
Math 361 lecture for Wednesday, Week 7

Dedekind domains

Field of fractions of a domain. The rational numbers Q form a field that is just big
enough to contain the inverses of all nonzero integers. Here we review and generalize the
construction of the rationals from the integers. Let R be a domain. Define an equivalence
relation on R × R \ {0} by (a, b) ∼ (c, d) if ad = bc, and then let fraction a/b denote the
equivalence class of (a, b). Thus,

a

b
=
c

d
⇐⇒ ad = bc.

Define addition and multiplication as usual:

a

b
+
c

d
=
ad+ bc

bd
and

a

b
· c
d

=
ac

bd
.

The collection of these fractions along with these two operations give the field of fractions
of R, denoted Q(R). The field of fractions is also called the quotient field of R. (Exercise:
check that Q(R) is actually a field). We identify r ∈ R with r/1 ∈ Q(R).

Proposition 1. Let K be a number field, and let OK be its ring of integers. Then K is
the field of fractions of OK .

Proof. We have seen (in homework) that if α ∈ K then there exists a nonzero integer c ∈ Z
such that cα = β ∈ OK . Thus, α = β/c with β, c ∈ OK . Thus, every element of K is in
the field of fractions of OK . Conversely, since K is a field and contains OK , it contains the
field of fractions of OK .

Dedekind domains. We define a Dedekind domain below. The definition captures some
of the most consequential properties of a number ring. There are several equivalent formu-
lations of the definition, some of which we will get to later. (For instance: our definition is
equivalent to the property that every nonzero prime ideal in a domain factors into prime
ideals!)

Recall that an element α ∈ Q(R) is integral over R is there exists a monic polynomial
f ∈ R[x] such that f(α) = 0.

Definition 2. A domain R is integrally closed if the only elements of its field of fractions
Q(R) that are integral over R are the elements of R, itself.

Recall that we denote the ring of all complex numbers that are integral over Z by O, and
the ring of integers in a number field K by OK := K ∩ O. One of our goals today is to
show that OK is integrally closed.

Example 3. The quotient field of Z is Q, and we has seen that Z is integrally closed: the
elements of Q integral over Z are exactly the elements of Z.
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Definition 4. A Dedekind domain is an integrally closed Noetherian domain in which every
nonzero prime ideal is maximal.

Theorem 5. Let K be a number field, and let OK be its ring of integers. Then OK is a
Dedekind domain.

We give some preliminary results that will be used in proving the theorem.

From now on, we take K to be a number field with ring of integers OK .

Theorem 6. (Structure theorem for finitely-generated Z-modules.) Let M be a finitely
generated Z-module. Then there exists a nonnegative integer r and a list (possibly empty)
of integers n1, . . . , nk with ni > 1 for all i such that M is isomorphic as a Z-module to

Zr × Z/n1Z× · · · × Z/nkZ.

It is possible to take the ni so that ni|ni+1 for all i, in which case, the above representation
of M as a product of cyclic groups is unique.

Proof. We will give a constructive proof later in the course. (Probably.)

Proposition 7. Let R be a finite domain. Then R is a field.

Proof. Homework.

On last preliminary result:

Proposition 8. A prime ideal in a number ring contains the norm of each of its elements:
if p is a prime ideal in OK , and α ∈ p, then Z 3 N(α) ∈ p.

Proof. We have already seen that N(α) ∈ Z since the norm is a coefficient of the field
polynomial for α, which in turn is a power of the minimal polynomial for α.

If α = 0, the result is obvious. So assume that α 6= 0. Let σ1, . . . , σn be the embeddings
of K with σ1 = id, as usual. Then, define β by

N(α) =

n∏
i=1

σi(n) = α · σ2(α) · · ·σn(α)︸ ︷︷ ︸
β

.

