Math 361 lecture for Friday, Week 10

Four squares theorem

Today, we will give some first application’s of Minkowski’s theorem.

Theorem 1 (Two squares theorem). Let p € Z be a prime number, and suppose that p =
1 mod 4. Then

p=a’+y
for some z,y € Z.

Exercise 2. Try some examples.

Proof of two square theorem.

Step 1. Pick v € {1,...,p — 1} such that 4> = —1 mod p. To see that this is always
possible, consider (Z/pZ)*, the multiplicative group of non-zero elements of Z/pZ. By the
structure theorem for finite abelian groups,

(Z/pZ)* ~Z/maZ X - - X L) ny L

with n; > 1, ni|na| - |nk and some k& > 0. It follows that a™ = 1 for all a € (Z/pZ)*.
(Note that we have an isomorphism between a multiplicative group and an additive group.)
Thus, all p — 1 elements of (Z/pZ)* are roots of the polynomial 2™ — 1 € K[z| where K is
the field Z/pZ. Using the division algorithm, we know that z™ — 1 has at most ny roots,
and thus ni > p — 1. In the other hand, we know ny---ny = p — 1, and so, np < p — 1.
Therefore, k =1, and ny =p — 1.

So far we have shown that (Z/pZ)* is cyclic of order p — 1 just based on the fact that p is
prime. In our case, p — 1 = 4k for some integer k. Let v be a generator of (Z/pZ)*, and
define u = v*. It follows that u* = v** = vP~! = 1 mod p, and u® # 1 mod p (since v has
order 4). Since

ut —1 = (u? - 1)(u? +1) = 0 mod p,

it follows that u? = —1 mod p.
Step 2. Having fixed u € {1,...,p — 1} such that u? = —1 mod p, define
L = Spang {(0,p), (1,u)} C Z* C R?

Then L is a rank 2 lattice in R?, and the area of a fundamental domain F for L is

()=



Step 3. Let X be the unit disc of radius r centered at the origin in R? where 72 = %p. We
have

3
vol(X) = mr? = 3T > 4p = 22 vol(F).

By Minkowski’s theorem, there exists a nonzero lattice point (z,y) € LN X. Since (z,y) €
X, we have

:c2+y2 <r?= gp< 2p.
We now show that 22 + 2 is divisible by p. Since (z,y) € L, we have
(z,y) = a(0,p) + b(1,u) = (b,ap + bu)
for some a,b € Z. Since u?> = —1 mod p, calculating modulo p, we have

22+ 2 = b2+ (ap + bu)? = b* + (bu)? = b* + b*u® = b* — b = 0 mod p.

So z? + y? = kp for some k € Z~. However, we have seen that z? + y?> < 2p. It follows
that 22 4+ y? = p, as desired. O

Theorem 3 (Four squares theorem). Every positive integer is the sum of four integer
squares. In other words, if n € Z, then there exist a, b, ¢,d € Z such that

n=a?+0b+c+d.
Proof.
Step 1. It suffices to prove the result for primes p since
(> + 0+ 4+ d*) (A2 + B>+ C? + D?) =
(@A —bB — cC — dD)? + (aB + bA + ¢D — dC)?
+ (aC' —bD + cA+dB)? + (aD + bC — B + dA)?

for all a,b,c,d, A, B,C,D € Z.
Step 2. The result holds for p = 2 since 2 = 12 4+ 12 + 02 + 0%
Step 3. Let p be an odd prime. We claim there exist u,v € Z such that
w40 =—1 mod p.
To see this, note that the elements of Z/pZ may be written
0,+1,+2,...,+(p—1).
Further,

a>=bvmodp = (a+b)(a—b)modp = a=+bmodp.



Since, p # 2, we have a # —a mod p. Therefore,
Hu?modp:ue{0,1,....p—1}} =|{-1—v*modp:v e {0,1,...,p—1}}|

p—1 p+1
+ 2 2
The two sets above are not disjoint since
p+1 p+1
—t— = 1>p.
5 + 5 P+ p
So there exist u,v € Z such that u? = —1 — v? mod p.
Step 4. Consider the rank 4 lattice
1 0 00
0100
L = colspany w v op 0
—v u 0 p

The volume of a fundamental domain for L is |Z*/L| = p?. Apply Minkowski’s theorem
with X being a ball of radius r = /1.9p. Since X is a 4-dimensional ball,

2.4

vol(X) = % > 24p2 = 24 yol(F)

where F' is a fundamental domain for L. Hence, by Minkowski’s theorem, there exists a
nonzero { = (a,b,c,d) € LN X. Since ¢ € X,

A+ +E+d2<r?=19 < 2p,
Since ¢ € L,
(a,b,¢,d) = z(1,0,u, —v) + y(0,1,v,u) + 2(0,0,p,0) + w(0, 0,0, p)
= (z,y,xu + yv + 2p, —xv + Yyu + wp).
Working modulo p, we have
a? + 02+ +d? =22 + y? + (zu+yo + 2p)% + (—vz + yu + wp)?

=22 + oy 4 (zu +yv)? + (—2v + uy)?
=22+ y2 + z%u? + 2zxyuv + y2v2 + z20? — 2xyuv + y2u2
=2+ y° + 2% + y*0? + 2% + y®
=22 +y? + 22 (u? + %) + P (0 + )
= 0 mod p.

So a® 4 b? 4 ¢? 4+ d? = kp is a positive multiple of p that is less then 2p. Therefore,

A+ +E+d=p.



