P is

$$\operatorname{conv}(P) = \left\{ \sum_{i=1}^k \lambda_i p_i : \lambda_i \ge 0 \text{ and } \sum_{i=1}^k \lambda_i = 1 \right\}.$$

This set is called the *convex hull* of P.

Definition 13. Let $X \subseteq \mathbb{R}^n$. Then X is centrally symmetric about the origin if $x \in X$ implies $-x \in X$ for all $x \in X$. We will use the abbreviation symmetric to mean centrally symmetric about the origin in the context of Minkowski's theorem.

Theorem 14 (Minkowski's theorem). Let $L \subset \mathbb{R}^n$ be a rank n lattice, and let F be a fundamental domain for L. Let $X \subset \mathbb{R}^n$ be bounded, convex, and symmetric. Suppose that

$$\operatorname{vol}(X) > 2^n \operatorname{vol}(F).$$

Then X contains a nonzero lattice point.

Exercise 15. Consider Minkowski's theorem for the cases:

- $L = \mathbb{Z} \subset \mathbb{R}$, and
- $L = \operatorname{Span}_{\mathbb{Z}}\{(1,0),(0,1)\} \subset \mathbb{R}^2$.

Proof of Minkowski's theorem. Consider the lattice 2L, whose fundamental domain has volume $2^n \operatorname{vol}(F)$. If $\operatorname{vol}(X) > 2^n \operatorname{vol}(F)$, then we have seen that $\pi \colon \mathbb{R}^n \to \mathbb{R}^n/(2L)$ is not injective when restricted to X. Thus, there exist distinct $x, y \in X$ such that $\pi(x) = \pi(y)$. So $x - y \in 2L$, and thus

$$\frac{1}{2}(x-y) \in L.$$

Since X is symmetric, $-y \in X$. Since X is convex, it follows that

$$\frac{1}{2}(x-y) = \frac{1}{2}x + \frac{1}{2}(-y) \in X.$$

Since $x \neq y$, we have (x - y)/2 is a nonzero lattice point in X.