
Math 361 lecture for Monday, Week 9

The norm of an ideal

Let K be a number field, and let OK be its ring of integers. Recall the proof that if a is a
nonzero ideal of OK , then OK/a is finite. Pick 0 6= α ∈ a. Then we saw that N(α) ∈ a,
and hence the usual quotient map OK → OK/a induces a surjection

OK/(N(α))→ OK/a.

We then appeal to the structure theorem of finite abelian groups and use the fact that no
element of OK/(N(α)) has infinite order to conclude that OK/(N(α)) is a finite product
of finite cyclic groups, hence, finite. The surjection above then implies that OK/α is also
finite.

Definition 1. Let a be a nonzero ideal of OK . Then the norm of a is

N(a) = |OK/a| .

Example 2. Let K = Q(
√
−14), and consider the ideal a = (6, 1 +

√
−14) ⊂ OK .

Since −14 6= 1 mod 4, each element of OK has the form a + b
√
−14 for some a, b ∈ Z.

Working modulo a, we have

a+ b
√
−14 = (a+ b

√
−14)− b(1 +

√
−14l) = (a− b) mod a. (1)

Since 6 ∈ a, one might be tempted to jump to the conclusion that OK/a is isomorphic
to Z/6Z. However, that reasoning assumes that 0, 1, 2, 3, 4, 5 are distinct modulo a. The
above reasoning actually says that we get a well-defined surjection

Z/6Z→ OK/a

x 7→ x.

It is well-defined since 6 ∈ a, and it is surjective by equation (1). The kernel of this mapping
is one of the following: (0), (1), (2), or (3), since these are the only ideals of Z/6Z. If the
kernel is (0), the mapping is an isomorphism. Otherwise, we will have 1, 2 or 3 in a. So our
problem is solved by finding the smallest positive integer in a.

An arbitrary element of a has the form

α = (a+ b
√
−14)6 + (c+ d

√
−14)(1 +

√
−14) = (6a+ c− 14d) + (6b+ c+ d)

√
−14.

Then α is a rational integer if and only if d = −6b− c. In that case,

α = 6a+ c− 14d = 6a+ c− 14(−6b− c) = 6a+ 84b+ 15c = 3(2a+ 28b+ 5c).
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The possible values for 2a+ 28b+ 5c are the elements in the ideal (2, 28, 5) = (1) = Z. So
the smallest positive integer in a is 3. We can get this by letting a = −2, b = 0, c = 1, and
d = −6b− c = −1:

(−2)6 + (1−
√
−14)(1 +

√
−14) = −12 + 1 + 14 = 3.

Therefore,
Z/3Z ' OK/a,

and
N(a) = |OK/a| = 3.

Proposition 3. Let a be a nonzero ideal of OK and pick a Z-module basis {α1, . . . , αn}
for a.1 Then

N(a) =

∣∣∣∣∆[α1, . . . , αn]

∆

∣∣∣∣1/2
where ∆ is the discriminant of K (i.e., the discriminant of any Z-basis for OK).

Proof. Let {ω1, . . . , ωn} be a Z-basis for OK . Each αi is a Z-linear combination of the ωis.
Hence, there is an integer matrix C such that

(α1, . . . , αn)t = C (ω1, . . . , ωn)t .

By the change of basis formula for the discriminant, we have

∆[α1, . . . , αn] = det(C)2∆[ω1, . . . , ωn] = det(C)2∆.

On the other hand, we have the commutative diagram:

0 a OK OK/a 0

0 Zn Zn cokC 0,

≈

≈ ≈

C

and we have seen that | cok(C)| = |det(C)|. (Recall that by an integer change of coordinates,
i.e., by applying integer row and column operations to C, we can replace C be a diagonal
matrix D. It is then easy to see that | det(C)| = | det(D)| = | cok(D)| = | cok(C)|.) It
follows that |det(C)| = |OK/a| = N(a).

We then have
∆[α1, . . . , αn] = det(C)2∆ = N(a)2∆,

and the result follows by taking square roots.

1We have seen that a if a free Z-module of rank n = [K :Q].
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Corollary 4. Let 0 6= α ∈ OK , and consider the principal ideal (α). Then

N((α)) = |N(α)|

where N(α) is the norm we defined previously for elements of K.

Proof. Let {ω1, . . . , ωn} be a Z-basis for OK . Then {αω1, . . . , αωn} is a Z-basis for the
principal ideal (α). Say σ1, . . . , σn are the embeddings of K in C. By definition of the
discriminant,

∆[αω1, . . . , αωn] =
n∏

i=1

σi(αωj)
2 =

(
n∏

i=1

σi(α)

)2( n∏
i=1

σi(ωj)
2

)
= N(α)2∆.

