Math 361 lecture for Wednesday, Week 9

Generators for ideals in a number ring

Let K be a number field with ring of integers \mathfrak{O}_K . We have seen that every ideal in \mathfrak{O}_K may be uniquely factored into a product of prime ideals. Given nonzero ideals \mathfrak{a} and \mathfrak{b} of \mathfrak{O}_K , define their greatest common divisor to be the ideal \mathfrak{c} such that (1) $\mathfrak{c}|\mathfrak{a}$ and $\mathfrak{c}|\mathfrak{b}$ and (2) if \mathfrak{d} is any ideal dividing \mathfrak{a} and \mathfrak{b} , then $\mathfrak{d}|\mathfrak{c}$. Since division of ideals in \mathfrak{O}_K is the same as containment, the condition for \mathfrak{c} is that (1) $\mathfrak{c} \supseteq \mathfrak{a}$ and $\mathfrak{c} \supseteq \mathfrak{b}$ and (2) if $\mathfrak{d} \supseteq \mathfrak{a}$ and $\mathfrak{d} \supseteq \mathfrak{b}$, then $\mathfrak{d} \supseteq \mathfrak{c}$. Note that $\mathfrak{c} \supseteq \mathfrak{a}$ and $\mathfrak{c} \supseteq \mathfrak{b}$ if and only if

$$\mathfrak{c} \supseteq \mathfrak{a} + \mathfrak{b}$$

It follows that

$$gcd(\mathfrak{a},\mathfrak{b}) = \mathfrak{a} + \mathfrak{b}.$$

Similarly, we define the *least common multiple* to be ideal \mathfrak{c} such that \mathfrak{c} is the multiple of \mathfrak{a} and of \mathfrak{b} such that if \mathfrak{d} is any other common multiple, then \mathfrak{c} divides \mathfrak{d} . So $\mathfrak{c} \subseteq \mathfrak{a}$ and $\mathfrak{c} \subseteq \mathfrak{b}$ and if the same containments hold for \mathfrak{d} , then $\mathfrak{d} \subseteq \mathfrak{c}$. It follows that

$$\operatorname{lcm}(\mathfrak{a},\mathfrak{b})=\mathfrak{a}\cap\mathfrak{b}.$$

If we have factorizations into primes

$$\mathfrak{a} = \prod_{i=1}^k \mathfrak{p}_i^{e_i} \quad ext{and} \quad \mathfrak{b} = \prod_{i=1}^k \mathfrak{p}_i^{\ell_i},$$

(taking some $e_i = 0$ or $\ell_i = 0$, if necessary), then

$$\operatorname{gcd}(\mathfrak{a},\mathfrak{b}) = \prod_{i=1}^{k} \mathfrak{p}_{i}^{\min\{e_{i},\ell_{i}\}}$$
 and $\operatorname{lcm}(\mathfrak{a},\mathfrak{b}) = \prod_{i=1}^{k} \mathfrak{p}_{i}^{\max\{e_{i},\ell_{i}\}}.$

In particular, if \mathfrak{a} and \mathfrak{b} relatively prime, then $\mathfrak{a} + \mathfrak{b} = \gcd(\mathfrak{a}, \mathfrak{b}) = (1) = \mathfrak{O}_K$.

We know that not every number ring is a PID. However, our main result shows that \mathfrak{O}_K is not far from being a PID: every ideal can be generated by two elements.

Theorem 1. Let \mathfrak{a} be a nonzero ideal of \mathfrak{O}_K , and let $0 \neq \beta \in \mathfrak{a}$. Then there exists $\alpha \in \mathfrak{O}_K$ such that

$$\mathfrak{a} = (\alpha, \beta).$$

To prove this theorem, we use the following:

Lemma 2. If \mathfrak{a} and \mathfrak{b} are nonzero ideals of \mathfrak{O}_K , then there exists $\alpha \in \mathfrak{a}$ such that

$$\alpha \mathfrak{a}^{-1} + \mathfrak{b} = \mathfrak{O}_K.$$

Proof. (We are following the proof of Lemma 5.19 in the text.) First note that if $\alpha \in \mathfrak{a}$, then we can multiply $(\alpha) \subseteq \mathfrak{a}$ through by \mathfrak{a}^{-1} to get $\alpha \mathfrak{a}^{-1} \subseteq \mathfrak{O}_K$. Hence, $\alpha \mathfrak{a}^{-1}$ will be an ideal not just a fractional ideal.