Since N(α) ∈ Z ⊂ K and 0 6= α ∈ K, it follows that β = N(α)/α ∈ K. Let O denote the
set of all algebraic integers (in C). We have seen that each σi(α) is an algebraic integer
(apply σi to the minimal polynomial for α). Since O is a ring, and each σi ∈ O, it follows
that β ∈ O. So we have β ∈ K ∩O =: OK . Therefore, N(α) = αβ with α ∈ p and β ∈ OK .
It follows that N(α) ∈ p.

We now prove our main theorem:
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Proof of Theorem 5. We have seen that OK is a Noetherian Z-module since it is a finitely
generated Z-module and Z is Noetherian. If a ⊆ OK is an ideal, it follows that a is a finitely
generated Z-module. Any set of generators over Z will generate a as an ideal. Thus, OK

is a Noetherian ring (i.e., OK is Noetherian as an OK-module.) Alternatively, we could
use the Hilbert basis theorem: since OK is finitely generated as a Z-module, it is certainly
finitely generated as a ring over Z. Then, since Z is a Noetherian domain, so is OK .

Next, we would like to show that every nonzero prime ideal of OK is maximal. Let 0 6= p
ve a prime ideal. Take any nonzero α ∈ p. Let N denote the integer N(α) ∈ Z. We have
seen that N ∈ p. Consider the (surjective) quotient mapping

OK → OK/p

β 7→ β.

Since N ∈ p, it is in the kernel of the quotient mapping. Therefore, we get a well-defined
surjective mapping

OK/(N)→ OK/p (1)

β 7→ β.

where (N) is the principal ideal generated by N in OK . Now, OK/(N) is a finitely generated
Z-module (indeed, even OK , itself, is a finitely generated Z-module). Thus, we have an
isomorphism of Z-modules:

OK/(N) ' Zr × Z/n1Z× · · · × Z/nk.

for some r, n1, . . . , nk. If r 6= 0, then OK/(N) would have elements of infinite order. How-
ever, for each γ ∈ OK , we have

γ + · · ·+ γ︸ ︷︷ ︸
N times

= Nγ = 0 ∈ OK/(N).

So
OK/(N) ' Z/n1Z× · · · × Z/nk.

for some list of integers ni with ni > 1. This means that OK/(N) is finite. The surjec-
tion (1), then implies that OK/p is finite.

Since p is prime, OK/p is a domain. Since a finite domain is a field (from a proposition,
above), it follows that OK/p is a field. Hence, p is maximal, as we wanted to show.

It remains to show that OK is integrally closed. Take α ∈ K and suppose that α is
integral over OK . We must show that α is integral over Z, i.e., that α ∈ O. We then
have that α ∈ K ∩ O = OK . We do so by showing there exists a finitely generated Z-
module M ⊂ K such that αM ⊆M . (This was one of the equivalent conditions established
for integrality. You may remember that it involved multiplying each element of a generating
set by α and then evaluating a certain determinant.)
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Since α is integral over OK , there exists a monic polynomial f ∈ OK [x] such that f(α) = 0.
Say

f(x) = xk + bk−1x
k−1 + · · ·+ b1x+ b0

with bi ∈ OK for all i. Let B be the subring of OK generated bi over Z:

B = Z[b0, . . . , bk] := {g(b0, . . . , bk) : g ∈ Z[x0, . . . , xk]}.

The ring B is a Z-submodule of OK . Since OK is a Noetherian Z-module, it follows
that B is finitely generated as a Z-module. Since Z is Noetherian, it follows that B is a
Noetherian Z-module. Next consider the ring

B[α] := {g(α) : g ∈ B[x]}

Since
0 = f(α) = αk + bk−1α

k−2 + · · ·+ b1α+ b0,

it follows that B[α] is finitely generated as a B-module by {1, α, . . . , αk}.
We have Z ⊆ B ⊆ B[α] with B finitely generated as a Z-module and B[α] finitely generated
as a B-module. We have seen that this implies B[α] is finitely generated as a Z-module (by
the set of products of generators of B over Z with generators of B[α] over B).

So B[α] is a finitely generated Z-module, and it is clear that αB[α] ⊆ B[α]. Therefore, α is
integral over Z, completing the proof.
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