Math 361 lecture for Wednesday, Week 6

Unique factorization

Let R be a ring. Recall that an element $u \in R$ is a *unit* if it is invertible, i.e., there exists $w \in R$ such that uw = 1. An element $r \in R$ is *irreducible* if it is nonzero, not a unit, and whenever r = st for some $s, t \in R$, then one of s and t is a unit. An element $p \in R$ is *prime* if it is nonzero, not a unit, and whenever p|ab for some $a, b \in R$, then p|a or p|b. During the first week, we did the easy check that if R is a domain (i.e., if there are no zero divisors)

prime
$$\implies$$
 irreducible.

We have also seen that in a PID, the converse holds. So in a PID, an element is prime if and only if it is irreducible. A factorization of an element $r \in R$ has a *factorization into irreducibles* if there exists a unit $u \in R$ and irreducibles p_1, \ldots, p_k such that

$$r = up_1 \cdots p_k$$

The factorization of r is *unique* if whenever

$$r = vq_1 \cdots q_\ell$$

with v a unit and q_1, \ldots, q_ℓ irreducible, then $k = \ell$ and up to a permutation of the indices $p_i = u_i q_i$ for some unit u_i for all i. The ring R is a unique factorization domain (UFD) if each nonzero element $r \in R$ has a unique factorization into irreducibles.

A domain in which every nonzero element can be factored into irreducibles (but not necessarily uniquely) is called a *factorization domain*. Last time we showed that every Noetherian domain is a factorization domain.

Theorem 1. Let R be a factorization domain. Then is a UFD if and only if each irreducible element in R is prime.

Proof. See Theorem 4.14 in our text.

Euclidean domains. A domain R is a Euclidean domain if there exists a function

$$d\colon R\setminus\{0\}\to\mathbb{N}$$

such that for all $a, b \in R \setminus \{0\}$,

- 1. a|b implies $d(a) \leq d(b)$, and
- 2. there exist $q, r \in R$ such that

$$a = qb + r$$

with r = 0 or d(r) < d(b).

Example 2. For example, \mathbb{Z} is a Euclidean domain with the function d(n) = |n|, and if K is a field, then K[x] is a Euclidean domain with function $d(f) = \deg(f)$.

Proposition 3. Every Euclidean domain is a PID.

Proof. Let R, d be a Euclidean domain, and let $I \subseteq R$ be an ideal. If I = (0), there is nothing to prove. So suppose $I \neq (0)$. Among the nonzero elements of I choose one, a, with minimal value d(a). We now show that I = (a).

Given $b \in I$ we write

b = qa + r

with either r = 0 or d(r) < d(a). Note that $r = b - qa \in I$. Therefore, by minimality of d(a), it cannot be the case that d(r) < d(a). Therefore, r = 0 and b = qa. Hence, $b \in (a)$.

Remark 4. To sum up, a Euclidean domain is a PID, therefore a UFD, and its prime elements are the same as its irreducible elements.

Theorem 5. Let $d \in \mathbb{Z}_{<0}$ be a negative integer, and let $K = \mathbb{Q}(\sqrt{d})$. Then \mathfrak{O}_K is Euclidean exactly when

$$d = -1, -2, -3, -7, -11$$

In these cases, one may use the norm as the Euclidean function $(d(\alpha) := N(\alpha)$ for all $\alpha \in \mathfrak{O}_K$).

Proof. See Theorems 4.19 and 4.20 in our text.

Example 6. In homework, we say that $\mathbb{Z}[-5]$ is not a UFD (hence, not a Euclidean domain). We showed that

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

where $2, 3, 1 \pm \sqrt{-5}$ are irreducible. There elements are all examples of irreducibles that are not prime. For example, $2|(1+\sqrt{-5})(1-\sqrt{-5})$ but 2 divides neither $1+\sqrt{-5}$ nor $1-\sqrt{-5}$. To see this, suppose $2|(1+\sqrt{5})$. Then there exists $a + b\sqrt{-5}$ with $a, b \in \mathbb{Z}$ such that

$$1 + \sqrt{-5} = 2(a + b\sqrt{-5})$$

However, in that case, 2a = 2b = 1, which is not possible.

Theorem 7. The ring of integers of $\mathbb{Q}(\sqrt{d})$, for positive *d*, is Euclidean with respect to the (absolute value of the) norm function if and only if

$$d = 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 55, 73$$

However, for d > 0, it is possible for $\mathbb{Q}(\sqrt{d})$ to be Euclidean but not Euclidean with respect to the norm functions. For example, it was shown in 2000 that $\mathbb{Z}[14]$ is Euclidean. The full list of d for which $\mathbb{Q}(\sqrt{d})$ is Euclidean is not known. See some additional interesting history on p. 94 of our text.

Here is an application of the above ideas.

Theorem 8. The only integer solutions to

$$y^2 + 4 = z^3$$

are $(y, z) = (\pm 11, 5)$ and $(y, z) = (\pm 2, 2)$.