Suppose that $\mathfrak{b} = \prod_{i=1}^{k} \mathfrak{p}_{i}^{e_{i}}$ is the factorization of \mathfrak{b} into prime ideals, and suppose that we can find $\alpha \in \mathfrak{a}$ such that $\alpha \mathfrak{a}^{-1}$ is relatively prime to \mathfrak{p}_{i} for $i = 1, \ldots, k$. Then $\alpha \mathfrak{a}^{-1}$ will be relatively prime to \mathfrak{b} , and the result will follow: $\alpha \mathfrak{a}^{-1} + \mathfrak{b} = \mathfrak{O}_{K}$.

Now

$$\mathfrak{p}_i|(\alpha\mathfrak{a}^{-1}) \Leftrightarrow \alpha\mathfrak{a}^{-1} \subseteq \mathfrak{p}_i \Leftrightarrow (\alpha) \subseteq \mathfrak{a}\mathfrak{p}_i \Leftrightarrow \alpha \in \mathfrak{a}\mathfrak{p}_i$$

So it suffices to find $\alpha \in \mathfrak{a}$ such that $\alpha \in \mathfrak{a} \setminus \mathfrak{ap}_i$ for all *i*. If k = 1, there is no problem. So suppose that k > 1.

For each $i = 1, \ldots, k$, define

$$\mathfrak{a}_i = \mathfrak{a}\mathfrak{p}_1\cdots \widehat{\mathfrak{p}_i}\cdots \mathfrak{p}_k$$

where the hat over \mathfrak{p}_i means to omit that factor. Since $\mathfrak{p}_i \subsetneq \mathfrak{O}_K$ it follows that $\mathfrak{a}_i \mathfrak{p}_i \subsetneq \mathfrak{a}_i$. Let $\alpha_i \in \mathfrak{a}_i \setminus (\mathfrak{a}_i \mathfrak{p}_i)$. Then define

$$\alpha = \alpha_1 + \dots + \alpha_k.$$

Since $\alpha_i = \mathfrak{a}_i \subseteq \mathfrak{a}$ for all *i*, it follows that $\alpha \in \mathfrak{a}$.

It remains to be shown that for each i, we have $\alpha \notin \mathfrak{ap}_i$. For sake of contradiction, suppose that $\alpha \in \mathfrak{ap}_i$ for some i. For each $j \neq i$, from the definition of \mathfrak{a}_j , it follows that \mathfrak{ap}_i divides \mathfrak{a}_j . Hence,

$$\alpha_j \in \mathfrak{a}_j \subseteq \mathfrak{ap}_i.$$

It follows that

$$\alpha_i = \alpha - \alpha_1 - \dots - \widehat{\alpha_i} - \dots - \alpha_k \in \mathfrak{ap}_i.$$

Therefore, we have $\mathfrak{a}_i|(\alpha_i)$ and $(\mathfrak{ap}_i)|(\alpha_i)$. So $\operatorname{lcm}(\mathfrak{a}_i,\mathfrak{ap}_i)|(\alpha_i)$. However,

 $\operatorname{lcm}(\mathfrak{a}_i,\mathfrak{a}\mathfrak{p}_i) = \operatorname{lcm}(\mathfrak{a}\mathfrak{p}_1\cdots\widehat{\mathfrak{p}_i}\cdots\mathfrak{p}_k,\mathfrak{a}\mathfrak{p}_i) = \mathfrak{a}\operatorname{lcm}(\mathfrak{p}_1\cdots\widehat{\mathfrak{p}_i}\cdots\mathfrak{p}_k,\mathfrak{p}_i) = \mathfrak{a}\mathfrak{p}_1\cdots\mathfrak{p}_i\cdots\mathfrak{p}_k = \mathfrak{a}_i\mathfrak{p}_i.$

So $(\mathfrak{a}_i\mathfrak{p}_i)|(\alpha_i)$, from which we get the contradiction $\alpha_i \in \mathfrak{a}_i\mathfrak{p}_i$.

