
Math 361 lecture for Wednesday, Week 8

Smith normal form

Motivation: Let a be a nonzero ideal in a number OK . It turns out that the structure
of the quotient ring OK/a is interesting and useful. Our goal is to reduced the problem of
determining its structure to finding a canonical form for an integer matrix using elementary
row and column operations.

We have seen that OK is a free Z-module of rank n, that is, there exist α1, . . . , αn ∈ OK

such that we get a Z-module isomorphism f : OK → Zn by sending αi → ei and extending
linearly, i.e.,

∑n
i=1 aiαi 7→ (a1, . . . , an). Since OK is Noetherian, a is also finitely generated.

By the structure theorem for finitely generated abelian groups (i.e., finitely generated Z-
modules), which we will prove next time, it will follow that there is an isomorphism g : a '
Zn. We then get a commutative diagram1 with exact rows:

0 a OK OK/a 0

0 Zn Zn Zn/ im(M) 0,

g

≈

f ≈

M

where M is an n×n matrix with integer entries. The vertical mapping on the right-hand side
is given by α 7→ f(α). Since the diagrams commute and the rows are exact, it turns out the
this mapping is a well-defined isomorphism. Using integer row an column operations, we will
see that we can replace M with a diagonal matrix from which the structure of Zn/ im(M)
will be apparent.

Diagonalization of integer matrices. LetM be anm×nmatrix with integer coefficients.
The matrix M determines a Z-linear mapping Zn → Zm via v 7→ Mv. The cokernel of M
(or its associated mapping) is the Z-module

cok(M) := Zm/ imM.

Recall that im(M) is the same as the column space of M . So the cokernel of M is the set
of integer vectors (a1, . . . , am) for which we add vectors as usual, but such that any vector
that is a column of M is thought of as the zero vector.

Example 1.

• Let M = [5], a 1× 1 matrix. Then cok(M) = Z/5Z.

1The diagram being commutative means that if there are two ways to get from one space in the diagram
to another by composing functions that appear in the diagram, then those two compositions of functions
are equal.
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• Let M = diag(2, 3), a 2× 2 diagonal matrix. Then

cok(M) = Z2/ Span

{(
2
0

)
,

(
0
3

)}
∼−→ Z/2Z⊕ Z/3Z

(a, b) 7→ (a mod 2, b mod 3).

Setting (2, 0) equal to (0, 0) in Z2, just means we can work modulo 2 in the first
coordinate. Similarly, we can work modulo 3 in the second coordinate.

• Let M = diag(0, 0, 1, 2, 3). Then

cok(M) ' Z/0Z⊕ Z0Z⊕ Z/1Z⊕ Z/2Z⊕ Z/3Z ∼−→ Z⊕ Z⊕ Z/2Z⊕ Z/3Z
(a, b, c, d, e) 7→ (a, b, d, e).

Here, we use the fact that Z/0Z = Z and Z/1Z = {0}. For instance, in cok(M),
the third coordinate is always equivalent to 0 modulo 1, hence, we can drop that
coordinate in our isomorphism.

Definition 2. The integer row (resp., column) operations on an integer matrix consist of
the following:

1. swapping two rows (resp., columns);

2. negating a row (resp., column);

3. adding one row (resp., column) to a different row (resp., column).

Claim. By performing integer row and column operations, the matrix M can be trans-
formed into a diagonal matrix D, i.e., Dij = 0 for i 6= j. To make the final form unique,
one may insist that the diagonal elements satisfy Di,i|Di+1,i+1 for all i. Start with the the
identity matrix Im and perform all of the same row operations on Im as used in the reduc-
tion of M to D to create a matrix P . Similarly, start with In and perform the same column
operations on it as used in the reduction of M to D to create a matrix Q. Then both P
and Q have inverses that are integer matrices (equivalently, det(P ) = ±1 and det(Q) = ±1),
and

PMQ = D.