Proof. For the full proof, see Theorem 4.22 in our text, which divides the problem into two cases: y odd, and y even. To get a flavor, we will consider that case in which y is odd. Recall that $\mathbb{Z}[i]$ is a UFD and its units are ± 1 and $\pm i$. Factor our equation over $\mathbb{Z}[i]$:

$$(2+iy)(2-iy) = z^3.$$

We first show that 2 + iy and 2 - iy share no prime factors in $\mathbb{Z}[i]$. Suppose $a, b \in \mathbb{Z}$ and that a + bi is a prime in $\mathbb{Z}[i]$ dividing both 2 + iy and 2 - iy. Then it divides their sum and their difference. So $4 = (a + bi)\gamma$ and $2iy = (a + bi)\mu$ for some $\gamma, \mu \in \mathbb{Z}[i]$. Taking norms, we find that

$$16 = (a^2 + b^2)N(\gamma)$$
 and $4y^2 = (a^2 + b^2)N(\mu)$

where $N(\gamma), N(\mu) \in \mathbb{Z}$. From the first equation, we see that $a^2 + b^2$ is a power of 2, and then since y is odd, the second equation says that $a^2 + b^2 \in \{1, 2, 4\}$. We handle each of these cases below.

The solutions to $a^2 + b^2 = 1$ are $(a, b) = (\pm 1, 0)$ and $(a, b) = (0, \pm 1)$. So in these cases, $a + bi \in {\pm 1, \pm i}$. Thus, in these cases, a + bi is a unit. That's not possible since we took a + bi to be prime.

Next, the solutions to $a^2 + b^2 = 2$ are $\pm (1+i)$ and $\pm (1-i)$. All of these solutions differ by unit factors, ± 1 or $\pm i$. Thus, to show that none of them divide 2 + iy, it suffices to 1 + i does not divide 2 + iy. Suppose there exists $s, t \in \mathbb{Z}$ such that

$$2 + iy = (1 + i)(s + ti) = (s - t) + (s + t)i.$$

Then s - t = 2 and s + t = y. Adding these equations shows 2s = y + 2, which is not possible since y, hence, y + 2 is odd.

Finally, the solutions to $a^2 + b^2 = 4$ are ± 2 and $\pm 2i$. These solutions all differ by a unit factor. So we may suppose a + bi = 2. However, 2 is not prime in $\mathbb{Z}[i]$. We have 2 = (1+i)(1-i). So it divides the product of 1+i and 1-i, but it does not divide either factor. One my see this from the fact that N(2) = 4, which does not divide $N(1 \pm i) = 2$. Now suppose $(2 + iy)(2 - iy) = z^3$ for some integer z. Imagine the prime factors of z in $\mathbb{Z}[i]$. Since 2 + iy and 2 - iy share no prime factors, it must be that we can write $z = \alpha\beta$

 $\mathbb{Z}[i]$. Since 2 + iy and 2 - iy share no prime factors, it must be that we can write $z = \alpha\beta$ for some $\alpha, \beta \in \mathbb{Z}[i]$ where β is relatively prime to 2 + iy and α is relatively prime to 2 - iy. It follows that

$$2 + iy = u\alpha^3$$
 and $2 - iy = v\beta^3$

for some units u, v. Since $(2 + iy)(2 - iy) = z^3 = \alpha^3 \beta^3$, we see $v = u^{-1} = \overline{u}$, where \overline{u} is the complex conjugate of u. Since the units are $\pm 1, \pm i$, this means that $v = \pm u$ Further, the units are all cubes:

$$1 = 1^3, -1 = (-1)^3, i = (-i)^3, -i = i^3.$$

Hence, we can write $u = w^3$ and $v = \overline{w}^3$ for some unit w. Take $a, b \in \mathbb{Z}$ such that $a+bi = w\alpha$. Then

$$2 + iy = u\alpha^3 = (w\alpha)^3 = (a + bi)^3.$$

Taking conjugates, we get

$$2 - iy = (a - bi)^3.$$

Adding these two equations, we get

$$4 = (a + bi)^{3} + (a - bi)^{3}$$

= $(a^{3} + 3a^{2}bi - 3ab^{2} - b^{3}i) + (a^{3} - 3a^{2}bi - 3ab^{2} + b^{3}i)$
= $2a^{3} - 6ab^{2}$
= $2a(a^{2} - 3b^{2}).$

Hence,

$$2 = a(a^2 - 3b^2),$$

Since a|2, we have $a \in \{1, -1, 2, -2\}$. Choosing a possibility for a then determines b. If a = 1, we need $2 = 1 - 3b^2$, which has no solutions for $b \in \mathbb{Z}$. If a = -1, we need $2 = -1 - 3b^2$, which yields $b = \pm 1$. If a = 2, we need $2 = 2(4 - 3b^2)$. Hence, $1 = 4 - 3b^2$, and so $b = \pm 1$, Finally, if a = -2, we need $2 = -2(4 - 3b^2)$, or $-1 = 4 - 3b^2$, for which there are no solutions. Thus, the only possibilities for a + bi are

$$a = -1, b = \pm 1$$
 and $a = 2, b = \pm 1$.

We then have

$$z^{3} = (2+iy)(2-iy) = (a+bi)^{3}(a-bi)^{3} = ((a+bi)(a-bi))^{3} = (a^{2}+b^{2})^{3}$$

from which it follows that

$$z = a^2 + b^2.$$

Plugging in the possibilities for a and b, give the solutions z = 2, 5. Then since $y^2 + 4 = z^3$, we must have $y^2 + 4 = 8$, which means $y = \pm 2$, or $y^2 + 4 = 125$, which means that $y = \pm 11$. We had assumed that y is odd, which gives solutions $(y, z) = (\pm 11, 5)$. However, we have accidentally discovered solutions with y even: $(y, z) = (\pm 2, 2)$.

To rule out any solutions besides those we have already found, we must check the case where y is even. For that case, which is no more difficult, see our text.