Proof of Theorem 1. Define $\mathfrak{b} = \beta \mathfrak{a}^{-1}$. By Lemma 2, there exists $\alpha \in \mathfrak{a}$ such that

$$\alpha \mathfrak{a}^{-1} + \beta \mathfrak{a}^{-1} = \mathfrak{O}_K.$$

Multiplying through by \mathfrak{a} , we get

$$(\alpha, \beta) = (\alpha) + (\beta) = \mathfrak{a}.$$

Factorization of rational integers in number rings. Give $a \in \mathbb{Z}$, how does the principal ideal $a\mathfrak{O}_K = (a) \subseteq \mathfrak{O}_K$ factor into primes? By factoring a into primes in \mathbb{Z} , we see that it suffices determine, for each rational prime p, how the principal ideal $p\mathfrak{O}_K = (p)$ factors in \mathfrak{O}_K .

Definition 3. Let \mathfrak{p} be a prime ideal of \mathfrak{O}_K . Last time, we saw that there exists a unique rational prime p such that $N(\mathfrak{p}) = p^f$ where $1 \leq f \leq n$. The integer f is called the *inertial degree* of \mathfrak{p} .

Theorem 4. (The e_i - f_i theorem.) Let p be a rational prime, and say $(p) = \prod_{i=1}^k \mathfrak{p}_i^{e_i}$ is the prime factorization of the ideal (p) in \mathfrak{O}_K . Then

$$\sum_{i=1}^{k} e_i f_i = n.$$

were f_i is the inertial degree of \mathfrak{p}_i for each i and $n = [K : \mathbb{Q}]$.

Proof. For each \mathfrak{p}_i , we know $N(\mathfrak{p}_i) = p_i^{f_i}$ for some rational prime p_i . We have seen that the norm of an ideal is element of the ideal. Hence, $p_i^{f_i} \in \mathfrak{p}_i$. Since \mathfrak{p}_i is prime, we have $p_i \in \mathfrak{p}_i$. However, we also know that $p \in \mathfrak{p}_i$. So $p_i = p$. (If p_i and p were distinct primes both in \mathfrak{p}_i , then we get that $1 \in \mathfrak{p}_i$. However, then $\mathfrak{p}_i = \mathfrak{O}_K$, contradicting the fact that \mathfrak{p}_i is prime.) Take norms

$$p^{n} = N((p)) = \prod_{i=1}^{k} N(\mathfrak{p}_{i})^{e_{i}} = \prod_{i=1}^{k} p^{f_{i}e_{i}} = p^{\sum_{i=1}^{k} e_{i}f_{i}}.$$

The result follows from equating exponents.

The next result allows us to factor rational integers in number fields with a *power basis*, i.e., whose ring of integers has the form $\mathbb{Z}[\theta]$ for some algebraic integer θ .

Theorem 5. Let $K = \mathbb{Q}(\theta)$ be a number field of degree n such that $\mathfrak{O}_K = \mathbb{Z}[\theta]$. Suppose that p is a rational prime, and let f be the minimal polynomial for θ over \mathbb{Q} . Let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, the field with p elements. If $g \in \mathbb{Z}[x]$, we let \overline{g} denote the image of g in $\mathbb{F}_p[x]$ under the quotient mapping $\mathbb{Z}[x] \to \mathbb{Z}[x]/(p) = \mathbb{F}_p[x]$.

