
Math 361 lecture for Friday, Week 10

Four squares theorem

Today, we will give some first application’s of Minkowski’s theorem.

Theorem 1 (Two squares theorem). Let p ∈ Z be a prime number, and suppose that p =
1 mod 4. Then

p = x2 + y2

for some x, y ∈ Z.

Exercise 2. Try some examples.

Proof of two square theorem.

Step 1. Pick u ∈ {1, . . . , p − 1} such that u2 = −1 mod p. To see that this is always
possible, consider (Z/pZ)∗, the multiplicative group of non-zero elements of Z/pZ. By the
structure theorem for finite abelian groups,

(Z/pZ)∗ ' Z/n1Z× · · · × Z/nkZ

with n1 ≥ 1, n1|n2| · · · |nk and some k ≥ 0. It follows that ank = 1 for all a ∈ (Z/pZ)∗.
(Note that we have an isomorphism between a multiplicative group and an additive group.)
Thus, all p− 1 elements of (Z/pZ)∗ are roots of the polynomial xnk − 1 ∈ K[x] where K is
the field Z/pZ. Using the division algorithm, we know that xnk − 1 has at most nk roots,
and thus nk ≥ p − 1. In the other hand, we know n1 · · ·nk = p − 1, and so, nk ≤ p − 1.
Therefore, k = 1, and n1 = p− 1.

So far we have shown that (Z/pZ)∗ is cyclic of order p− 1 just based on the fact that p is
prime. In our case, p − 1 = 4k for some integer k. Let v be a generator of (Z/pZ)∗, and
define u = vk. It follows that u4 = v4k = vp−1 = 1 mod p, and u2 6= 1 mod p (since v has
order 4). Since

u4 − 1 = (u2 − 1)(u2 + 1) = 0 mod p,

it follows that u2 = −1 mod p.

Step 2. Having fixed u ∈ {1, . . . , p− 1} such that u2 = −1 mod p, define

L = SpanZ{(0, p), (1, u)} ⊂ Z2 ⊂ R2

Then L is a rank 2 lattice in R2, and the area of a fundamental domain F for L is∣∣∣∣( 0 1
p u

)∣∣∣∣ = p.
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Step 3. Let X be the unit disc of radius r centered at the origin in R2 where r2 = 3
2p. We

have

vol(X) = πr2 =
3

2
πp > 4p = 22 vol(F ).

By Minkowski’s theorem, there exists a nonzero lattice point (x, y) ∈ L∩X. Since (x, y) ∈
X, we have

x2 + y2 ≤ r2 =
3

2
p < 2p.

We now show that x2 + y2 is divisible by p. Since (x, y) ∈ L, we have

(x, y) = a(0, p) + b(1, u) = (b, ap+ bu)

for some a, b ∈ Z. Since u2 = −1 mod p, calculating modulo p, we have

x2 + y2 = b2 + (ap+ bu)2 = b2 + (bu)2 = b2 + b2u2 = b2 − b2 = 0 mod p.

So x2 + y2 = kp for some k ∈ Z>0. However, we have seen that x2 + y2 < 2p. It follows
that x2 + y2 = p, as desired.

Theorem 3 (Four squares theorem). Every positive integer is the sum of four integer
squares. In other words, if n ∈ Z, then there exist a, b, c, d ∈ Z such that

n = a2 + b2 + c2 + d2.

Proof.

Step 1. It suffices to prove the result for primes p since

(a2 + b2 + c2 + d2)(A2 +B2 + C2 +D2) =

(aA− bB − cC − dD)2 + (aB + bA+ cD − dC)2

+ (aC − bD + cA+ dB)2 + (aD + bC − cB + dA)2

for all a, b, c, d, A,B,C,D ∈ Z.

Step 2. The result holds for p = 2 since 2 = 12 + 12 + 02 + 02.

Step 3. Let p be an odd prime. We claim there exist u, v ∈ Z such that

u2 + v2 = −1 mod p.

To see this, note that the elements of Z/pZ may be written

0,±1,±2, . . . ,±(p− 1).

Further,

a2 = b2 mod p ⇒ (a+ b)(a− b) mod p ⇒ a = ±b mod p.
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Since, p 6= 2, we have a 6= −a mod p. Therefore,

|{u2 mod p : u ∈ {0, 1, . . . , p− 1}}| = |{−1− v2 mod p : v ∈ {0, 1, . . . , p− 1}}|

= 1 +
p− 1

2
=
p+ 1

2
.

The two sets above are not disjoint since

p+ 1

2
+
p+ 1

2
= p+ 1 > p.

So there exist u, v ∈ Z such that u2 = −1− v2 mod p.

Step 4. Consider the rank 4 lattice

L = colspanZ


1 0 0 0
0 1 0 0
u v p 0
−v u 0 p

 .

The volume of a fundamental domain for L is |Z4/L| = p2. Apply Minkowski’s theorem
with X being a ball of radius r =

√
1.9p. Since X is a 4-dimensional ball,

vol(X) =
π2r4

2
> 24p2 = 24 vol(F )

where F is a fundamental domain for L. Hence, by Minkowski’s theorem, there exists a
nonzero ` = (a, b, c, d) ∈ L ∩X. Since ` ∈ X,

a2 + b2 + c2 + d2 ≤ r2 = 1.9p < 2p,

Since ` ∈ L,

(a, b, c, d) = x(1, 0, u,−v) + y(0, 1, v, u) + z(0, 0, p, 0) + w(0, 0, 0, p)

= (x, y, xu+ yv + zp,−xv + yu+ wp).

Working modulo p, we have

a2 + b2 + c2 + d2 = x2 + y2 + (xu+ yv + zp)2 + (−vx+ yu+ wp)2

= x2 + y2 + (xu+ yv)2 + (−xv + uy)2

= x2 + y2 + x2u2 + 2xyuv + y2v2 + x2v2 − 2xyuv + y2u2

= x2 + y2 + x2u2 + y2v2 + x2v2 + y2u2

= x2 + y2 + x2(u2 + v2) + y2(v2 + u2)

= 0 mod p.

So a2 + b2 + c2 + d2 = kp is a positive multiple of p that is less then 2p. Therefore,

a2 + b2 + c2 + d2 = p.
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