The result now follows from Proposition 3.

Example 5. Let d be a square-free integer not equal to 0 or 1. Let a, b ∈ Z and consider
the principal ideal a = (a+ b

√
d) in OQ(

√
d). Then∣∣∣OQ(

√
d)/a

∣∣∣ = N(a) = |N(a+ b
√
d)| = |(a+ b

√
d)(a− b

√
d)| = |a2 − db2|.

Just like the norm we defined for algebraic numbers, the norm for ideals is multiplicative:

Proposition 6. Let a and b be nonzero ideals of OK . Then

N(ab) = N(a)N(b).

Proof. See Theorem 5.12 in our text.

Proposition 7. Let a be a nonzero ideal of OK . Then

1. If α ∈ a, then N(a)|N(α).

2. N(a) = 1 if and only if a = (1) = OK .

3. If N(a) is prime, a is prime.

4. N(a) ∈ a.

5. If a is prime, then a contains a unique rational prime p and N(a) = pm for some
1 ≤ m ≤ n := [K : Q].

Proof.

1. If α ∈ a, then the principal ideal (α) is contained in a. Therefore a|(α), i.e., there
exists an ideal b such that (α) = ab. Taking norms yiels

N((α)) = |N(α)| = N(a)N(b).

The result follows.
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2. This part is immediate from the definition of the norm.

3. Factor a into primes:

a =
k∏

i=1

peii .

Taking norms:

N(a) =

k∏
i=1

N(pi)
ei . (2)

If p is prime, then p 6= OK , and hence N(p) > 1. Therefore, N(a) is prime if and only
if a is prime.

4. Since N(a) = |OK/a|, it follows that for any α ∈ OK , we have N(a)α = 0 ∈ OK/a,
i.e., N(a)α ∈ a. Letting α = 1 gives the result.

5. Suppose that p is prime. Let N(a) =
∏k

i=1 p
ei
i be the prime factorization of N(a).

Since N(a) ∈ a, on the level of ideals, we have

k∏
i=1

(pi)
ei ⊆ a,

and, hence,

a|
k∏

i=1

(pi)
ei .

Since a is prime, there exists i such that a|(pi), which means (pi) ⊆ a or, equiva-
lently, pi ∈ a. If there exists an rational prime q 6= pi in a, we would have

1 ∈ (pi, q) = (pi) + (q) ⊆ a

However, since a is prime, it does not contain 1. So there exists a unique prime p =
pi ∈ a. From the first part of this problem, we have N(a)|N(p). Since N(p) = pn, the
result follows.

Proposition 8.

1. Let a be an ideal of OK . Then there are only a finite number of ideals b such that
b|a, Equivalently, there are finitely many ideals b such that a ⊆ b.

2. If a ∈ Z, there are finitely many ideals a of OK containing a.

3. There are finitely many ideals with a given norm.
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Proof.

1. This is an immediate consequence of prime factorization of ideals.

2. We have a ∈ a if and only if a|(a). So this result follows from the previous applied to
the principal ideal (a).

3. Fix a ∈ Z>0. If a is an ideal with N(a) = a, then from the previous proposition, we
have a ∈ a. The result then follows from part 2.

Proposition 9. The number ring OK is a UFD if and only if it is a PID.

Proof. We already know that a PID is a UFD and that OK is a factorization domain, i.e.,
every element of OK has a factorization into irreducibles. Suppose that OK is a UFD. Since
every ideal is a product of prime ideals, to show OK is a PID, it suffices to show that every
prime ideal is principal.

Let p be a prime ideal of OK . We have

p 3 N(p) = π1 · · ·πk

where the πi are irreducibles in OK . Since p is prime and divides
∏k

i=1(π), it follows
that p|(πi) for some i. Thus, (πi) ⊆ p. In a UFD, irreducibles are prime. Therefore, (πi) is
prime. Since OK is Dedekind, nonzero primes are maximal. Therefore p = (πi).

Proposition 10. Suppose that OK is not a UFD, and let π ∈ OK be irreducible but not
prime. Let (π) =

∏k
i=1 p

ei
i be the prime factorization of (π). Then no pi is principal.

Proof. For the sake of contradiction, suppose pi = (α) from some i and some α ∈ OK . Then
since pi|(π), it follows that (π) ⊆ pi = (α). Hence, π = αβ from some β ∈ OK . Since p is
prime, so is α. Since π is irreducible, β is a unit. Hence, π is prime—a contradiction.
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