
Math 361 lecture for Wednesday, Week 6

Unique factorization

Let R be a ring. Recall that an element u ∈ R is a unit if it is invertible, i.e., there
exists w ∈ R such that uw = 1. An element r ∈ R is irreducible if it is nonzero, not a unit,
and whenever r = st for some s, t ∈ R, then one of s and t is a unit. An element p ∈ R
is prime if it is nonzero, not a unit, and whenever p|ab for some a, b ∈ R, then p|a or p|b.
During the first week, we did the easy check that if R is a domain (i.e., if there are no zero
divisors)

prime =⇒ irreducible.

We have also seen that in a PID, the converse holds. So in a PID, an element is prime if
and only if it is irreducible. A factorization of an element r ∈ R has a factorization into
irreducibles if there exists a unit u ∈ R and irreducibles p1, . . . , pk such that

r = up1 · · · pk

The factorization of r is unique if whenever

r = vq1 · · · q`

with v a unit and q1, . . . , q` irreducible, then k = ` and up to a permutation of the indices
pi = uiqi for some unit ui for all i. The ring R is a unique factorization domain (UFD) if
each nonzero element r ∈ R has a unique factorization into irreducibles.

A domain in which every nonzero element can be factored into irreducibles (but not neces-
sarily uniquely) is called a factorization domain. Last time we showed that every Noetherian
domain is a factorization domain.

Theorem 1. Let R be a factorization domain. Then is a UFD if and only if each irreducible
element in R is prime.

Proof. See Theorem 4.14 in our text.

Euclidean domains. A domain R is a Euclidean domain if there exists a function

d : R \ {0} → N

such that for all a, b ∈ R \ {0},

1. a|b implies d(a) ≤ d(b), and

2. there exist q, r ∈ R such that
a = qb+ r

with r = 0 or d(r) < d(b).
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Example 2. For example, Z is a Euclidean domain with the function d(n) = |n|, and if K
is a field, then K[x] is a Euclidean domain with function d(f) = deg(f).

Proposition 3. Every Euclidean domain is a PID.

Proof. Let R, d be a Euclidean domain, and let I ⊆ R be an ideal. If I = (0), there is
nothing to prove. So suppose I 6= (0). Among the nonzero elements of I choose one, a,
with minimal value d(a). We now show that I = (a).

Given b ∈ I we write
b = qa+ r

with either r = 0 or d(r) < d(a). Note that r = b−qa ∈ I. Therefore, by minimality of d(a),
it cannot be the case that d(r) < d(a). Therefore, r = 0 and b = qa. Hence, b ∈ (a).

Remark 4. To sum up, a Euclidean domain is a PID, therefore a UFD, and its prime
elements are the same as its irreducible elements.

Theorem 5. Let d ∈ Z<0 be a negative integer, and let K = Q(
√
d). Then OK is Euclidean

exactly when
d = −1,−2,−3,−7,−11.

In these cases, one may use the norm as the Euclidean function (d(α) := N(α) for all
α ∈ OK).

Proof. See Theorems 4.19 and 4.20 in our text.

Example 6. In homework, we say that Z[−5] is not a UFD (hence, not a Euclidean domain).
We showed that

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

where 2, 3, 1±
√
−5 are irreducible. There elements are all examples of irreducibles that are

not prime. For example, 2|(1+
√
−5)(1−

√
−5) but 2 divides neither 1+

√
−5 nor 1−

√
−5.

To see this, suppose 2|(1 +
√

5). Then there exists a+ b
√
−5 with a, b ∈ Z such that

1 +
√
−5 = 2(a+ b

√
−5).

However, in that case, 2a = 2b = 1, which is not possible.

Theorem 7. The ring of integers of Q(
√
d), for positive d, is Euclidean with respect to the

(absolute value of the) norm function if and only if

d = 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 55, 73.

However, for d > 0, it is possible for Q(
√
d) to be Euclidean but not Euclidean with respect

to the norm functions. For example, it was shown in 2000 that Z[14] is Euclidean. The full
list of d for which Q(

√
d) is Euclidean is not known. See some additional interesting history

on p. 94 of our text.

Here is an application of the above ideas.
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Theorem 8. The only integer solutions to

y2 + 4 = z3

are (y, z) = (±11, 5) and (y, z) = (±2, 2).

Proof. For the full proof, see Theorem 4.22 in our text, which divides the problem into two
cases: y odd, and y even. To get a flavor, we will consider that case in which y is odd.
Recall that Z[i] is a UFD and its units are ±1 and ±i. Factor our equation over Z[i]:

(2 + iy)(2− iy) = z3.