Suppose that

$$\overline{f} = \prod_{i=1}^{k} \overline{f}_{i}^{e_{i}}$$

is the factorization of f as an element of $\mathbb{F}_p[x]$ into monic irreducibles \overline{f}_i . Let $\mathfrak{p}_i = (p, f_i(\theta))$ for $i = 1, \ldots, k$. Then each \mathfrak{p}_i is prime and

$$(p) = \prod_{i=1}^{k} \mathfrak{p}_i^{e_i} = \prod_{i=1}^{k} (p, f_i(\theta))^{e_i}$$

is the prime factorization of (p) in \mathfrak{O}_K .

Example 6. Let $K = \mathbb{Q}(\sqrt{-6})$. Since $-6 \neq 1 \mod 4$, we know that $\mathfrak{O}_K = \mathbb{Z}[\sqrt{-6}] = \operatorname{Span}_{\mathbb{Z}}\{1, \sqrt{-6}\}$. One of the homework problems gives a method for factoring the principal ideal (6) in \mathfrak{O}_K . Alternatively, we may use Theorem 4.

The minimal polynomial for $\sqrt{-6}$ over \mathbb{Q} is $f = x^2 + 6$. Modulo 2, we have $f = x^2 \mod 2$. Hence, $(2) = (2, \sqrt{-6})^2 \subset \mathfrak{O}_K$. Similarly, $(3) = (3, \sqrt{-6}) \subset \mathfrak{O}_K$. So the factorization of (2) into primes in \mathfrak{O}_K is

$$(2) = (2, \sqrt{-6})^2 (3, \sqrt{-6})^2.$$

On the other hand, we have

$$f = x^{2} + 1 = (x - 1)(x + 1) \mod 5.$$

Hence, the prime factorization of (5) in \mathfrak{O}_K is

$$(5) = (5, -1 + \sqrt{-6})(5, 1 + \sqrt{-6}).$$

Exercise: what about (7)?

Proof of Theorem 4. Step 1. First, we show that sending x to θ induces an isomorphism

$$\overline{\phi} \colon \mathbb{Z}[x]/(f) \xrightarrow{\sim} \mathbb{Z}[\theta].$$

To see this consider the mapping of rings $\phi \colon \mathbb{Z}[x] \to \mathbb{Z}[\theta]$ determined $\phi(x) = \theta$. It is clearly surjective, and since $f(\theta) = 0$, we have $f \in \ker(\phi)$. Hence, $\overline{\phi}$ is well-defined. Suppose that $g \in \ker \overline{\phi}$, i.e., $g(\theta) = 0$. Since f is the minimal polynomial of θ , we have g = fh for some $h \in \mathbb{Q}[x]$. It is easy to check that since f is monic, we must have $h \in \mathbb{Z}[x]$ (or one may use Gauss's lemma and the fact that f is monic). Hence, $g = 0 \in \mathbb{Z}[x]/(f)$.

Step 2. For each i, we have a natural sequence of surjections

$$\mathbb{Z}[x] \to \mathbb{F}_p[x] \to \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i)$$

Since $f_i|f$, we see f is in the kernel. So we get a surjection

$$\phi_i \colon \mathbb{Z}[\theta] \simeq \mathbb{Z}[x]/(f) \to \mathbb{Z}[x]/(p, f_i).$$

where

$$\phi_i(g(\theta)) = \overline{g(x)} \in \mathbb{Z}[x]/(p, f_i)$$

for all $g \in \mathbb{Z}[x]$.

Step 3. We claim $(p, f_i(\theta))$ is a prime ideal in $\mathbb{Z}[\theta]$. We have the isomorphism

$$\mathbb{Z}[\theta]/\ker(\phi_i) \xrightarrow{\sim} \mathbb{F}_p[x]/(f_i).$$

Since $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ is a field, $\mathbb{F}_p[x]$ is a PID. Then, since f_i is irreducible, (f_i) is a maximal ideal (if $(f_i) \subset (g)$, then f = gh for some h. So either g is a unit and $(g) = \mathbb{F}_p[x]$ or h is

a unit and (f) = (g). Therefore, $\mathbb{F}_p[x]/(f_i)$ is a field, which implies ker (ϕ_i) is a maximal, hence, prime ideal. So to show $(p, f_i(\theta))$ is prime, it suffices to show that

