Math 361 lecture for Wednesday, Week 9

Generators for ideals in a number ring

Let K be a number field with ring of integers O. We have seen that every ideal in O
may be uniquely factored into a product of prime ideals. Given nonzero ideals a and b of
O, define their greatest common divisor to be the ideal ¢ such that (1) c¢|a and ¢|b and
(2) if 0 is any ideal dividing a and b, then d|c. Since division of ideals in Ok is the same
as containment, the condition for ¢ is that (1) c D aand ¢ D b and (2) ifd D aand ? D b,
then 0 D ¢. Note that ¢ D a and ¢ D b if and only if

c2a+b.

It follows that
ged(a, b) = a+ b.

Similarly, we define the least common multiple to be ideal ¢ such that ¢ is the multiple of a
and of b such that if 0 is any other common multiple, then ¢ divides 9. Soc Caand ¢ C b
and if the same containments hold for 9, then 0 C ¢. It follows that

lem(a,b) =anb.

If we have factorizations into primes

k k
a:pr" and b:pri,
i=1 i=1

(taking some e; = 0 or ¢; = 0, if necessary), then

k k
ged(a, b) = Hp?m{ei’zi} and lem(a,b) = Hpinax{ei’m.
i=1 i=1

In particular, if a and b relatively prime, then a + b = ged(a, b) = (1) = Ok.

We know that not every number ring is a PID. However, our main result shows that O is
not far from being a PID: every ideal can be generated by two elements.

Theorem 1. Let a be a nonzero ideal of O, and let 0 # 3 € a. Then there exists a € Ok
such that

a=(a,f).
To prove this theorem, we use the following:
Lemma 2. If a and b are nonzero ideals of O, then there exists o € a such that

aa” ! +b=9g.



Proof. (We are following the proof of Lemma 5.19 in the text.) First note that if o € a,
then we can multiply (o) C a through by a=! to get aa™! C Of. Hence, aa~! will be an
ideal not just a fractional ideal.

Suppose that b = Hle p;* is the factorization of b into prime ideals, and suppose that we
can find o € a such that aa™! is relatively prime to p; for i = 1,..., k. Then ca™! will be
relatively prime to b, and the result will follow: aa™ 4+ b = Og.

Now
pil(aa™) & aa™! Cp; e () Cap; < o € ap;.
So it suffices to find o € a such that « € a\ ap; for all 4. If £ = 1, there is no problem. So
suppose that k£ > 1.
For each i = 1,...,k, define

where the hat over p; means to omit that factor. Since p; C O it follows that a;p; C a;.
Let a; € a; \ (a;p;). Then define

a=aqa1+ -+ ag.

Since a; = a; C a for all 7, it follows that o € a.

It remains to be shown that for each ¢, we have « & ap;. For sake of contradiction, suppose
that o € ap; for some 7. For each j # ¢, from the definition of a;, it follows that ap;
divides a;. Hence,

a; € a; C ap;.

It follows that
ai:a—al—‘--—&i—---—akEapi.
Therefore, we have a;|(a;) and (ap;)|(a;). So lem(a;, ap;)|(c;). However,
lem(a, ap;) = lem(apy -~ p; - - g, ap;) = alem(py - pi - Pr, Pi) = apr---pi - Pr = ap;.
So (a;p;)|(a;), from which we get the contradiciton a; € a;p;. O
Proof of Theorem 1. Define b = fa~!. By Lemma 2, there exists o € a such that
aa ' 4+ a7t = O.

Multiplying through by a, we get



Factorization of rational integers in number rings. Give a € Z, how does the principal
ideal aOx = (a) C Ok factor into primes? By factoring a into primes in Z, we see that
it suffices determine, for each rational prime p, how the principal ideal pOx = (p) factors
in Ok.

Definition 3. Let p be a prime ideal of Ok. Last time, we saw that there exists a unique

rational prime p such that N(p) = p/ where 1 < f < n. The integer f is called the inertial
degree of p.

Theorem 4. (The ¢;-f; theorem.) Let p be a rational prime, and say (p) = Hle ps* is the
prime factorization of the ideal (p) in O . Then

k
Z eifi = n.

=1

were f; is the inertial degree of p; for each i and n = [K : Q).

Proof. For each p;, we know N (p;) = plf ‘ for some rational prime p;. We have seen that the
norm of an ideal is element of the ideal. Hence, p;* € p;. Since p; is prime, we have p; € p;.
However, we also know that p € p;. So p; = p. (If p; and p were distinct primes both in p;,
then we get that 1 € p;. However, then p; = O, contradicting the fact that p; is prime.)
Take norms

k k
pn = N((p)) = HN(pz)el = przez = pZi:l ezfv..
i=1 i=1
The result follows from equating exponents. B

The next result allows us to factor rational integers in number fields with a power basis,
i.e., whose ring of integers has the form Z[f] for some algebraic integer 6.

