Math 361 lecture for Monday, Week 9

The norm of an ideal

Let K be a number field, and let D g be its ring of integers. Recall the proof that if a is a
nonzero ideal of Oy, then Ok /a is finite. Pick 0 # a € a. Then we saw that N(a) € a,
and hence the usual quotient map Ox — Ok /a induces a surjection

Ok /(N(a)) = Ok /.

We then appeal to the structure theorem of finite abelian groups and use the fact that no
element of Ok /(N(a)) has infinite order to conclude that O /(N («)) is a finite product
of finite cyclic groups, hence, finite. The surjection above then implies that O/« is also
finite.

Definition 1. Let a be a nonzero ideal of Og. Then the norm of a is
N(a) = |Ok/a|.

Example 2. Let K = Q(v/—14), and consider the ideal a = (6,1 + v/—14) C Ok.
Since —14 # 1 mod 4, each element of Ok has the form a + by/—14 for some a,b € Z.
Working modulo a, we have

a+bv—14 = (a+bvV—-14) — b(1 + V—14l) = (a — b) mod a. (1)

Since 6 € a, one might be tempted to jump to the conclusion that O /a is isomorphic
to Z/6Z. However, that reasoning assumes that 0,1,2,3,4,5 are distinct modulo a. The
above reasoning actually says that we get a well-defined surjection

Z)67 — Ok /a

T — .

It is well-defined since 6 € a, and it is surjective by equation (1). The kernel of this mapping
is one of the following: (0), (1), (2), or (3), since these are the only ideals of Z/6Z. If the
kernel is (0), the mapping is an isomorphism. Otherwise, we will have 1,2 or 3 in a. So our
problem is solved by finding the smallest positive integer in a.

An arbitrary element of a has the form
a=(a+bv/—-14)6 + (c + dv—14)(1 + vV—14) = (6a + ¢ — 14d) + (6b + c + d)v—14.
Then « is a rational integer if and only if d = —6b — c. In that case,

a=6a+c—14d = 6a + ¢ — 14(—6b — ¢) = 6a + 84b + 15¢ = 3(2a + 28b + 5¢).



The possible values for 2a + 28b + 5¢ are the elements in the ideal (2,28,5) = (1) = Z. So
the smallest positive integer in a is 3. We can get this by letting a = —2,0 = 0,c¢ =1, and
d=—6b—c=—1:

(—2)6 + (1 — V=14)(1 +/—14) = —12 + 1 4 14 = 3.

Therefore,
Z/3Z ~ Ok /a,
and
N(a) =|Ok/a| = 3.
Proposition 3. Let a be a nonzero ideal of Dk and pick a Z-module basis {a1,...,a,}
for a.! Then "
A[Oél, e ,Ozn]
N()=|l————"—
@ = |2

where A is the discriminant of K (i.e., the discriminant of any Z-basis for D).

Proof. Let {w1,...,w,} be a Z-basis for Og. Each «; is a Z-linear combination of the w;s.
Hence, there is an integer matrix C' such that

(ala"'7an)t = C(wlv' . 'awn)t'
By the change of basis formula for the discriminant, we have

Alo, ..., an] = det(C)2Alwy, . . . ,w,] = det(C)?A.

On the other hand, we have the commutative diagram:

0 a s O » O /a —— 0
J/Z? J/ZZ ll?
0 y 7n —< o 7n cokC — 0,

and we have seen that | cok(C)| = | det(C')|. (Recall that by an integer change of coordinates,
i.e., by applying integer row and column operations to C, we can replace C' be a diagonal
matrix D. It is then easy to see that |det(C)| = |det(D)| = |cok(D)| = |cok(C)|.) It
follows that |det(C)| = |Og/a| = N(a).
We then have

Alayg, ..., a,] = det(C)2A = N(a)?A,

and the result follows by taking square roots. O

!We have seen that a if a free Z-module of rank n = [K : Q).



Corollary 4. Let 0 # a € Ok, and consider the principal ideal («)). Then
N((a)) = [N(a)]

where N («) is the norm we defined previously for elements of K.