$$\ker(\phi_i) = (p, f_i(\theta)).$$

It is clear that $(p, f_i(\theta)) \subseteq \ker(\phi_i)$. For the opposite inclusion, let $g(\theta) \in \ker(\phi_i)$. Then $g(x) = p\ell(x) + h(x)f_i(x)$. Then,

$$g(\theta) = p\ell(\theta) + h(\theta)f_i(\theta) \in (p, f_i(\theta)).$$

Step 4. We claim that if $i \neq j$, then $(p, f_i(\theta)) \neq (p, f_j(\theta))$. To see this, suppose that these ideals are equal. Then,

$$(p, f_i(\theta)) = (p, f_j(\theta)) \Rightarrow f_j(\theta) \in (p, f_i(\theta)) \in \ker(\phi_i) \Rightarrow \phi_i(f_j) = 0 \Rightarrow f_j(x) \in (p, f_i).$$

Therefore, $f_j = hf_i \mod p$, i.e., $f_j = hf_i \mod \mathbb{F}_p[x]$. However, f_j is irreducible in $\mathbb{F}_p[x]$. Hence, h is a unit, i.e., $h \in \{1, 2, \ldots, p-1\}$ in \mathbb{F}_p . Since f_i and f_j are both monic, it follows that $f_i = f_j$.

Step 5. We now show that

$$(p) = \prod_{i=1}^{k} (p, f_i(\theta))^{e_i}$$

We use the fact that for ideals in \mathfrak{O}_K ,

$$(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} + \mathfrak{c}) \subseteq \mathfrak{a} + \mathfrak{b}\mathfrak{c}.$$

We have

$$\prod_{i=1}^{k} (p, f_i(\theta))^{e_i} = \prod_{i=1}^{k} ((p) + (f_i(\theta)))^{e_i}$$
$$\subseteq \prod_{i=1}^{k} ((p) + (f_i(\theta)^{e_i}))$$
$$\subseteq (p) + \left(\prod_{i=1}^{k} f_i(\theta)^{e_i}\right)$$
$$= (p) + (f(\theta))$$
$$= (p).$$

since $f(\theta) = 0$. Thus, (p) divides $\prod_{i=1}^{k} (p, f_i(\theta))^{e_i} = \prod_{i=1}^{k} \mathfrak{p}_i^{e_i}$. It follows that

$$(p) = \prod_{i=1}^k \mathfrak{p}_i^{\ell_i}$$

for some $0 \leq \ell_i \leq e_i$.

Take norms:

$$\mathfrak{p}^n = \prod_{i=1}^k \mathfrak{p}_i^{\ell_i}.$$

Now,

$$N(\mathfrak{p}_i) = |\mathbb{Z}[\theta]/\mathfrak{p}_i|$$

and

$$\mathbb{Z}[\theta]/\mathfrak{p}_i = \mathbb{Z}[\theta]/\ker(\phi_i) \simeq \mathbb{F}_p[x]/(f_i)$$

The elements of $\mathbb{F}_p[x]/(f_i)$ are exactly $a_0 + a_1x + \cdots + a_{d_i-1}x^{d_i-1}$ where the a_i are $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ and $d_i = \deg(f_i)$. Therefore

$$|\mathbb{F}_p[x]/(f_i)| = p^{\deg(f_i)}.$$

It follows that

$$p^{n} = \prod_{i=1}^{k} N(\mathfrak{p}_{i})^{\ell_{i}} = \prod_{i=1}^{k} p^{\deg(f_{i})\ell_{i}} = p^{\sum_{i=1}^{k} \deg(f_{i})\ell_{i}},$$

and hence

$$n = \sum_{i=1}^{k} \deg(f_i)\ell_i.$$

On the other hand, $f = \prod_{i=1}^k f_i^{e_i}$ implies

$$n = \deg(f) = \sum_{i=1}^{k} \deg(f_i)e_i.$$

Since $0 \le \ell_i \le e_i$, we must have $\ell_i = e_i$ for all i.

Remark 7. It would be nice to have criteria for deciding when a number field has a power basis.