Roughly, the algorithm for reducing M to a diagonal matrix goes like this: First, permute
rows, if necessary, to ensure that some nonzero entry is in the first row. Next, use column
operations to put the gcd of the elements in the first row into the 1, 1-position of the matrix.
Then use the first column to make the other entries in the first row equal to 0. Next, use row
operations to put the gcd of the first column into the 1, 1-position, Then use row operations
to make the other entries in the first column equal to 0. By this time, you may have put
nonzero entries in the first row again. Repeat. Eventually, every entry in the first row
and column besides the 1, 1-entry will be 0. The first row and column are now completely
processed. Proceed inductively, using rows and columns operations not involving rows and
columns not previously processed.

In terms of mappings, the above process yields the commutative diagram
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0 Zn Zm cok(M) 0

0 Zn Zm cok(D) 0,

M

Q−1

≈

P ≈

D

We have an isomorphism cok(M) 7→ cok(D) induced by P as follows: v 7→ Pv. Since D is
diagonal, we may easily write cok(D) as a product of cyclic groups of the form Z/niZ for
various integers ni. (Going back to our motivating goal, note how the above procedure will
allow us to identify OK/a as a product of cyclic groups.)

Example 3. We illustrate the procedure using the following matrix.

M =


2 −1 −1 0
−1 4 −1 −2
−1 −1 3 −1

0 −2 −1 3

 .

Perform integer row and column operations to diagonalize M :
2 −1 −1 0
−1 4 −1 −2
−1 −1 3 −1

0 −2 −1 3

 c1→c1+c2−−−−−−→


1 −1 −1 0
3 4 −1 −2
−2 −1 3 −1
−2 −2 −1 3



c2→c2+c1−−−−−−→
c3→c3+c1


1 0 0 0
3 7 2 −2
−2 −3 1 −1
−2 −4 −3 3



r2→r2−3r1−−−−−−−−−−−−−−→
r3→r3+2r1,r4→r4+2r1


1 0 0 0
0 7 2 −2
0 −3 1 −1
0 −4 −3 3



c2→c2−3c3−−−−−−−→


1 0 0 0
0 1 2 −2
0 −6 1 −1
0 5 −3 3



c3→c3−2c2−−−−−−−→
c4→c4+2c2


1 0 0 0
0 1 0 0
0 −6 13 −13
0 5 −13 13


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r3→r3+6r2−−−−−−−→
r4→r4−5r2


1 0 0 0
0 1 0 0
0 0 13 −13
0 0 −13 13



c4→c4+c3−−−−−−→


1 0 0 0
0 1 0 0
0 0 13 0
0 0 −13 0



r4→r4+r3−−−−−−→


1 0 0 0
0 1 0 0
0 0 13 0
0 0 0 0

 .

Apply the row operations above to I4 to get P and apply the column operations to I4 to
get Q: 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 r2→r2−3r1−−−−−−−−−−−−−−→
r3→r3+2r1,r4→r4+2r1


1 0 0 0
−3 1 0 0

2 0 1 0
2 0 0 1



r3→r3+6r2−−−−−−−→
r4→r4−5r2


1 0 0 0
−3 1 0 0
−16 6 1 0

17 −5 0 1



r4→r4+r3−−−−−−→


1 0 0 0
−3 1 0 0
−16 6 1 0

1 1 1 1

 = P.


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 c1→c1+c2−−−−−−→


1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1



c2→c2+c1−−−−−−→
c3→c3+c1


1 1 1 0
1 2 1 0
0 0 1 0
0 0 0 1



4



c2→c2−3c3−−−−−−−→


1 −2 1 0
1 −1 1 0
0 −3 1 0
0 0 0 1



c3→c3−2c2−−−−−−−→
c4→c4+2c2


1 −2 5 −4
1 −1 3 −2
0 −3 7 −6
0 0 0 1



c4→c4+c3−−−−−−→


1 −2 5 1
1 −1 3 1
0 −3 7 1
0 0 0 1

 = Q.

