
Math 361 lecture for Wednesday, Week 9

Generators for ideals in a number ring

Let K be a number field with ring of integers OK . We have seen that every ideal in OK

may be uniquely factored into a product of prime ideals. Given nonzero ideals a and b of
OK , define their greatest common divisor to be the ideal c such that (1) c|a and c|b and
(2) if d is any ideal dividing a and b, then d|c. Since division of ideals in OK is the same
as containment, the condition for c is that (1) c ⊇ a and c ⊇ b and (2) if d ⊇ a and d ⊇ b,
then d ⊇ c. Note that c ⊇ a and c ⊇ b if and only if

c ⊇ a + b.

It follows that
gcd(a, b) = a + b.

Similarly, we define the least common multiple to be ideal c such that c is the multiple of a
and of b such that if d is any other common multiple, then c divides d. So c ⊆ a and c ⊆ b
and if the same containments hold for d, then d ⊆ c. It follows that

lcm(a, b) = a ∩ b.

If we have factorizations into primes

a =

k∏
i=1

peii and b =

k∏
i=1

p`ii ,

(taking some ei = 0 or `i = 0, if necessary), then

gcd(a, b) =

k∏
i=1

p
min{ei,`i}
i and lcm(a, b) =

k∏
i=1

p
max{ei,`i}
i .

In particular, if a and b relatively prime, then a + b = gcd(a, b) = (1) = OK .

We know that not every number ring is a PID. However, our main result shows that OK is
not far from being a PID: every ideal can be generated by two elements.

Theorem 1. Let a be a nonzero ideal of OK , and let 0 6= β ∈ a. Then there exists α ∈ OK

such that
a = (α, β).

To prove this theorem, we use the following:

Lemma 2. If a and b are nonzero ideals of OK , then there exists α ∈ a such that

αa−1 + b = OK .
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Proof. (We are following the proof of Lemma 5.19 in the text.) First note that if α ∈ a,
then we can multiply (α) ⊆ a through by a−1 to get αa−1 ⊆ OK . Hence, αa−1 will be an
ideal not just a fractional ideal.

Suppose that b =
∏k

i=1 p
ei
i is the factorization of b into prime ideals, and suppose that we

can find α ∈ a such that αa−1 is relatively prime to pi for i = 1, . . . , k. Then αa−1 will be
relatively prime to b, and the result will follow: αa−1 + b = OK .

Now
pi|(αa−1)⇔ αa−1 ⊆ pi ⇔ (α) ⊆ api ⇔ α ∈ api.

So it suffices to find α ∈ a such that α ∈ a \ api for all i. If k = 1, there is no problem. So
suppose that k > 1.

For each i = 1, . . . , k, define
ai = ap1 · · · p̂i · · · pk

where the hat over pi means to omit that factor. Since pi ( OK it follows that aipi ( ai.
Let αi ∈ ai \ (aipi). Then define

α = α1 + · · ·+ αk.

Since αi = ai ⊆ a for all i, it follows that α ∈ a.

It remains to be shown that for each i, we have α 6∈ api. For sake of contradiction, suppose
that α ∈ api for some i. For each j 6= i, from the definition of aj , it follows that api
divides aj . Hence,

αj ∈ aj ⊆ api.

It follows that
αi = α− α1 − · · · − α̂i − · · · − αk ∈ api.

Therefore, we have ai|(αi) and (api)|(αi). So lcm(ai, api)|(αi). However,

lcm(ai, api) = lcm(ap1 · · · p̂i · · · pk, api) = a lcm(p1 · · · p̂i · · · pk, pi) = ap1 · · · pi · · · pk = aipi.

So (aipi)|(αi), from which we get the contradiciton αi ∈ aipi.

Proof of Theorem 1. Define b = βa−1. By Lemma 2, there exists α ∈ a such that

αa−1 + βa−1 = OK .

Multiplying through by a, we get

(α, β) = (α) + (β) = a.
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Factorization of rational integers in number rings. Give a ∈ Z, how does the principal
ideal aOK = (a) ⊆ OK factor into primes? By factoring a into primes in Z, we see that
it suffices determine, for each rational prime p, how the principal ideal pOK = (p) factors
in OK .

Definition 3. Let p be a prime ideal of OK . Last time, we saw that there exists a unique
rational prime p such that N(p) = pf where 1 ≤ f ≤ n. The integer f is called the inertial
degree of p.

Theorem 4. (The ei-fi theorem.) Let p be a rational prime, and say (p) =
∏k

i=1 p
ei
i is the

prime factorization of the ideal (p) in OK . Then

k∑
i=1

eifi = n.

were fi is the inertial degree of pi for each i and n = [K : Q].

Proof. For each pi, we know N(pi) = pfii for some rational prime pi. We have seen that the

norm of an ideal is element of the ideal. Hence, pfii ∈ pi. Since pi is prime, we have pi ∈ pi.
However, we also know that p ∈ pi. So pi = p. (If pi and p were distinct primes both in pi,
then we get that 1 ∈ pi. However, then pi = OK , contradicting the fact that pi is prime.)
Take norms

pn = N((p)) =
k∏

i=1

N(pi)
ei =

k∏
i=1

pfiei = p
∑k

i=1 eifi .

The result follows from equating exponents.

The next result allows us to factor rational integers in number fields with a power basis,
i.e., whose ring of integers has the form Z[θ] for some algebraic integer θ.

Theorem 5. Let K = Q(θ) be a number field of degree n such that OK = Z[θ]. Suppose
that p is a rational prime, and let f be the minimal polynomial for θ over Q. Let Fp = Z/pZ,
the field with p elements. If g ∈ Z[x], we let g denote the image of g in Fp[x] under the
quotient mapping Z[x]→ Z[x]/(p) = Fp[x].