Theorem 5. Let K = Q(#) be a number field of degree n such that O = Z[f]. Suppose
that p is a rational prime, and let f be the minimal polynomial for § over Q. Let F), = Z/pZ,
the field with p elements. If g € Z[z], we let g denote the image of g in Fj[z] under the
quotient mapping Z[z| — Z[z]/(p) = Fp[z].

Suppose that

k
r=1I7
i=1

is the factorization of f as an element of Fp[x] into monic irreducibles f;. Let p; = (p, fi(6))
fori=1,...,k. Then each p; is prime and

k

k
(n) = [Tvi = T1w. fi(0))
i=1

i=1

is the prime factorization of (p) in Og.



Example 6. Let K = Q(1/—6). Since —6 # 1 mod 4, we know that Ox = Z[\/—6] =
Spany{1,4/—6}. One of the homework problems gives a method for factoring the principal
ideal (6) in O k. Alternatively, we may use Theorem 4.

The minimal polynomial for v/—6 over Q is f = 2 + 6. Modulo 2, we have f = z? mod 2.
Hence, (2) = (2,v/—6)? C Ok. Similarly, (3) = (3,v/—6) C Ok. So the factorization of (2)

into primes in Ok is
(2) = (2,V=6)*(3,V=6)".
On the other hand, we have
f=2>+1=(z—1)(z+1) mod5.
Hence, the prime factorization of (5) in O is
(5) = (5, —1+v/—6)(5,1 + V—6).
Exercise: what about (7)7

Proof of Theorem 4. Step 1. First, we show that sending = to # induces an isomorphism

o Zlz)/(f) = Z[0).

To see this consider the mapping of rings ¢: Z[x] — Z[f] determined ¢(z) = 0. It is clearly
surjective, and since f() = 0, we have f € ker(¢). Hence, ¢ is well-defined. Suppose
that g € ker ¢, i.e., g(#) = 0. Since f is the minimal polynomial of #, we have g = fh for
some h € Q[z]. It is easy to check that since f is monic, we must have h € Z[x] (or one
may use Gauss’s lemma and the fact that f is monic). Hence, g = 0 € Z[z]/(f).

Step 2. For each 7, we have a natural sequence of surjections
Zlx] — Fplz] = Fplz]/(fi) = Z[z]/(p, i)
Since f;|f, we see f is in the kernel. So we get a surjection
¢i: Z10] = Zlz]/(f) — Z[x]/(p, fi)-

where
¢i(g(0)) = g(x) € Z[z]/(p, f:)
for all g € Zlx].
Step 3. We claim (p, fi(6)) is a prime ideal in Z[f]. We have the isomorphism

Z10)/ ker(¢i) — Fpla]/(fi).

Since F), = Z/pZ is a field, Fp[z] is a PID. Then, since f; is irreducible, (f;) is a maximal
ideal (if (f;) C (g), then f = gh for some h. So either g is a unit and (g) = Fp[z] or h is



a unit and (f) = (g). Therefore, Fp[z]|/(f;) is a field, which implies ker(¢;) is a maximal,
hence, prime ideal. So to show (p, f;(6)) is prime, it suffices to show that

ker(¢;) = (p, fi(0)).

It is clear that (p, f;(6)) C ker(¢;). For the opposite inclusion, let g(0) € ker(¢;). Then
g(z) = pl(x) + h(x)fi(x). Then,

9(0) = pt(0) + h(0)fi(0) € (p, i(9))-

Step 4. We claim that if i # j, then (p, fi(#)) # (p, f;(#)). To see this, suppose that these
ideals are equal. Then,

(p, fi(0)) = (p, £3(0)) = f;(0) € (p, fi(0)) € ker(ds) = ¢i(fj) = 0= fi(x) € (p, f3)-

Therefore, f; = hf;mod p, ie., fj = hf; in Fy[z]. However, f; is irreducible in Fp[z].
Hence, h is a unit, i.e., h € {1,2,...,p—1} in F),. Since f; and f; are both monic, it follows
that fz = fj'

Step 5. We now show that
k

®) = [J 0. £:0)"

i=1
We use the fact that for ideals in O,
(a4 b)(a+c¢) C a+ be.

We have

since f(#) = 0. Thus, (p) divides [[%_, (p, £i(8)) = [T, p'. Tt follows that



for some 0 < ¢; < e;.

Take norms:

k
p=]]n
i=1
Now,
N(pi) = |Z[6]/p:]
and

Z[6]/pi = 210)/ ker(¢) =~ Fpla]/(fi)-

The elements of F,[z]/(fi) are exactly ag+ajz+- - -+ag,_12% ! where the a; are F, = Z/pZ
and d; = deg(f;). Therefore

[Fpla]/(fi)] = plealfo).

It follows that
k k

) e Y k e NP
pn — H N(pz)gl — de g(fz)fz — p21=1 d g(fl)ZZ’
=1 =1

and hence

k
n=deg(fi)ti.
i=1
On the other hand, f = Hle f{" implies
k
n =deg(f) =) _ deg(fie:.
i=1

Since 0 < ¥¢; < e;, we must have ¢; = ¢; for all 4. O

Remark 7. It would be nice to have criteria for deciding when a number field has a power
basis.