Therefore,

P =


1 0 0 0
−3 1 0 0
−16 6 1 0

1 1 1 1

 and Q =


1 −2 5 1
1 −1 3 1
0 −3 7 1
0 0 0 1

 .

We then have

PMQ =


1 0 0 0
−3 1 0 0
−16 6 1 0

1 1 1 1




2 −1 −1 0
−1 4 −1 −2
−1 −1 3 −1

0 −2 −1 3




1 −2 5 1
1 −1 3 1
0 −3 7 1
0 0 0 1



=


1 0 0 0
0 1 0 0
0 0 13 0
0 0 0 0

 =: D.

Therefore,

cok(M) ' cok(D) ' Z/1Z⊕ Z/1Z⊕ Z/13Z⊕ Z ' Z⊕ Z/13Z.

The explicit isomorphism cok(M)→ cok(D) given by the matrix P

cok(M) = Z4/ im(M)→ Z/1Z⊕ Z/1Z⊕ Z/13Z⊕ Z → Z/13Z⊕ Z

(a, b, c, d) 7→ P


a
b
c
d

 =


a

−3a+ b
−16a+ 6b+ c
a+ b+ c+ d

 7→ (−16a+ 6b+ c, a+ b+ c+ d).

Check that each column of M is sent to (0, 0) under this mapping, and thus the mapping
is well-defined.
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Smith normal form.

Definition 4. An m× n integer matrix M is in Smith normal form if

M = diag(s1, . . . , sk, 0, . . . , 0),

a diagonal matrix, where s1, . . . , sk are positive integers such that si|si+1 for all i. The si
are called the invariant factors of M .

Example 5. The matrix

M :=


1 0 0 0
0 2 0 0
0 0 12 0
0 0 0 0
0 0 0 0


is in Smith normal form with invariant factors s1 = 1, s2 = 2, and s3 = 12.

We have

cok(M) := Z5/ im(M) ' Z/1Z× Z/2Z× Z/12Z× Z2 ' Z/2Z× Z/12Z× Z2.

So cok(M) has rank r = 2 and its invariant factors are 2 and 12.

Note that 1 is an invariant factor of M but not of cok(M). By definition, the invariant
factors of a finitely generated abelian group are greater than 1; the invariant factors of M
equal to 1 do not affect the isomorphism class of cok(M) since Z1 is the trivial group.

An algorithm for computing the Smith normal form is presented below. For our purposes,
however, the diagonalization procedure given above is sufficient.

Computing the Smith normal form. The Smith normal form of an integer matrix
exists and it unique. (Uniqueness can be shown by relating the invariant factors to the
greatest common divisors of the i× i minors of the matrix for each i.) We show existence
here in the form of an algorithm. Let M be an m× n integer matrix.

Step 1. By permuting rows and columns we may assume that m11 is the smallest nonzero
entry in absolute value. By adding integer multiples of the first row to other rows or the first
column to other columns, attempt to make all entries in the first row and first column except
the (1, 1)-entry equal to 0. If during the process any nonzero entry in the matrix appears
with absolute value less than m11, permute rows and columns to bring that entry into the
(1, 1)-position. In this way, m11 remains the smallest nonzero entry. Since the succession of
values for m11 are nonzero and decreasing in magnitude, the process eventually terminates
with a matrix of the form
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
m11 0 0 · · · 0

0
0
...
0

M ′

where M ′ is an (m − 1) × (n − 1) integer matrix. Negating the first row, if necessary, we
take m11 > 0.

Step 2. If there is an entry of M ′ that is not divisible by m11, say mij , then add column j
to column 1 and go back to Step 1. Again, since the (1, 1)-entry is nonzero and decreases in
magnitude, this new process terminates. Therefore, we may assume that m11 divides every
entry of M ′.

Step 3. Apply Steps 1 and 2 to M ′, and thus, by recursion, we produce an equivalent
matrix in Smith normal form.
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