Suppose that

f =

k∏
i=1

f
ei
i

is the factorization of f as an element of Fp[x] into monic irreducibles f i. Let pi = (p, fi(θ))
for i = 1, . . . , k. Then each pi is prime and

(p) =

k∏
i=1

peii =
k∏

i=1

(p, fi(θ))
ei

is the prime factorization of (p) in OK .
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Example 6. Let K = Q(
√
−6). Since −6 6= 1 mod 4, we know that OK = Z[

√
−6] =

SpanZ{1,
√
−6}. One of the homework problems gives a method for factoring the principal

ideal (6) in OK . Alternatively, we may use Theorem 4.

The minimal polynomial for
√
−6 over Q is f = x2 + 6. Modulo 2, we have f = x2 mod 2.

Hence, (2) = (2,
√
−6)2 ⊂ OK . Similarly, (3) = (3,

√
−6) ⊂ OK . So the factorization of (2)

into primes in OK is
(2) = (2,

√
−6)2(3,

√
−6)2.

On the other hand, we have

f = x2 + 1 = (x− 1)(x+ 1) mod 5.

Hence, the prime factorization of (5) in OK is

(5) = (5,−1 +
√
−6)(5, 1 +

√
−6).

Exercise: what about (7)?

Proof of Theorem 4. Step 1. First, we show that sending x to θ induces an isomorphism

φ : Z[x]/(f)
∼−→ Z[θ].

To see this consider the mapping of rings φ : Z[x]→ Z[θ] determined φ(x) = θ. It is clearly
surjective, and since f(θ) = 0, we have f ∈ ker(φ). Hence, φ is well-defined. Suppose
that g ∈ kerφ, i.e., g(θ) = 0. Since f is the minimal polynomial of θ, we have g = fh for
some h ∈ Q[x]. It is easy to check that since f is monic, we must have h ∈ Z[x] (or one
may use Gauss’s lemma and the fact that f is monic). Hence, g = 0 ∈ Z[x]/(f).

Step 2. For each i, we have a natural sequence of surjections

Z[x]→ Fp[x]→ Fp[x]/(fi) = Z[x]/(p, fi)

Since fi|f , we see f is in the kernel. So we get a surjection

φi : Z[θ] ' Z[x]/(f)→ Z[x]/(p, fi).

where
φi(g(θ)) = g(x) ∈ Z[x]/(p, fi)

for all g ∈ Z[x].

Step 3. We claim (p, fi(θ)) is a prime ideal in Z[θ]. We have the isomorphism

Z[θ]/ ker(φi)
∼−→ Fp[x]/(fi).

Since Fp = Z/pZ is a field, Fp[x] is a PID. Then, since fi is irreducible, (fi) is a maximal
ideal (if (fi) ⊂ (g), then f = gh for some h. So either g is a unit and (g) = Fp[x] or h is
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a unit and (f) = (g). Therefore, Fp[x]/(fi) is a field, which implies ker(φi) is a maximal,
hence, prime ideal. So to show (p, fi(θ)) is prime, it suffices to show that

ker(φi) = (p, fi(θ)).

It is clear that (p, fi(θ)) ⊆ ker(φi). For the opposite inclusion, let g(θ) ∈ ker(φi). Then
g(x) = p`(x) + h(x)fi(x). Then,

g(θ) = p`(θ) + h(θ)fi(θ) ∈ (p, fi(θ)).

Step 4. We claim that if i 6= j, then (p, fi(θ)) 6= (p, fj(θ)). To see this, suppose that these
ideals are equal. Then,

(p, fi(θ)) = (p, fj(θ))⇒ fj(θ) ∈ (p, fi(θ)) ∈ ker(φi)⇒ φi(fj) = 0⇒ fj(x) ∈ (p, fi).

Therefore, fj = hfi mod p, i.e., fj = hfi in Fp[x]. However, fj is irreducible in Fp[x].
Hence, h is a unit, i.e., h ∈ {1, 2, . . . , p−1} in Fp. Since fi and fj are both monic, it follows
that fi = fj .

Step 5. We now show that

(p) =
k∏

i=1

(p, fi(θ))
ei .

We use the fact that for ideals in OK ,

(a + b)(a + c) ⊆ a + bc.

We have

k∏
i=1

(p, fi(θ))
ei =

k∏
i=1

((p) + (fi(θ)))
ei

⊆
k∏

i=1

((p) + (fi(θ)
ei))

⊆ (p) +

(
k∏

i=1

fi(θ)
ei

)
= (p) + (f(θ))

= (p).

since f(θ) = 0. Thus, (p) divides
∏k

i=1(p, fi(θ))
ei =

∏k
i=1 p

ei
i . It follows that

(p) =
k∏

i=1

p`ii
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for some 0 ≤ `i ≤ ei.
Take norms:

pn =

k∏
i=1

p`ii .

Now,
N(pi) = |Z[θ]/pi|

and
Z[θ]/pi = Z[θ]/ ker(φi) ' Fp[x]/(fi).

The elements of Fp[x]/(fi) are exactly a0+a1x+· · ·+adi−1xdi−1 where the ai are Fp = Z/pZ
and di = deg(fi). Therefore

|Fp[x]/(fi)| = pdeg(fi).

It follows that

pn =
k∏

i=1

N(pi)
`i =

k∏
i=1

pdeg(fi)`i = p
∑k

i=1 deg(fi)`i ,

and hence

n =
k∑

i=1

deg(fi)`i.

On the other hand, f =
∏k

i=1 f
ei
i implies

n = deg(f) =
k∑

i=1

deg(fi)ei.

Since 0 ≤ `i ≤ ei, we must have `i = ei for all i.

Remark 7. It would be nice to have criteria for deciding when a number field has a power
basis.
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