
Math 361 lecture for Wednesday, Week 10

Minkowski’s theorem for lattices

Goal. Let K be a number field. Let F be the multiplicative group of nonzero fractional
ideals. A fractional ideal is called principal if it is generated as an OK-module by a single
element. So a principal fractional ideal has the from c−1(α) where c ∈ K \{0} and α ∈ OK .
Let P ⊆ F denote the subgroup of nonzero principal fractional ideals. The class group of K
is the quotient group

H = F/P.

The class number hK := h(OK) := |H|, the order of the class group. We will see that hK = 1
if and only if OK is a PID. In general, hK is a measure of how far way OK is from being
a PID. Our goal is to prove that the class number is finite.

Lattices in Rn.

Definition 1. A subset L ⊂ Rn is a rank m lattice in Rn if L = SpanZ{v1, . . . , vm} for
some set {v1, . . . , vm} of linearly independent vectors in Rn.

A subset of Rn is discrete if its intersection with each compact subset of Rn is finite.
Equivalently, the subset has no accumulation points.

Theorem 2. An additive subgroup L ⊂ Rn is a lattice if and only if it is discrete.

Definition 3. A fundamental domain for a rank n lattice L in Rn is a set of the form

F = {
∑n

i=1 aivi : 0 ≤ ai < 1 for i = 1, . . . n} .

where L = SpanZ{v1, . . . , vn}.

Remark 4. With notation as in the above definition,

1. The volume of F is vol(F ) = | det(v1, . . . , vn)|.

2. For each x ∈ Rn, there exists a unique ` ∈ L such that x ∈ `+ F .

Example 5.

1. Z is a lattice in R. Let S1 = {z ∈ C : |z|} be the unit circle in R2 centered at the
origin. We have a homeomorphism

R/Z→ S1

x→ e2πix.

A fundamental domain is [0, 1).
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2. Consider the number field K = Q(
√

2) with number ring Z[1,
√

2]. The embeddings
of K into C are σ1(a + b

√
2) = a + b

√
2 and σ2(a +

√
2) = a − b

√
2. Consider the

homomorphism

K → R2

x 7→ (σ1(x), σ2(x)).

Then the image of Z[
√

2] in R2 is a lattice with generators (σ1(1), σ2(1)) = (1, 1)
and (σ1(

√
2), σ2(

√
2)) = (

√
2,−
√

2). The fundamental domain corresponding to these
generators has volume ∣∣∣∣det

(
1
√

2

1 −
√

2

)∣∣∣∣ = 2
√

2.

Exercises:

(a) Draw a picture of this lattice and the fundamental domain specified above.

(b) Can you find a different fundamental domain? What is its volume?

Definition 6. The n-torus is the topological space

Tn = S1 × · · · × S1︸ ︷︷ ︸
n times

with the product topology.

Proposition 7. Let L be a rank m lattice in Rn with generators v1, . . . , vm. Com-
plete v1, . . . , vm to a basis v1, . . . , vn for Rn. Then there is a homeomorphism

φ : Rn/L→ Tm × Rn−m
n∑
i=1

aivi 7→
(
e2πia1 , . . . , e2πiam , am+1, . . . , an

)
.

The mapping φ is a bijection when restricted to the fundamental domain F .

Proof. Exercise.

Example 8. Consider the lattices L = SpanZ{(1, 0), (0, 1)} and L′ = SpanZ{(1, 0)} in R2.
We have that R2/L is homeomorphic to a torus and R2/L′ is homeomorphic to a cylinder.

Definition 9. Let L ⊂ Rn be a rank n lattice, and consider the mapping π : Rn → Rn/L φ−→
Tn, the quotient mapping followed by the isomorphism φ defined above. The volume of
Y ⊆ Tn is defined to be

vol(Y ) = vol(φ−1(Y ) ∩ F )

where F is a fundamental domain for L.
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Proposition 10. Let X ⊂ Rn be a bounded such that vol(X) exists. With notation as in
the above definition, suppose that π restricted to X is injective. Then vol(X) = vol(π(X)).

Proof. See Theorem 6.7 and the accompanying Figure 6.6.

Minkowski’s theorem.

Definition 11. Let X ⊆ Rn. Then X is convex if it contains the line segment joining each
pair of points in X. In other words, if x, y ∈ X, then λx+ (1− λ)y ∈ X for λ ∈ [0, 1].

Example 12. If P = {p1, . . . , pk} ⊂ Rn, the smallest convex set containing P is

conv(P ) =
{∑k

i=1 λipi : λi ≥ 0 and
∑k

i=1 λi = 1
}
.

This set is called the convex hull of P .

Definition 13. Let X ⊆ Rn. Then X is centrally symmetric about the origin if x ∈ X
implies −x ∈ X for all x ∈ X. We will use the abbreviation symmetric to mean centrally
symmetric about the origin in the context of Minkowski’s theorem.

Theorem 14 (Minkowski’s theorem). Let L ⊂ Rn be a rank n lattice, and let F be a
fundamental domain for L. Let X ⊂ Rn be bounded, convex, and symmetric. Suppose that

vol(X) > 2n vol(F ).

Then X contains a nonzero lattice point.

Exercise 15. Consider Minkowski’s theorem for the cases:

• L = Z ⊂ R, and

• L = SpanZ{(1, 0), (0, 1)} ⊂ R2.

Proof of Minkowski’s theorem. Consider the lattice 2L, whose fundamental domain has vol-
ume 2n vol(F ). If vol(X) > 2n vol(F ), then we have seen that π : Rn → Rn/(2L) is not
injective when restricted to X. Thus, there exist distinct x, y ∈ X such that π(x) = π(y).
So x− y ∈ 2L, and thus

1

2
(x− y) ∈ L.

Since X is symmetric, −y ∈ X. Since X is convex, it follows that

1

2
(x− y) =

1

2
x+

1

2
(−y) ∈ X.

Since x 6= y, we have (x− y)/2 is a nonzero lattice point in X.
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