Proof. Let {w1,...,w,} be a Z-basis for Ox. Then {awi,...,aw,} is a Z-basis for the
principal ideal («). Say o1,...,0, are the embeddings of K in C. By definition of the
discriminant,

n

n 2 n
Alawr, ..., awy,] = Hai(awj)2 = (H O'Z'(Oé)> (H Ji(wj)2> = N(a)?A.
i=1 i=1

i=1
The result now follows from Proposition 3. O

Example 5. Let d be a square-free integer not equal to 0 or 1. Let a,b € Z and consider
the principal ideal a = (a 4 bv/d) in Og(ya)- Then

’D@(\/g)/ﬂ‘ = N(a) = [N(a+bVd)| = |(a +bVd)(a — bVd)| = |a* — db?.

Just like the norm we defined for algebraic numbers, the norm for ideals is multiplicative:
Proposition 6. Let a and b be nonzero ideals of O . Then
N(ab) = N(a)N(b).

Proof. See Theorem 5.12 in our text. O
Proposition 7. Let a be a nonzero ideal of Og. Then

1. If @ € a, then N(a)|N(«).

2. N(a) =11if and only if a = (1) = Ok.

3. If N(a) is prime, a is prime.

4. N(a) € a.
5.

If a is prime, then a contains a unique rational prime p and N(a) = p™ for some
1<m<n:=[K:Q)].

Proof.

1. If a € a, then the principal ideal («) is contained in a. Therefore a|(a), i.e., there
exists an ideal b such that (o) = ab. Taking norms yiels

The result follows.



2. This part is immediate from the definition of the norm.

3. Factor a into primes:
k
a=]]w"
i=1

Taking norms:
k

N(a) =[] N(p). (2)

i=1
If p is prime, then p # O, and hence N(p) > 1. Therefore, N(a) is prime if and only
if a is prime.

4. Since N(a) = |Ok/a|, it follows that for any a € Ok, we have N(a)a =0 € Ok /a,
ie., N(a)a € a. Letting a = 1 gives the result.

5. Suppose that p is prime. Let N(a) = Hle p;" be the prime factorization of N(a).
Since N(a) € a, on the level of ideals, we have

and, hence,
al [ J(wo).
i=1

Since a is prime, there exists ¢ such that a|(p;), which means (p;) C a or, equiva-
lently, p; € a. If there exists an rational prime g # p; in a, we would have

L€ (pi,q) = (pi)) +(g9) Ca

However, since a is prime, it does not contain 1. So there exists a unique prime p =
p; € a. From the first part of this problem, we have N (a)|N(p). Since N(p) = p", the
result follows.

Proposition 8.
1. Let a be an ideal of Ok. Then there are only a finite number of ideals b such that
b|a, Equivalently, there are finitely many ideals b such that a C b.
2. If a € Z, there are finitely many ideals a of Dk containing a.

3. There are finitely many ideals with a given norm.



Proof.

1. This is an immediate consequence of prime factorization of ideals.

2. We have a € a if and only if a|(a). So this result follows from the previous applied to
the principal ideal (a).

3. Fix a € Z~p. If a is an ideal with N(a) = a, then from the previous proposition, we
have a € a. The result then follows from part 2.

Proposition 9. The number ring O is a UFD if and only if it is a PID.

Proof. We already know that a PID is a UFD and that O is a factorization domain, i.e.,
every element of 9 g has a factorization into irreducibles. Suppose that 9k is a UFD. Since
every ideal is a product of prime ideals, to show O is a PID, it suffices to show that every
prime ideal is principal.

Let p be a prime ideal of D . We have
p3N(p) =m-mp

where the m; are irreducibles in Of. Since p is prime and divides Hle(ﬂ), it follows
that p|(m;) for some i. Thus, (m;) C p. In a UFD, irreducibles are prime. Therefore, (m;) is
prime. Since O is Dedekind, nonzero primes are maximal. Therefore p = (71;). O

Proposition 10. Suppose that O is not a UFD, and let m € O be irreducible but not
prime. Let (7) = Hle p;’ be the prime factorization of (7). Then no p; is principal.

Proof. For the sake of contradiction, suppose p; = («) from some i and some « € O . Then
since p;|(7), it follows that (7) C p; = (). Hence, 1 = af from some € D . Since p is
prime, so is «. Since 7 is irreducible, S is a unit. Hence, 7 is prime—a contradiction. [