We first show that 2 + iy and 2 − iy share no prime factors in Z[i]. Suppose a, b ∈ Z and
that a+ bi is a prime in Z[i] dividing both 2 + iy and 2− iy. Then it divides their sum and
their difference. So 4 = (a + bi)γ and 2iy = (a + bi)µ for some γ, µ ∈ Z[i]. Taking norms,
we find that

16 = (a2 + b2)N(γ) and 4y2 = (a2 + b2)N(µ)

where N(γ), N(µ) ∈ Z. From the first equation, we see that a2 + b2 is a power of 2, and
then since y is odd, the second equation says that a2 + b2 ∈ {1, 2, 4}. We handle each of
these cases below.

The solutions to a2 + b2 = 1 are (a, b) = (±1, 0) and (a, b) = (0,±1). So in these cases,
a + bi ∈ {±1,±i}. Thus, in these cases, a + bi is a unit. That’s not possible since we
took a+ bi to be prime.

Next, the solutions to a2 + b2 = 2 are ±(1 + i) and ±(1− i). All of these solutions differ by
unit factors, ±1 or ±i. Thus, to show that none of them divide 2 + iy, it suffices to 1 + i
does not divide 2 + iy. Suppose there exists s, t ∈ Z such that

2 + iy = (1 + i)(s+ ti) = (s− t) + (s+ t)i.

Then s − t = 2 and s + t = y. Adding these equations shows 2s = y + 2, which is not
possible since y, hence, y + 2 is odd.

Finally, the solutions to a2 + b2 = 4 are ±2 and ±2i. These solutions all differ by a
unit factor. So we may suppose a + bi = 2. However, 2 is not prime in Z[i]. We have
2 = (1 + i)(1− i). So it divides the product of 1 + i and 1− i, but it does not divide either
factor. One my see this from the fact that N(2) = 4, which does not divide N(1± i) = 2.

Now suppose (2 + iy)(2 − iy) = z3 for some integer z. Imagine the prime factors of z in
Z[i]. Since 2 + iy and 2 − iy share no prime factors, it must be that we can write z = αβ
for some α, β ∈ Z[i] where β is relatively prime to 2 + iy and α is relatively prime to 2− iy.
It follows that

2 + iy = uα3 and 2− iy = vβ3

for some units u, v. Since (2 + iy)(2− iy) = z3 = α3β3, we see v = u−1 = u, where u is the
complex conjugate of u. Since the units are ±1,±i, this means that v = ±u Further, the
units are all cubes:

1 = 13, −1 = (−1)3, i = (−i)3, −i = i3.
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Hence, we can write u = w3 and v = w3 for some unit w. Take a, b ∈ Z such that a+bi = wα.
Then

2 + iy = uα3 = (wα)3 = (a+ bi)3.

Taking conjugates, we get
2− iy = (a− bi)3.

Adding these two equations, we get

4 = (a+ bi)3 + (a− bi)3

= (a3 + 3a2bi− 3ab2 − b3i) + (a3 − 3a2bi− 3ab2 + b3i)

= 2a3 − 6ab2

= 2a(a2 − 3b2).

Hence,
2 = a(a2 − 3b2),

Since a|2, we have a ∈ {1,−1, 2,−2}. Choosing a possibility for a then determines b. If
a = 1, we need 2 = 1 − 3b2, which has no solutions for b ∈ Z. If a = −1, we need
2 = −1 − 3b2, which yields b = ±1. If a = 2, we need 2 = 2(4 − 3b2). Hence, 1 = 4 − 3b2,
and so b = ±1, Finally, if a = −2, we need 2 = −2(4 − 3b2), or −1 = 4 − 3b2, for which
there are no solutions. Thus, the only possibilities for a+ bi are

a = −1, b = ±1 and a = 2, b = ±1.

We then have

z3 = (2 + iy)(2− iy) = (a+ bi)3(a− bi)3 = ((a+ bi)(a− bi))3 = (a2 + b2)3,

from which it follows that
z = a2 + b2.

Plugging in the possibilities for a and b, give the solutions z = 2, 5. Then since y2 + 4 = z3,
we must have y2 + 4 = 8, which means y = ±2, or y2 + 4 = 125, which means that y = ±11.
We had assumed that y is odd, which gives solutions (y, z) = (±11, 5). However, we have
accidentally discovered solutions with y even: (y, z) = (±2, 2).

To rule out any solutions besides those we have already found, we must check the case
where y is even. For that case, which is no more difficult, see our text.
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